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Abstract
The shortage of donor livers has led to an increased 
use of organs from expanded criteria donors. Included 
are livers with steatosis, a metabolic abnormality that 
increases the likelihood of graft complications post-
transplantation. After a brief introduction on the etiol-
ogy, pathophysiology, categories and experimental 
models of hepatic steatosis, we herein review the 
methods to rescue steatotic donor livers before trans-
plantation applied in clinical and experimental studies. 
The methods span the spectrum of encouraging donor 
weight loss, employing drug therapy, heat shock pre-
conditioning, ischemia preconditioning and selective 
anesthesia on donors, and the treatment on isolated 
grafts during preservation. These methods work at 
different stages of transplantation process, although 
share similar molecular mechanisms including lipid 
metabolism stimulation through enzymes or nuclear 

receptor e.g. , peroxisomal proliferator-activated recep-
tor, or anti-inflammation through suppressing cytokines 
e.g. , tumor necrosis factor-α, or antioxidant therapies 
to alleviate oxidative stress. This similarity of molecular 
mechanisms implies possible future attempts to rein-
force each approach by repeating the same treatment 
approach at several stages of procurement and preser-
vation, as well as utilizing these alternative approaches 
in tandem.
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INTRODUCTION
Liver transplantation (LTx) is a successful therapy for 
end-stage liver disease, but it is severely restricted by the 
donor organ shortage[1-4]. In an effort to increase the size 
of  the donor pool, livers from expanded criteria donors 
(ECD), including steatotic livers, are increasingly being 
used[3]. The current contribution of  steatotic livers is 
marginal however, since the majority has an increased risk 
of  ischemia-reperfusion injury (IRI) after LTx[3]. Here we 
review the clinical and experimental attempts to minimize 
this risk by modifying the quality of  livers at different 
stages, on donors and isolated liver grafts during preser-
vation, before LTx. We begin by briefly introducing the 
etiology, pathophysiology, categories and experimental 
models of  hepatic steatosis, provide a summary of  the 
techniques applied on donors and liver grafts, and con-
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clude by providing future perspectives for these experi-
mental approaches. 

ETIOLOGY OF HEPATIC STEATOSIS
Livers are defined as steatotic or fatty when they have 
excessive (above 5% of  wet liver weight) accumulation 
of  lipids, mainly triglycerides. Steatosis occurs when lipid 
ingestion and synthesis exceed export and consumption 
in livers[5]. Based on the patient’s alcohol consumption[5,6] 
fatty liver disease is classified as either alcoholic or non-
alcoholic in origin (AFLD and NAFLD). Alcohol can de-
crease fatty acid oxidation and lipoprotein excretion, and 
increases the esterification of  fatty acid to triglycerides 
via alpha-glycerophosphate[6]. Several factors contribute 
to NAFLD including dietary lipid overload; insulin resis-
tance, which results in abnormal lipid metabolism; and 
ingestion of  drugs or toxins such as carbon tetrachloride, 
which induces a decrease in apoprotein synthesis and 
lipid export[5-8]. 

PATHOPHYSIOLOGY OF HEPATIC 
STEATOSIS
A complicated pathophysiology has been exposed al-
though the exact pathways have not been completely 
elucidated. Briefly, a “two-hit” theory is the current con-
sensus, with the first “hit” being the initial abnormal fat 
accumulation and the second “hit” being the consequent 
inflammation (“steatohepatitis”) leading to fibrosis and 
cirrhosis[6]. In the first “hit”, excessive fat accumulates in 
vacuoles within hepatocytes, increasing cell volume and 
narrowing sinusoidal lumens[5,9]. This impairs microcircu-
lation and decreases nutrient, oxygen and waste exchange. 
Excessive non-esterified fatty acids in hepatocytes inhibit 
β-oxidation thereby reduce acetyl-coenzyme A produc-
tion[10]. Mitochondria uncoupling protein-2 is upregulated 
and associated with a dysfunction of  adenosine triphos-
phate (ATP) synthesis[11-13]. Fat-induced hyperactivity of  
cytochrome P-450 enzymes increases the production of  
reactive oxygen species (ROS)[6,14]. ROS in turn lead to 
lipid peroxidation, phospholipid depletion and membrane 
dysfunction[6,14,15] as well as the release of  inflammatory 
cytokines such as tumor necrosis factor (TNF)-α[14,16,17]. 
Inflammation occurs gradually and marks a significant 
downturn in disease progression as the second “hit”[18,19]. 
Alcohol can exacerbate oxidative injury and Kupffer cell 
activation[20], though alcoholic and non-alcoholic steato-
hepatitis (ASH and NASH) are thought to progress simi-
larly[18]. 

