Contents

REVIEW

3321 Encouraging specific biomarkers-based therapeutic strategies for hepatocellular carcinoma

ORIGINAL ARTICLE

Clinical and Translational Research

3334 Autophagy-related long non-coding RNA prognostic model predicts prognosis and survival of melanoma patients

3352 Identification of circ_0000375 and circ_0011536 as novel diagnostic biomarkers of colorectal cancer
Yin TF, Du SY, Zhao DY, Sun XZ, Zhou YC, Wang QQ, Zhou GYJ, Yao SK

Retrospective Study

3369 Echocardiography in the diagnosis of Shone’s complex and analysis of the causes for missed diagnosis and misdiagnosis
Li YD, Meng H, Pang KJ, Li MZ, Xu N, Wang H, Li SJ, Yan J

3379 Predictors and prognostic impact of post-operative atrial fibrillation in patients with hip fracture surgery
Bae SJ, Kwon CH, Kim TY, Chang H, Kim BS, Kim SH, Kim HJ

3389 Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients
Ke ZR, Chen W, Li MX, Wu S, Jin LT, Wang TJ

3401 Washed microbiota transplantation reduces serum uric acid levels in patients with hyperuricaemia
Cai JR, Chen XW, He YJ, Wu B, Zhang M, Wu LH

Clinical Trials Study

3414 Concurrent chemoradiotherapy using gemcitabine and nedaplatin in recurrent or locally advanced head and neck squamous cell carcinoma

META-ANALYSIS

3426 Effect of enhanced recovery after surgery on inflammatory bowel disease surgery: A meta-analysis
Peng D, Cheng YX, Tao W, Tang H, Ji GY

