Egger's test						
Std_Eff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
slope bias	1.518238 1.005	.8442001 4.640214	1.80 0.22	0.106 0.833	3914751 -9.491892	3.427951 11.50189

. metatrim C D E, ci reffect

Supplementary Figure 1 Risk of publication bias for association between acute pancreatitis and pancreatic cancer based on Egger's test.

Meta-analysis | Pooled 95% CI Asymptotic No. of | Est Lower Upper z_value p_value studies Fixed | 0.929 0.813 1.044 15.775 0.000 Random | 0.961 0.507 1.415 4.151 0.000 Test for heterogeneity: Q= 105.811 on 10 degrees of freedom (p= 0.000) Moment-based estimate of between studies variance = 0.424 Trimming estimator: Linear Meta-analysis type: Random-effects model _____ 1 | 0.961 33 0 66 2 | 0.961 33 0 0 Note: no trimming performed; data unchanged Filled Meta-analysis (exponential form) Est Lower Upper z_value p_value studies Fixed | 2.531 2.255 2.841 15.775 0.000 11 2.614 1.661 4.115 4.151 Test for heterogeneity: Q=105.811 on 10 degrees of freedom (p= 0.000)

Supplementary Figure 2 Results of the funnel plot for developing acute pancreatitis in pancreatic cancer risk after trimming and filling method.

Moment-based estimate of between studies variance = 0.424

Supplementary Table 1 The excel recorded the number of patients in the AP group and the control group in five prospective cohort studies

Studies	PCs	APs	PCs	Controls
Munigala2014	86	5634	624	489160
Sadr-Azodi2018	536	49213	233	138517
Chung2012	11	736	10	5966
Goldacre2008	91	5985	826	598482
Kirkegard2018	435	41234	502	207838

Supplementary Table 2 The excel recorded the risk estimates of the different follow-up times

P. Rijker	2017	1. 1	0. 3	3. 3	No lag period
Bansa1	1995	1. 76	1. 28	2.41	No lag period
Due11	2006	6. 4	2. 7	15	No lag period
Goldacre	2008	5. 7	4. 54	7. 08	No lag period
Pang	2018	6. 69	2. 15	20. 87	1-year lag period
Munigala	2014	66. 01	47. 24	92. 23	1-year lag period
Sadr-Azoo	2018	9. 92	6. 09	16. 14	1-year lag period
Kirkegar	2018	19. 28	14. 62	25. 41	2-year lag period
Pang	2018	9. 99	3. 2	31. 16	2-year lag period
Sadr-Azoo	2018	5. 78	3. 73	8. 95	2-year lag period
Munigala	2014	5. 15	2. 3	11. 52	2-year lag period
Kirkegaro	2018	2. 43	1. 73	3. 41	5-year lag period
Chung	2012	9. 1	3. 81	21. 76	5-year lag period
Sadr-Azoo	2018	2. 68	1. 5	4. 76	5-year lag period
Karlson	1997	2. 4	1. 6	3. 3	5-year lag period
Munigala	2014	1. 05	0. 14	7. 68	5-year lag period
Ekbom	1994	3. 2	1. 3	6. 5	5-year lag period
Sadr-Azoo	2018	1. 91	1. 3	2. 82	10-year lag period
Karlson	1997	1. 6	1. 1	2. 2	10-year lag period
Ekbom	1994	1. 5	0. 5	3. 4	10-year lag period
Sadr-Azoo	2018	1. 24	0. 68	2. 25	>10-year lag period
Karlson	1997	1. 2	0. 7	1. 7	>10-year lag period
Ekbom	1994	0. 9	0. 2	2. 5	>10-year lag period