Steatotic livers have reduced tolerance to ischemia 
due to low ATP stores, and are thus prone to early on-
set of  acidosis and cellular edema during standard liver 
preservation method, static cold storage (SCS)[21]. Edema 
significantly impairs hepatic microcirculation further than 
the preceded impairment induced by excessive fat. More-
over, steatosis-induced inflammation is not addressed in 
the present liver SCS preservation solutions (Table 1). 

Upon reperfusion, a complex inflammatory response 
involving Kupffer cells, lymphocytes, neutrophils, numer-
ous cytokines[22] and nuclear factor kappa-B (NFκB)[23], 
is inevitably worse in steatotic livers compared to non-
steatotic livers. Oxidative stress is also exacerbated e.g., 
through xanthine oxidase[24,25]. The microcirculation is 
deteriorated further due to adherence of  platelets in the 
sinusoids[22]. Strategies to minimize fat content and ame-
liorate the inflammatory and oxidative injury of  steatotic 
livers are essential for improving these organs for trans-
plantation. 

CATEGORIES OF HEPATIC STEATOSIS 
Besides AFLD and NAFLD in etiology, steatosis is also 
classified as “macro-” or “micro-” in histology based on 
the size and number of  the fat vacuoles and on the loca-
tion of  the nucleus in the hepatocytes[5,26]. Macrosteatosis 
has a single fat vacuole larger than the nucleus filling the 
majority of  the cell and pushing the nucleus to the pe-
riphery. Microsteatosis has many small fat vacuoles sur-
rounding the nucleus in the central zone of  the hepato-
cytes, and has more LTx success than macrosteatosis[3,27]. 
Steatosis can also be classified based on the proportion 
of  hepatocytes affected, being mild (< 30%), moderate 
(30%-60%), or severe (> 60%), with incremental risk of  
graft dysfunction after LTx[5,26]. 

CLINICALLY APPLIED STRATEGIES 
Approaches to improve steatotic livers before LTx have 
been tested in a handful of  pilot clinical studies on living 
donors or donors after brain death (DBD) (Table 2). The 
interventions focused on reducing excessive fat (the first 
“hit”) through limiting lipid intake and increasing lipoly-
sis, or stimulating factors likely to be protective against 
inflammation and oxidative stress (the second “hit”) of  
steatohepatitis. Living donors, though a minority in west-
ern countries[1,2], are used extensively in Asia[28] and are 
theoretically amenable to therapies before procurement 
after ethical concern is taken into account[29]. DBD livers, 
which comprise the majority of  donor organs for LTx in 
western countries, could be treated between brain death 
declaration and organ procurement since circulation is 
maintained until procurement. Livers from donors after 
cardiac death (DCD) are seldom utilized when they have 
steatosis because they experience a period of  warm isch-
emia (WI) before procurement[3] and thus were normally 
considered as unacceptable with two defects (steatosis 
and WI). Currently there are no attempts to rescue stea-
totic DCD livers. 

Physical exercise and dietary intervention
Physical exercise and dietary restriction are general thera-
pies for NAFLD patients, independent of  whether or not 
they are organ donors[30,31]. But this treatment normally 
needs several months and might be risky to increase the 
mortality of  recipients during the waiting time for treat-
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ing donors[32]. An intensive protocol might be a solu-
tion, which was already reported to successfully reduce 
macrosteatosis on obese human living donors in 2-8 wk, 
through exercise burning 600 kcal/d, a protein-rich diet 
of  1000 kcal/d, and bezafibrate, an anti-hyperlipidaemia 
drug, at 400 mg/d[33]. However, supplementary glucose 
to donors a few hours before living donor liver trans-
plantation was recommended to supply additional energy 
reserves, since fasting before procurement can induce 
glycogen depletion, decrease glycolytic ATP generation, 
and compromise graft transplantability[34].