3436 Accuracy of ultrasound elastography for predicting breast cancer response to neoadjuvant chemotherapy: A systematic review and meta-analysis
Chen W, Fang LX, Chen HL, Zheng JH
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 11 April 16, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3449</td>
<td>Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis</td>
<td>Zhao LY, Zhou XL</td>
</tr>
<tr>
<td>3472</td>
<td>Difference and similarity between type A interrupted aortic arch and aortic coarctation in adults: Two case reports</td>
<td>Ren SX, Zhang Q, Li PP, Wang XD</td>
</tr>
<tr>
<td>3478</td>
<td>Combination therapy (toripalimab and lenvatinib)-associated toxic epidermal necrolysis in a patient with metastatic liver cancer: A case report</td>
<td>Huang KK, Han SS, He LY, Yang LL, Liang BY, Zhen QY, Zhu ZB, Zhang CY, Li HY, Lin Y</td>
</tr>
<tr>
<td>3485</td>
<td>Unusual glomus tumor of the lower leg: A case report</td>
<td>Wang HY, Duan P, Chen H, Pan ZY</td>
</tr>
<tr>
<td>3490</td>
<td>Pulmonary Cladosporium infection coexisting with subcutaneous Corynespora cassiicola infection in a patient: A case report</td>
<td>Wang WY, Luo HB, Hu JQ, Hong HH</td>
</tr>
<tr>
<td>3496</td>
<td>Preoperational diagnosis and management of breast ductal carcinoma in situ arising within fibroadenoma: Two case reports</td>
<td>Wu J, Sun KW, Mo QP, Yang ZR, Chen Y, Zhong MC</td>
</tr>
<tr>
<td>3505</td>
<td>Reconstruction of complex chest wall defects: A case report</td>
<td>Huang SC, Chen CY, Qiu P, Yan ZM, Chen WZ, Liang ZZ, Luo KW, Li JW, Zhang YQ, Huang BY</td>
</tr>
<tr>
<td>3511</td>
<td>Young children with multidrug-resistant epilepsy and vagus nerve stimulation responding to perampanel: A case report</td>
<td>Yang H, Yu D</td>
</tr>
<tr>
<td>3541</td>
<td>Severe gastric insufflation and consequent atelectasis caused by gas leakage using AIR-Q laryngeal mask airway: A case report</td>
<td>Zhao Y, Li P, Li DW, Zhao GF, Li XY</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>3547</td>
<td>Hypereosinophilic syndrome presenting as acute ischemic stroke, myocardial infarction, and arterial involvement: A case report</td>
<td>Sun RR, Chen TZ, Meng M</td>
</tr>
<tr>
<td>3553</td>
<td>Cytochrome P450 family 17 subfamily A member 1 mutation causes severe pseudohermaphroditism: A case report</td>
<td>Gong Y, Qin F, Li WJ, Li LY, He P, Zhou XJ</td>
</tr>
<tr>
<td>3573</td>
<td>Qingchang decoction retention enema may induce clinical and mucosal remission in left-sided ulcerative colitis: A case report</td>
<td>Li PH, Tang Y, Wen HZ</td>
</tr>
<tr>
<td>3587</td>
<td>Ultrasound-guided local ethanol injection for fertility-preserving cervical pregnancy accompanied by fetal heartbeat: Two case reports</td>
<td>Kakinuma T, Kakinuma K, Matsuda Y, Ohwada M, Yanagida K, Kaijima H</td>
</tr>
<tr>
<td>3593</td>
<td>Successful apatinib treatment for advanced clear cell renal carcinoma as a first-line palliative treatment: A case report</td>
<td>Wei HP, Mao J, Hu ZL</td>
</tr>
<tr>
<td>3601</td>
<td>Del(5q) and inv(3) in myelodysplastic syndrome: A rare case report</td>
<td>Liang HP, Luo XC, Zhang YL, Liu B</td>
</tr>
<tr>
<td>3609</td>
<td>Papillary thyroid microcarcinoma with contralateral lymphatic skip metastasis and breast cancer: A case report</td>
<td>Ding M, Kong YH, Gu JH, Xie RL, Fei J</td>
</tr>
<tr>
<td>3615</td>
<td>Contrast-enhanced ultrasound manifestations of synchronous combined hepatocellular-cholangiocarcinoma and hepatocellular carcinoma: A case report</td>
<td>Gao L, Huang JY, Lu ZJ, Lu Q</td>
</tr>
<tr>
<td>3624</td>
<td>Thyrotoxicosis after a massive levothyroxine ingestion: A case report</td>
<td>Du F, Liu SW, Yang H, Duan RX, Ren WX</td>
</tr>
<tr>
<td>3630</td>
<td>Pleomorphic adenoma of the left lacrimal gland recurred and transformed into myoepithelial carcinoma after multiple operations: A case report</td>
<td>Huang WP, Li LM, Gao JB</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Chi-Yuan Yeh, MD, PhD, Assistant Professor, Chief Doctor, radiation oncology, Tungs' Taichung MetroHarbor Hospital, Taichung 43503, Taiwan.

peteryeh46@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Hua-Ge Yu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

April 16, 2022

COPYRIGHT

© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.f6publishing.com
Meta-analysis

Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis

Li-Ying Zhao, Xue-Lai Zhou

Li-Ying Zhao, Department of Geriatrics, Traditional Chinese Medical Hospital of Zhuji, Zhuji 311800, Zhejiang Province, China

Xue-Lai Zhou, Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, Zhuji 311800, Zhejiang Province, China

Corresponding author: Xue-Lai Zhou, MD, Deputy Director, Department of Respiratory Medicine, Traditional Chinese Medical Hospital of Zhuji, No. 521 Donger Road, Zhuji 311800, Zhejiang Province, China. zxl13626883598@163.com

Abstract

BACKGROUND
Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction.

AIM
To investigate the relationship between COPD and a risk of mild cognitive impairment (MCI) and dementia.

METHODS
A comprehensive literature search of the PubMed, Embase, Google Scholar, and Cochrane Library electronic databases was conducted. Pooled odds ratios (OR) and mean differences (MD) with 95% confidence intervals (CIs) were calculated using a random or fixed effects model. Studies that met the inclusion criteria were assessed for quality using the Newcastle Ottawa Scale.

RESULTS
Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and increased risk of MCI incidence (OR = 2.11, 95%CI: 1.32-3.38). It also revealed a borderline trend for an increased dementia risk in COPD patients (OR = 1.16, 95%CI: 0.98-1.37). Pooled hazard ratios (HR) using adjusted confounders also showed a higher incidence of MCI (HR = 1.22, 95%CI: -1.18 to -1.27) and dementia (HR = 1.32, 95%CI: -1.22 to -1.43) in COPD patients. A significant lower mini-mental state examination score in COPD patients was noted (MD = -1.68, 95%CI: -2.66 to -0.71).

CONCLUSION
Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Key Words: Mild cognitive impairment; Chronic obstructive pulmonary disease; Dementia; Meta-analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction. The current meta-analysis was performed to investigate the relationship between COPD and mild cognitive impairment (MCI) and dementia risk. Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and an increased risk of MCI incidence (odds ratio = 2.11, 95% confidence interval: 1.32-3.38). Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Citation: Zhao LY, Zhou XL. Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia risk: A systematic review and meta-analysis. World J Clin Cases 2022; 10(11): 3449-3460

DOI: https://dx.doi.org/10.12998/wjcc.v10.i11.3449

INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a progressive multicomponent lung disease that occurs more commonly in the elderly[1]. It is characterised by a partially irreversible chronic obstruction of lung airflow resulting in an abnormal decrease in blood oxygen levels, potentially leading to cognitive dysfunction[2]. Various studies have estimated that the prevalence of cognitive impairment in COPD patients ranges from 16% to 57%[3,4]. A prior review of 17 individual studies by Yohannes et al [5] showed that 32% of COPD patients showed some signs of cognitive dysfunction, with no less than 25% of patients showing at least mild cognitive impairment (MCI).

Cognitive impairment in COPD patients may compromise their capability to self-care and adhere to treatment regimens, making the relationship between COPD and cognitive impairment important for devising therapeutic approaches for COPD[6,7]. Some studies have focused on the relationship between COPD and neurologic function, but with inconsistent conclusions[8]. Data based on the Atherosclerosis Risk in Communities study showed that reduced lung function was associated with poor cognitive performance and higher risk of dementia hospitalization[9]. Data based on Taiwanese National Health Insurance Research Database showed that COPD patients exhibited a 1.27-fold higher risk of developing dementia[10].

To our knowledge, there has only been one published meta-analysis investigating the statistical association of COPD with cognition dysfunction. Zhang et al[11] concluded that COPD patients had an elevated risk of cognitive dysfunction. Similarly, only one single meta-analysis has looked at the relationship between COPD and dementia. Pooling data from three studies, Wang et al[12] showed that COPD patients faced a higher risk of developing dementia. However, these important clinical questions have not been investigated in a more thorough and conclusive manner. As such, we conducted a comprehensive systematic review and meta-analysis to investigate the association between COPD and the risk of MCI and dementia.

MATERIALS AND METHODS

Search strategy

Our meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines[13]. We conducted a comprehensive search using PubMed, Embase, Google Scholar, and Cochrane Library online databases for articles published prior to March 31, 2021. The following key terms were used: “Chronic Obstructive Pulmonary Disease” OR “COPD” OR “Chronic Obstructive Airway Disease” OR “COAD” AND “Mild Cognitive impairment” OR “MCI” OR “Cognitive dysfunction” OR “Cognitive decline” AND “Dementia”. Studies cited by articles that met the inclusion criteria were manually searched to identify additional eligible studies. Study eligibility
Figure 1 Flow diagram for study selection.

was not restricted based on language, sex, or publication year. Systematic reviews, conference abstracts, and editorials were excluded due to insufficient data presentation details.

Eligibility criteria

Inclusion criteria: We included studies that: (1) Investigated the association between COPD and a risk of MCI or dementia; (2) adopted a definite outcome of cognitive impairment or dementia in COPD and non-COPD subjects; (3) reported raw values necessary to calculate odds ratios (OR) or hazard ratios (HRs) for the incidence of cognitive impairment or dementia; (4) contained case controls, were prospective or retrospective-cohort, or had a cross-sectional design; and (5) compared the association between COPD and non-COPD patients.

Exclusion criteria: We excluded studies that: (1) Did not report relevant outcomes; or (2) were full-text inaccessible.