The lack of  omega-3 polyunsaturated fatty acids 
(PUFA) has been recognized in the development of  
NAFLD because they can activate peroxisomal prolifera-
tor-activated receptor (PPAR)-α, suppress sterol regulato-
ry element-binding protein-1, improve microcirculation, 
and reduce Kupffer cell activity and inflammation[35-43]. 
The mechanism on microcirculation might work through 
reducing TXA2 synthesis after manipulating the compo-
sition of  hepatic lipid (omega-3: omega-6 PUFA ratio)[43]. 
Based on experimental success on rodents[35-43], omega-3 
PUFA was shown to be effective on NAFLD clinically 
after treatment at 1-2 g/d for 6-12 mo[44-46]. This has not 
been applied specifically on living donors but is expected 

to be a safe and promising approach.

Pharmacological preconditioning
Many drugs are being used clinically to treat NAFLD 
by decreasing lipid intake[47-49], stimulating lipid metabo-
lism[50-53], or improving insulin sensitivity[54-57]. Ursodeoxy-
cholic acid, a natural bile acid, was used as a non-specific 
hepato-protector to treat NAFLD in a pilot clinical 
study[58], but afterward was revealed to be controversial[59]. 
Pentoxifylline was used against NASH and ASH in pa-
tients[60,61] due to the effect of  reducing TNF-α by inhib-
iting phosphodiesterase[62] and lessening oxidative stress 
by increasing glutathione[63]. But to date, only bezafibrate 
was used to treat human living donors for LTx[33]. This 
drug works through activating PPAR-α and β/δ to 
stimulate lipid metabolism and decrease fat content in liv-
ers[64,65]. While there are other candidate drugs that could 
potentially be taken by living donors, concerns of  signifi-
cant side effects are limiting their use[66,67]. 

Ischemic preconditioning 
Though extended ischemia is deleterious to organs, it has 
been recognized since the 1980s that a short period of  
ischemia with subsequent reperfusion triggers natural de-
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Table 1  Intrinsic composition of preservation solutions in this review

UW HTK Celsior IGL-1 UW-gluconate Kreb-Henseleit MEM

Electrolyte Na   25   15 100 125 125 143    143.4
(mmol/L) K 120     9   15   30   25        5.9        5.4

Mg     5     4   13     5     5        1.2        0.8
Ca 0.0015 0.25       0.5          1.25        1.4
Cl   20   32   42     1   125.2 124
SO4     5     5        1.2        0.8

Buffer Phosphate   25   25   15        1.2     1
(mmol/L) Bicarbonate   25   25      26.2

HEPES   10   20
Histidine 198   30          0.27

Antioxidant Glutathione     3     3     3     3
(mmol/L) Allopurinol     1     1     1

Mannitol   38   60
NAC     5
Vit C          0.25
Glucose   10     5        5.5

Metabolic Substrates Adenosine     5     5     5
(mmol/L) Adenine     5

Ribose     5
Tryptophan     2
Ketoglutarate     1
Glutamate   20
Amino acid        0.7

Impermeants Lactobionate 100   80 100
(mmol/L) Gluconate   95

Raffinose   30   30   30
Colloid HES   50
(g/L) PEG     1   50
Other intrinsic 
compounds 

Insulin 100 U
Dexamethason 8 mg
Penicillin 40 U
Phenol-red (mmol/L)          0.03

Osmolarity 340 300 363 330 360 320 310

UW: University of Wisconsin; HTK: Histidine-trypotphan-ketoglutarate; IGL-1: Institut Georges Lopez-1; MEM: Minimum essential cell culture medium; 
HEPES: N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid; NAC: N-acetylcysteine; HES: Hydroxyethyl starch; PEG: Polyethylene glycol. 
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Anesthesia selection 
During clinical liver resection, Beck-Schimmer et al[91] ob-
served the superiority of  volatile anesthesia using sevoflu-
rane in the prevention of  hepatic injury after reperfusion 
compared to intravenous anesthesia with propofol. The 
mechanism was suggested to be the increased synthesis 
of  nitric oxide with sevoflurane, which alleviates some 
of  the effects of  IRI as discussed above. Moreover they 
observed that patients with steatosis did benefit more[91]. 
This method could be easily applied during the procure-
ment of  steatotic livers from both DBD and living do-
nors. 