Data collection and analysis

All eligible studies were separately screened by two reviewers to determine whether they met the inclusion criteria. Screening was first conducted at the abstract content level, with relevant studies further investigated at the full-text level. Articles published in languages other than English were machine-translated using Google Translate, with the translated version reviewed. The following information was extracted from the included studies for summarization and analysis: Author, year, study design type, group investigated, sample size, diagnostic criteria for COPD, adjusted confounder for calculating pooled ratio, MCI prevalence, dementia prevalence, and scales used for cognitive assessment.

Quality assessment

Study quality was assessed independently by two separate reviewers using the Newcastle-Ottawa Scale (NOS)[14], which examined three components: Selection, comparability, and ascertainment of outcome. Disagreements were resolved through discussion.

Publication bias

Publication bias was assessed using Funnel plot analysis and Egger’s regression test[15,16].
Zhao LY et al. Association of COPD with MCI and dementia risk

Figure 2 Forest plot examining the association of chronic obstructive pulmonary disease with mild cognitive impairment risk. A: Odds ratios; B: Hazard ratios.

Statistical analysis
Mean differences (MDs) with 95% confidence intervals (CIs) were calculated for continuous outcomes. For categorical outcomes, ORs and HRs with 95%CIs were calculated to estimate pooled findings. Heterogeneity between studies (measurable heterogeneity) was evaluated using I^2 statistics. If I^2 values > 50%, a random-effects model was applied, otherwise a fixed-effect model was applied. Statistical analyses were performed using Review Manager software (Version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration 2014).

RESULTS

Literature search
Preliminary screening of PubMed, Embase, Google Scholar, and Cochrane Library databases yielded 234 results (Figure 1). Review of article title and abstract resulted in 72 remaining studies. Full-text review further excluded 45, leaving 27 studies that were ultimately included in the meta-analysis.

Properties and characteristics of included studies
Relevant study data, including the diagnostic criteria for COPD, sample size, and disease assessment scales for all the 27 included studies are shown in Table 1. The included studies were published between 1996 and 2020, and study sample sizes ranged from 20 to 243420 subjects. Ten studies were case-controlled, ten were cross-sectional, four were prospective-cohort, and three were retrospective-cohort. Seventeen studies reported cognitive impairment data based on the mini-mental state examination (MMSE) scoring system. Twenty-two studies used the GOLD criteria, three reported the ICD-9 CM criteria, and two followed the standardized guidelines for COPD diagnosis. The quality score was high in twelve studies, medium in seven, and low in six (Supplementary Table 1). The assessment criteria involving the NOS uses three broad criteria: Selection, comparability, and exposure, where the selection defines and analyses the cases and control subjects included in the study, comparability defines the matching or comparison of cases and control subjects for better empirical investigation, and exposure determines whether the study was conducted in a blinded or unbiased manner along with the response of the subjects.

DOI: 10.12998/wjcc.v10.i11.3449 Copyright © The Author(s) 2022.
Table 1 Baseline and clinical characteristics of included studies

<table>
<thead>
<tr>
<th>No.</th>
<th>Ref.</th>
<th>Country or region</th>
<th>Study design</th>
<th>Groups investigated</th>
<th>Age</th>
<th>Diagnostic criteria</th>
<th>Assessment scales</th>
<th>Adjusted variables</th>
<th>MCI (%)</th>
<th>Dementia (%)</th>
<th>NOS quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mermit Çilingir et al [17], 2020</td>
<td>Turkey</td>
<td>Case Control</td>
<td>COPD-E (n = 30); COPD-S (n = 54); Control (n = 37)</td>
<td>COPD-E-71.8 ± 12.3; COPD-S-62 ± 10.2; Control-65.9 ± 12.8</td>
<td>GOLD</td>
<td>MMSE; RCS</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Xie et al [18], 2019</td>
<td>China</td>
<td>Prospective Cohort</td>
<td>COPD (n = 515); No COPD (n = 4220)</td>
<td>COPD-82.9 ± 9.7</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age, gender, marital status, education level, alcohol drinking, current exercise, BMI, baseline prevalence of HTN, DM, and stroke</td>
<td>18.8</td>
<td>2.9; 1.6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Samareh Fekri et al [19], 2017</td>
<td>Iran</td>
<td>Case Control</td>
<td>COPD (n = 87); Control (n = 60)</td>
<td>COPD-60.4 ± 9.8; Control-58.1 ± 9.8</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age and sex</td>
<td>51.7</td>
<td>NA</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Gupta et al [20], 2013</td>
<td>India</td>
<td>Case Control</td>
<td>COPD-(n = 40); Control (n = 40)</td>
<td>COPD-57.2 ± 9.1; Control-56.9 ± 9.2</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age</td>
<td>NA</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Li et al [21], 2013</td>
<td>China</td>
<td>Case Control</td>
<td>Mild COPD-(n = 27); Severe COPD-(n = 35); Control (n = 27)</td>
<td>Mild COPD-70.4 ± 7.7; Severe COPD-68.2 ± 7.8; Control-66.2 ± 7.1</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age, sex, education level, BMI, smoking status, and CVD</td>
<td>NA</td>
<td>NA</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Li et al [22], 2013</td>
<td>China</td>
<td>Case Control</td>
<td>Mild COPD-(n = 37); Severe COPD-(n = 48); Control (n = 37)</td>
<td>Mild COPD-69.2 ± 8.1; Severe COPD-67.6 ± 7.6; Control-66.5 ± 6.9</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age, sex, education level, BMI, smoking status, and CVD</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Liao et al [23], 2015</td>
<td>Taiwan</td>
<td>Retrospective Cohort</td>
<td>COPD (n = 20492); No COPD (n = 40765)</td>
<td>COPD-68.2 ± 12.4; No COPD-67 ± 12.5</td>
<td>ICD-9CM</td>
<td>NA</td>
<td>Age and sex</td>
<td>NA</td>
<td>13.29.11</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Martinez et al [24], 2014</td>
<td>Michigan</td>
<td>Cross-sectional</td>
<td>COPD (n = 1812); No COPD (n = 15723)</td>
<td>COPD-70.3 ± 9.0; No COPD-68.7 ± 9.9</td>
<td>GOLD</td>
<td>ADL</td>
<td>Baseline cognition</td>
<td>16.5</td>
<td>3.9; 3.1</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Dal Negro et al [25], 2015</td>
<td>Italy</td>
<td>Cross-sectional</td>
<td>COPD with LTOT (n = 73); COPD without LTOT (n = 73)</td>
<td>COPD with LTOT-70.9 ± 8.9; No COPD with LTOT-71.2 ± 9.1</td>
<td>GOLD</td>
<td>MMSE/MRC; CAT</td>
<td>Age, gender, smoking history, BMI, dyspnoea score, ABG, and lung function</td>
<td>32.8</td>
<td>NA</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>Singh et al [26], 2013</td>
<td>United States</td>
<td>Cross-sectional</td>
<td>COPD (n = 288); No COPD (n = 1639)</td>
<td>MCI-82.7 ± 11.2; Normal Cognition-79.7 ± 12.5</td>
<td>Standard criteria</td>
<td>BDI; CDR</td>
<td>BDI-II Depression, history of stroke, APOEe4 genotype, DM, HTN, CAD, and BMI</td>
<td>14.6</td>
<td>27.1</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Singh et al [27], 2014</td>
<td>United States</td>
<td>Cross-sectional</td>
<td>Total COPD (n = 1425); COPD (n = 171); No COPD (n = 1254)</td>
<td>COPD-80.8 ± 7.5; No COPD-79.1 ± 7.5</td>
<td>Standard criteria</td>
<td>BDI</td>
<td>BDI-II depression, history of stroke, APOEe4 genotype, smoking, DM, HTN, CAD, z-scores, and BMI</td>
<td>NA</td>
<td>NA</td>
<td>7</td>
</tr>
</tbody>
</table>
Zhao LY et al. Association of COPD with MCI and dementia risk