EXPERIMENTAL STRATEGIES
Induction of steatosis in animal models 
Steatosis in animal models are established with or without 
alcohol and classified also as micro- vs macro- or as mild, 
moderate, vs severe. The timeline to develop the different 
classifications largely depends on strain and method used 
(Table 3). 

A common rodent NAFLD model induces cerebral 
deficiency of  the leptin receptor through a genetic muta-
tion that causes the animals to become obese through 
overeating[92-98]. The methods inducing lipid overload 
with high fat or cholesterol diets are also quite common. 
A high fat diet (50% dextrose, 18% casein, 25% lipids, 
4% minerals, 1% cholesterol, 0.5% sodium cholate, 0.2% 
choline, and 1% vitamins) for 7 d induces severe steatosis 
in rats[99]. A high-cholesterol (2%) diet for 12 wk in rats[82] 
and 8 wk in rabbits results in moderate steatosis[84]. A 
cafeteria diet (65% of  fat) for 4-15 wk was also used to 
create NAFLD on rats[100,101]. Recent studies suggested it 
reflects human metabolic syndrome better than high-fat 
diet[100,101]. A choline/methionine-deficient diet (CMDD) 
was another rather common method to develop steatosis, 
for 4-6 wk or short as 7 d in rodents[5,27,102,103]. Choline 
is essential for the formation of  phosphatidyl-choline 
and very low density lipoprotein needed for lipid export, 
while methionine is a good source of  methyl groups for 
the endogenous synthesis of  choline. This model could 
be criticized for not being clinically accurate because 
NAFLD patients due to CMDD are rather unrealistic. 
The most rapid induction of  NAFLD in rats was with a 
high-starch, fat-free diet [saccharose (40%), starch (40%), 
casein (16%), and a mineral and vitamin mix (4%)] ad-
ministered for 2 d after fasting for 2 d, which can lead 
to mild to moderate steatosis[104-106]. While none of  these 
models are unanimously agreed to be ideal in replicating 
clinical NAFLD, the high fat or cholesterol diet model 
was the most widely used to mimic steatosis in humans. 

There are fewer large animal NAFLD models, which 
usually combine more than one method described above 
to achieve steatosis. Takahashi et al[107] established a dog 
model using a diet rich in fat and deficient in choline, 
which produced moderate to severe macrosteatosis after 
8-12 wk feeding. Lee et al[108] used a high fat and high cho-
lesterol diet (20% kcal from fructose, 46% kcal from fat, 

fense mechanisms against future ischemic insults and pro-
tects the organ against IRI[68]. Ischemic preconditioning (IP) 
was first observed in kidneys and hearts[69,70], and then em-
ployed for clinical liver resections and transplantation[68]. It 
can be applied intermittently[71], or as a single short period 
(5-10 min) of  ischemia followed by 10-15 min reperfusion 
before cold flush during liver procurement[72,73]. Franchel-
lo et al[73] have used the technique clinically on marginal 
DBD livers including steatotic livers, and observed a 
reduction of  hepatocyte swelling and enzyme release in 
recipients after LTx. 

IP is protective because ATP consumption during the 
short ischemic period increases endogenous adenosine 
and nitric oxide[74]. Adenosine protects sinusoidal endo-
thelial cells through adenosine A2 receptor[75]. Cyclic ad-
enosine monophosphate (cAMP) worked as the second 
messenger, but whether increasing or blocking cAMP 
would be beneficial was still controversial[75,76]. Nitric ox-
ide is a vasodilator, and further it attenuates the release of  
TNF-α, decreases the injurious interleukin (IL)-1β and 
increases the anti-inflammatory IL-10[77]. Another effect 
of  the intermittent ATP consumption is to increase the 
level of  adenosine monophosphate (AMP), which stimu-
lates AMP-activated protein kinase (AMPK). AMPK can 
regulate an energy-conserving state, decrease inflamma-
tion through inhibiting NFκB, and induce the synthesis 
of  nitric oxide as well[78-80]. Overall, the advantages of  IP 
were an improved microcirculation[81,82], mitochondrial 
permeability transition and mitochondrial function[83], cy-
tochrome oxidase C activity and tissue oxygenation[82,84], 
and the reduction of  oxidative stress such as the xanthine 
accumulation and xanthine oxidase activity[85,86]. 