<table>
<thead>
<tr>
<th>No.</th>
<th>Authors et al.</th>
<th>Country</th>
<th>Design</th>
<th>COPD</th>
<th>Control</th>
<th>COPD & Control</th>
<th>GOLD</th>
<th>Age, sex, smoking status, modified CCI, CV disease, corticosteroid use, and socioeconomic class</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Lussey et al. [27], 2019 United States</td>
<td>Prospective Cohort</td>
<td>COPD (n = 2490); No COPD (n = 6108)</td>
<td>COPD-55.1 ± 5.8; No COPD-53.9 ± 5.7</td>
<td>GOLD</td>
<td>NA</td>
<td>Age, sex, education level, race, center, cigarette smoking and pack-years of smoking, physical activity, BMI, systolic BP, BP medication use, diabetes, HDL, LDL, lipid-lowering medications, CAD, heart failure, stroke, apolipoprotein E genotype, and fibrinogen</td>
<td>NA NA 6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Siraj et al. [28], 2020 United Kingdom</td>
<td>Case Control</td>
<td>COPD (n = 64397); No COPD (n = 243420)</td>
<td>COPD-66.4 ± 10.9; No COPD-65.7 ± 11</td>
<td>Standard criteria</td>
<td>NA</td>
<td>Age, sex, GP, BMI, smoking status, modified CCI, CV disease, corticosteroid use, and socioeconomic class</td>
<td>NA NA 7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Villeneuve et al. [29], 2012 Canada</td>
<td>Case Control</td>
<td>Total COPD (n = 45); Control (n = 50)</td>
<td>COPD-68.4 ± 8.7; Control-67.4 ± 8.7</td>
<td>GOLD</td>
<td>MMSE; MoCA</td>
<td>Age and education</td>
<td>36.0; 12.0 NA 5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Yeh et al. [30], 2018 Taiwan</td>
<td>Prospective Cohort</td>
<td>COPD (n = 10260); No COPD (n = 20513)</td>
<td>COPD-65.6 ± 11.8; No COPD-65.5 ± 11.9</td>
<td>GOLD</td>
<td>NA</td>
<td>Age, sex, each comorbidity, inhaled corticosteroid, and oral steroids</td>
<td>NA 11.1; 8.81 4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Ozge et al. [31], 2006 Turkey</td>
<td>Prospective cohort</td>
<td>COPD (n = 54); Control (n = 24)</td>
<td>COPD-64.6 ± 8.5; Control-62.4 ± 8.4</td>
<td>GOLD</td>
<td>MMSE; BDS, CDR, IADL</td>
<td>Age and sex</td>
<td>NA NA 6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Favalli et al. [32], 2008 Turkey</td>
<td>Cross-sectional</td>
<td>COPD (n = 21); Control (n = 20)</td>
<td>COPD-74.6 ± 5.4; Control-73.7 ± 4.5</td>
<td>GOLD</td>
<td>MMSE; GDS</td>
<td>NA</td>
<td>NA NA 5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Liao et al. [10], 2015 Taiwan</td>
<td>Retrospective Cohort</td>
<td>COPD (n = 8640); No COPD (n = 17280)</td>
<td>COPD-68.7 ± 10.7; No COPD-68.7 ± 10.7</td>
<td>ICD-9CM</td>
<td>Self-administered questionnaire</td>
<td>Age and sex</td>
<td>NA 5.22; 7.06 6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Thakur et al. [33], 2010 United States</td>
<td>Retrospective Cohort</td>
<td>COPD (n = 1202); Control (n = 302)</td>
<td>COPD-58.2 ± 6.2; Control-58.5 ± 6.2</td>
<td>ICD-9CM</td>
<td>MRC, BODE index; MMSE</td>
<td>Age, sex, race, educational attainment, and smoking history</td>
<td>5.5; 2.0 NA 7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Zhou et al. [34], 2012 China</td>
<td>Case Control</td>
<td>COPD (n = 110); Control (n = 110)</td>
<td>COPD-80.9 ± 1.7; Control-80.8 ± 1.5</td>
<td>GOLD</td>
<td>CDR; MMSE</td>
<td>Age and education</td>
<td>NA NA 6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Dodd et al. [4], 2013 United Kingdom</td>
<td>Cross-sectional</td>
<td>COPD-E (n = 30); COPD-S (n = 50); Control (n = 30)</td>
<td>COPD-E-70 ± 11; COPD-S-69 ± 8; Control-65 ± 8</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age</td>
<td>NA NA 7</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Iqocho et al. [35], 1996 Finland</td>
<td>Case Control</td>
<td>COPD (n = 81); Control (n = 245)</td>
<td>COPD-70.4 ± 4.8; Control-71.3 ± 5.9</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age and sex</td>
<td>17.0; 13.0 7.1; 3.2 6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Lima et al. [36], 2007 Brazil</td>
<td>Cross-sectional</td>
<td>COPD (n = 30); Control (n = 34)</td>
<td>COPD-65 ± 8; Control-66 ± 8</td>
<td>GOLD</td>
<td>MMSE; DSM-IV</td>
<td>NA</td>
<td>NA NA 5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Ozyemisci-Taskiran et al. [37], 2015 Turkey</td>
<td>Cross-sectional</td>
<td>COPD-E (n = 133); COPD-S (n = 34); Control (n = 34)</td>
<td>COPD-E-69.3 ± 8.9; COPD-S-67.5 ± 8.9; Control-68.3 ± 8.8</td>
<td>GOLD</td>
<td>MMSE; HAD; BODE</td>
<td>Age and sex</td>
<td>22.6 NA 6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Salik et al. [38], 2007 Turkey</td>
<td>Cross-sectional</td>
<td>COPD (n = 32); Control (n = 26)</td>
<td>COPD-66.7 ± 2.5; Control-65.7 ± 3</td>
<td>GOLD</td>
<td>MMSE; MCS</td>
<td>NA</td>
<td>NA NA 5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Sarınc Ulaşlı et al. [39], 2013 Turkey</td>
<td>Case Control</td>
<td>COPD (n = 112); Control (n = 44)</td>
<td>COPD-65 ± 7.6; Control-64 ± 9</td>
<td>GOLD</td>
<td>MMSE</td>
<td>Age and sex</td>
<td>NA NA 5</td>
<td></td>
</tr>
</tbody>
</table>
Association of COPD with MCI risk

Ten studies [3,18,19,24,26-29,33,37] detailing 71,174 COPD patients and 22,082 control subjects investigated the association of COPD with MCI risk. Our meta-analysis indicated a strong association between COPD and an increased MCI incidence risk (OR = 2.11, 95%CI: 1.32-3.38). A significant degree of heterogeneity was observed ($I^2 = 99\%$). Using a random effects model, we demonstrated that COPD patients were 1.26 times more susceptible to MCI compared to non-COPD controls (Figure 2A).

Adjusted HRs for MCI risk in COPD patients

Pooling adjusted HRs from four studies [3,18,27,28] investigating the relationship between COPD and MCI incidence revealed a significant association (HR = 1.22, 95%CI: -1.18 to -1.27; $P = 26\%$) (Figure 2B).

Association of COPD with risk of dementia

Seven studies [10,18,23,24,27,28,30] involving 108,606 COPD patients and 347,939 control subjects, investigated the relationship between COPD and dementia risk. Pooling these data showed a borderline trend for an increased dementia risk in COPD patients compared to non-COPD control patients (OR = 1.16, 95%CI: 0.98-1.37). A high degree of heterogeneity was observed ($I^2 = 94\%$). Our meta-analysis showed that COPD patients were more susceptible to dementia (Figure 3A).

Adjusted HRs for dementia risk in COPD patients

Pooling adjusted HRs from six studies [10,18,23,27,28,30] investigating the relationship between COPD and dementia incidence revealed a significant association (HR = 1.32, 95%CI: -1.22 to -1.43; $P: 99\%$) (Figure 3B).

MMSE score in COPD and non-COPD patients

Seventeen studies [4,17-22,32,35-40,25,31,34] involving 13,92 COPD patients and 5,097 control subjects, reported mean MMSE score data for both COPD and non-COPD patients. Pooling these results showed a significant lower MMSE score in COPD patients compared to controls (MD = -1.68, 95%CI: -2.66 to -0.71) (Figure 4). A high degree of heterogeneity among these seventeen studies was observed ($P = 96\%$).