Interestingly, IP can work remotely, e.g., liver IP de-
creased lung IRI[25,87] and limb IP decreased liver IRI[88-90]. 
This possibly works through some protective agents, e.g., 
heme oxygenase-1, endothelial nitric oxide synthase, and 
nuclear protein High Mobility Group-Box 1[88-90]. But 
foreseeable ethical concerns exist with the logistics of  
implementing this technique in human donors. 

Table 2  Overview of the clinical and experimental strategies 
in this review

Clinically applied Experimentally applied

Donors Dietary Pharmacological 
Pharmacological Heat shock
Ischemic 
(except remote ischemic)
Anesthetic 

Liver grafts SCS preservation
   New solution
   Pharmacological additives
   Additional oxygen (VSOP)
MP preservation
   MP solely
   MP + pharmacological additives
Flushing
   Pharmacological additives

SCS: Simple cold storage; MP: Machine perfusion; VSOP: Venous systemic 
oxygen persufflation. 
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2% cholesterol and 0.7% cholate by weight) for 24 wk 
to develop microsteatosis on miniature pigs. When using 
lowered choline content simultaneously, severe steatosis 
with fibrosis was observed with increased TNF-α and 
oxidative stress. A recent study on Landrace pigs used a 
diet rich in fat (20% in volume) for 5 wk together with 
intravenous streptozotocin (125 mg/kg) to induce a dia-
betic state in the last 2 wk; but this treatment led only to 
mild steatosis[109].

In rodent AFLD models, ethanol was provided in a 
liquid diet[110-114] or via intragastric infusion[115,116]. Different 
degrees of  alcohol exposure have been reported: 5%-8% 
in the concentration of  liquid diet; 35%-40% of  total en-
ergy consumption; 8-16 g/kg per day; or 150-300 mg/dL 
of  blood ethanol[110-116]. Normally several days are needed 
for the animals to adapt to the alcoholic diet, and an ad-
ditional 4-9 wk to observe steatosis. Acute responses to 
ethanol have also been reported as early as 20 h after 
feeding 6 g/kg ethanol by gavage on rats[117]. Combined 
ethanol with high-fat diet to develop steatosis on rats was 
also reported[118]. Large animal AFLD models are uncom-
mon though micropigs have been fed a diet with ethanol 
and a deficiency of  folate, as a substrate for methionine 
synthase, with some efficacy[119,120]. 

Experimental strategies applied to donors
Pharmacological preconditioning: Reduction of  oxi-
dative and inflammatory activity with heme oxygenase-1, 
a microsomal enzyme[121-123], was used intravenously or 
intraperitoneally on AFLD and NAFLD rats 24 h before 
liver procurement. It decreased macrophage infiltration, 
improved portal venous blood flow, bile production, 
and survival rate after LTx[121-123]. Bortezomib, a NFκB 
inhibitor, was used intravenously on obese donor rats 
and reduced IRI after LTx[23]. N-acetylcysteine, a precur-
sor of  glutathione, was injected through the mesenteric 
vein of  CMDD rats 15 min before liver procurement and 
showed a protective effect on IRI in an isolated reperfu-
sion system[124]. The subcutaneous injection of  IL-6 for 
10 d was observed to be protective against IRI after in 
situ partial ischemia-reperfusion on NAFLD and ALFD 
mice[92]. The mechanism might be the prevention of  cell 

death and the reduction of  TNF-α[125], in addition to 
stimulating PPAR-α, β-oxidation of  fatty acids, and the 
export of  triglycerides and cholesterol[92,125]. Theaflavin, a 
polyphenol substance extracted from black tea, was tested 
on CMDD mice and observed to have antioxidant, anti-
inflammatory, and anti-apoptotic effect[126]. A multi-drug 
approach was reported by von Heesen et al[127] including 
N-acetylcysteine as an antioxidant, pentoxifylline for anti-
inflammation, glycine to stabilize Kupffer cells, deferox-
amine as an iron chelator to reduce ROS, and erythropoi-
etin, melatonin and simvastatin to protect against IRI. In 
the treated rats they observed no inflammatory response 
with significantly reduced parenchymal dysfunction and 
injury compared to the untreated rats. 

Heat shock preconditioning: An intriguing experi-
mental method to improve the quality of  steatotic donor 
livers has been to induce protective heat shock proteins 
(HSPs) endogenously by exposure to heat. Termed “heat 
shock preconditioning” and applied at 3-48 h before 
organ procurement by exposing anesthetized donor 
animals to warm (42 ℃) bath water for 10-15 min[128-132], 
obese and CMDD rats showed an increased expression 
of  HSP-32 (heme oxygenase-1), -72 and -90[128,129]. These 
HSPs can decrease TNF-α production[129], improve mi-
crocirculation through producing carbon monoxide, and 
inhibit platelet aggregation[62,64]. Our group has also re-
ported the inhibition of  CD4+ T lymphocytes in CMDD 
rats after LTx with heat shock preconditioning[130]. Other 
factors might be involved in the treatment since studies 
on normal and WI rat livers showed IL-6, inter-cellular 
adhesion molecule-1, and some neutrophil chemo-attrac-
tants were also impacted[131,132]. 

Strategies applied on liver grafts during ex vivo 
preservation
Obviously, strategies to improve steatotic liver quality 
during preservation are more desirable than those on 
donors, as they have no effect on the donor’s other or-
gans, and are practical when it’s not possible to work on 
the donor. The clinical standard for liver graft preserva-
tion has been SCS with University of  Wisconsin (UW) 

Table 3  Animal models of hepatic steatosis for liver transplantation

Disease Approaches Description Animals Treatment time 

NAFLD Genetic Cerebral leptin receptor deficiency Rodent 
Dietary High fat Rodent 7 d

High cholesterol Rodent, rabbits 8-12 wk
Cafeteria diet Rodent 4-15 wk

Choline/methionine-deficient Rodent 7 d-6 wk
High starch and fat free after fasting Rodent 4 d

High fat and choline deficiency Dog 8-12 wk
High fat and high cholesterol, plus choline deficiency or not Miniature pig 24 wk

High fat and carbohydrate with streptozotocin for a diabetic state Landrace pig 5 wk
AFLD Dietary Ethanol in liquid diet, intragastric infusion or gavage Rodent 20 h-9 wk

Ethanol and high fat diet Rodent 6 wk
Ethanol and deficient folate diet Micropig 12 wk

NAFLD: Non-alcoholic fatty liver disease; AFLD: Alcoholic fatty liver disease. 
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solution for more than 20 years[3,21]. In the past decade, 
histidine-trypotphan-ketoglutarate (HTK) solution[133-135] 
and Celsior solution[136,137] were recognized as having sim-
ilar efficacy and safety as UW solution; Institut Georges 
Lopez-1 (IGL-1) was reported to be comparable to UW 
for healthy human livers[138], and better for steatotic rat 
livers[139]. Besides the arising new solutions, many adapta-
tions have been suggested through enriching the intrinsic 
composition of  the solutions with additives, or replacing 
SCS by machine perfusion (MP) preservation in experi-
mental studies to rescue steatotic livers. 

Pharmacological additives during SCS preservation: 
Liver preservation solutions normally comprise elec-
trolytes, pH buffers, antioxidants, metabolic substrates, 
impermeants with or without colloid, insulin, dexametha-
sone, and antibiotics (Table 1)[139-143]. The additives for 
improving steatotic liver preservation were intended to 
ameliorate metabolism or suppress oxidative injury and 
inflammation. They were reported to be effective during 
SCS, despite the reduced metabolic rate of  liver grafts 
during hypothermic preservation.

Addition of  IL-6 into UW solution for donor liver 
flushing and SCS was tested by Sun et al[144], leading to im-
provement in microcirculation and reduced IRI after LTx 
of  NAFLD and AFLD rats. Arnault et al[99] added pent-
oxifylline into UW solution and also observed a benefit 
to the microcirculation, but the exact mechanism is yet to 
be identified. 

Tolba et al[106] added L-carnitine into HTK solution 
for SCS preservation of  steatotic rat livers and observed 
a reduction of  IRI in an isolated reperfusion system. 
L-carnitine is a nonessential amino acid but is essential 
for transporting fatty acids through the inner mitochon-
drial membrane and for β-oxidation[106]. It has also been 
reported to function as an antioxidant and to stabilize the 
membrane fluidity and stability in vitro and in vivo[145]. 

Ben Mosbah et al[146] added carvedilol, a cardiologic 
drug to block α- and β-adrenergic receptor, into UW 
solution for SCS of  obese rat livers, and reduced oxi-
dative stress and mitochondrial damage after isolated 
reperfusion. The mechanism might be an enhanced 
release of  nitric oxide that facilitates vasodilatation and 
ROS scavenging[147]. AMPK activators, trimetazidine and 
aminoimidazole-4-carboxamide ribonucleoside (AICAR) 
were also tested as UW additives on obese rat livers by 
this group. Increased bile production, decreased enzyme 
release and vascular resistance, and reduced oxidative 
stress after isolated reperfusion were observed. It was 
noted that combination of  trimetazidine and AICAR was 
not necessary[95]. 

Zaouali et al[148] tested the use of  epidermal growth 
factor and insulin-like growth factor-I as UW addi-
tives and observed that each additive resulted in the 
improvement of  fatty rat liver function after LTx. The 
mechanisms are suggested to be upregulation of  Akt, a 
cytoprotector[149], and the subsequent over-expression of  
PPAR-γ. They also tested melatonin as additive in IGL 

solution and reported its protective role through gen-
erating nitric oxide and decreasing oxidative stress and 
inflammation[150].

Venous systemic oxygen persufflation during SCS 
preservation: In 1990s, Minor et al[151] developed a new 
method, called venous systemic oxygen persufflation 
(VSOP) to supply gaseous oxygen to livers during SCS 
preservation. The oxygen was introduced into hepatic 
vasculature via the suprahepatic vena cava and allowed to 
exit via several small pin pricks on the liver capsule made 
using an acupuncture needle. This technique was em-
ployed on steatotic rat livers for 24 h, and resulted in im-
proved preservation of  mitochondria and sinusoidal en-
dothelial linings, less Kupffer cell activation and reduced 
hepatocellular enzyme release compared to SCS preserva-
tion[105]. Recently, by assessing the enzyme release, energy 
storage, bile production, and cell death during isolated re-
perfusion, it was demonstrated that application of  VSOP 
for 90 min may rescue steatotic livers after extended (18 h) 
SCS preservation[152].

MP preservation: MP is an alternative preservation me
thod to SCS[153], which can be further categorized based 
on the temperature employed[154]. Hypothermic (4 ℃) 
machine perfusion (HMP) preservation has proven to be 
superior to SCS for human kidneys[155], and feasible for 
normal human livers[156]. Normothermic (32  ℃-37  ℃) 
and sub-normothermic (20  ℃-30  ℃) machine perfusion 
(NMP and subNMP) preservation have been reported in 
experimental studies on livers, but mostly on their advan-
tages for DCD models[143,157-162]. MP preservation of  stea-
totic livers is limited, but also reported to be beneficial on 
preserving energy content and liver function experimen-
tally[109,143,163,164]. The advantages of  MP preservation result 
from continuously supplying nutrients, removing waste 
products, and maintaining microcirculation[154]. Because 
MP, especially NMP, provides a physiologically-relevant 
environment to the isolated donor organ, the quality of  
liver grafts can be manipulated more efficiently than those 
simply stored in an ice-box during SCS. Another advan-
tage of  MP is the considerable convenience for non-
invasively evaluating liver viability, a key issue when ECD 
livers are used[153]. 

Bessems et al[163] employed HMP preservation with 
UW-gluconate solution on steatotic rat livers for 24 h 
and alleviated IRI compared to SCS. Vairetti et al[143] pre-
served steatotic rat livers by subNMP (20 ℃) with Kreb-
Henseleit solution for 6 h and obtained similar results. 
The longest preservation of  steatotic livers was the NMP 
preservation for 48 h in a pig model by Jamieson et al[109], 
who employed blood containing additional insulin and 
vasodilators as perfusate, and observed a mild reduction 
of  steatosis from 28% to 15%. This NMP setting pro-
vided the most physiological environment to liver grafts 
and lead to an activated function of  the isolated organs 
with sufficient oxygen and nutritional support. This is ex-
pected to be the best preservation method in spite of  the 
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highest logistic restriction. 
Recently our group has combined NMP and phar-

macological preconditioning for decreasing steatosis[96]. 
A “defatting cocktail” was developed with 6 compounds 
to activate nuclear receptors such as PPARs, pregnane X 
receptor, and constitutive androstane receptor, to exert 
an insulin mimetic effect and to stimulate intracellular 
cAMP. This cocktail was added into Minimum Essential 
cell culture medium as a perfusate to stimulate lipid me-
tabolism of  obese rat liver grafts preserved at NMP. A 
significant decrease (50%) in steatosis was observed after 
3 h NMP[96]. 

Other experimental approaches
The solution used for SCS preservation needs to be 
flushed out of  the donor organ prior to implantation 
to remove possible air bubbles, and preservative com-
ponents such as high potassium, which are deleterious 
to the recipient. This provides an opportunity for treat-
ment of  ischemic injury, although it has been very little 
explored. In one study, polyphenols, an antioxidant ex-
tracted from Camellia sinensis (green tea), was added to 
the flushing solution and improved the hepatic injury and 
survival rate after LTx in a steatotic rat model[117]. 

Another option is applying preconditioning at several 
phases. While it appears little explored, in one study Ye 
et al[118] injected glutathione intraperitoneally in rats with 
hepatic steatosis 2 d before procurement and preserved 
the livers by SCS with VSOP and additional glutathione. 
Remarkable improvement on survival rate, liver function, 
and oxidative stress in liver tissues after transplantation 
was observed. 

SUMMARY AND FUTURE PERSPECTIVES
Based on the understanding on pathophysiology, current 
strategies to rescue steatotic donor livers work through 
ameliorating the abnormal lipid metabolism (the first 
“hit”), and the oxidative stress and inflammation (the sec-
ond “hit”). Each approach employs various methods at 
different phases of  organ recovery and preservation but 
generally targets similar molecular mechanisms. Notably, 
it may be possible to attack the same mechanism but re-
inforce the effects by applying the treatment at multiple 
points of  organ recovery and preservation process, there-
by producing a stacking effect. The use of  glutathione on 
donors and in SCS solution by Ye et al[118] is a good ex-
ample in this direction that demonstrates the therapeutic 
effects may stack. Stacking other medications, e.g., IL-6 
and pentoxifylline could also be promising as these could 
be given to the donors prior to recovery or readily added 
into preservation solutions to treat liver grafts. Whether 
the stacking approach works for different targets in lipid 
metabolism, oxidative stress or inflammation remain to 
be elucidated.

Similar to stacking the same/similar pharmacologi-
cal agents at different stages, it is a reasonable idea to 
attack the two “hits” simultaneously by stacking medica-

tions targeting different pathways. Development of  such 
combinations is usually shunned because it exponentially 
increases the complexity of  development and clinical 
testing, but given that the disease itself  is a very complex 
phenomenon spanning multiple pathways, it may be un-
avoidable, and a single silver bullet to treat steatosis sim-
ply nonexistent. 

An intriguing alternative in development is the ef-
forts to use MP for liver preservation. Especially in near 
normothermic conditions, MP provides a combined op-
portunity to improve energy storage, maintain microcir-
culation, and support pharmacological approaches to de-
crease fat content and treat IRI. While machine perfusion 
by definition is more complex than simple storage on ice, 
it is a very promising approach available in the near fu-
ture and could be the ultimate solution to rescue steatotic 
as well as ischemic livers. 

Both steatotic livers and DCD livers are highly 
susceptible to IRI. Therefore, potentially, a method to 
rescue DCD livers could be also applicable to steatotic 
livers even with the fat content intact. For instance, MP 
preservation was able to rescue DCD livers and steatotic 
livers[143,157-164]. Similarly, perfluorocarbon as an artificial 
oxygen carrier to improve SCS preservation of  DCD liv-
ers[165] could also be tested on steatotic livers. If  success-
ful, we would then secure both DCD and fatty livers for 
transplantation, which would boost the organ availability 
dramatically and resolve donor liver shortage for a decade 
or more. 
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