Publication bias

Egger’s tests did not show any significant publication bias for the examined comparisons. Figure 5 shows the funnel plot of the studies included in each comparison. However, no significant publication bias was observed.
Figure 3 Forest plot examining the association of chronic obstructive pulmonary disease with dementia risk. A: Odds ratios; B: Hazard ratios.

Figure 4 Forest plot examining mini-mental state examination score differences between chronic obstructive pulmonary disease and control groups.

DISCUSSION

This study is the first systematic review and meta-analysis examining the association between COPD and the risk of MCI and dementia. We found that patients with COPD are 2.11 times more susceptible to MCI and 1.16 times more susceptible to dementia. Moreover, lower MMSE scores were observed in COPD patients, indicating greater cognitive impairment.
COPD-associated neurological impairment and dementia put a great burden on the patients and the healthcare system. In particular, declining cognition leads to COPD patients requiring more assistance for daily activities[41]. Our analysis was performed based on the reported adjustments within individual studies for confounding factors such as age, sex, smoking, body mass index, education level, diabetes mellitus, and previous history of stroke or cardiovascular disease[10,23,27,28,30]. Studies by Thakur et al[33], Singh et al[26], and Martinez et al[24] reported data as ORs for adjusted confounders and therefore were not included in the calculations for pooled incidence for MCI or dementia.

From a clinical approach, COPD can lead to pulmonary encephalopathy, hypoxemia, and inflammation, all of which may impact brain function[42]. Indeed, COPD patients exhibit a unique neurophysiological profile stemming from neurotoxicity featuring deficits of attention, motor, memory, and cognitive domain executive function[4]. Interestingly, the relationship between COPD and dementia persists even after accounting for the presence of vascular disease, suggesting that COPD is an independent predictor of dementia.

Our findings are consistent with the previous literature[5,11,12,42,43]. However, the available literature on the relationship between dementia and COPD remains limited, as only seven studies were found for this meta-analysis. Our study also had several other limitations. The included studies had different designs, which may be one of the leading causes of heterogeneity. Additional sources of heterogeneity may include different geographical population, variation in the diagnostic criteria of COPD, and diversity in the factors undertaken for the multivariate analysis of each included studies.

Figure 5 Funnel plot. A: Mild cognitive impairment (MCI); B: Dementia; C: MCI risk in chronic obstructive pulmonary disease (COPD) patients; D: Dementia risk in COPD patients; E: Comparison of mini-mental state examination score between COPD and control groups.
The included studies also lacked long-term follow-up data, as well as data that would facilitate subgroup analysis based on co-morbidities, age, and gender. Finally, different studies varied on how they assessed and diagnosed COPD and cognitive impairment.

CONCLUSION

Our meta-analysis revealed an elevated risk for MCI and dementia in COPD patients. Proper clinical management and attention are necessary to prevent or mitigate the incidence of MCI and dementia in COPD patients.

ARTICLE HIGHLIGHTS

Research background
Chronic obstructive pulmonary disease (COPD) is a common public health issue that has been linked to cognitive dysfunction. No clear evidence is available for the relationship between COPD and mild cognitive impairment (MCI) and dementia risk.

Research motivation
To our knowledge, there has only been one published meta-analysis with limited number studies investigating the statistical association of COPD with cognition dysfunction.

Research objectives
The current meta-analysis was performed to investigate the relationship between COPD and MCI and dementia risk.

Research methods
A comprehensive search was performed using PubMed, Embase, Google Scholar, and Cochrane Library online databases for articles published prior to March 31, 2021.

Research results
Twenty-seven studies met all the inclusion criteria. Meta-analysis yielded a strong association between COPD and an increased risk of MCI incidence. It also revealed a borderline trend for an increased dementia risk in COPD patients. A significant lower MMSE score in COPD patients was noted.

Research conclusions
Our findings revealed an elevated risk for the occurrence of MCI and dementia in COPD patients. Proper clinical management and attention are required to prevent and control MCI and dementia incidence in COPD patients.

Research perspectives
Further large prospective observational studies are needed to strengthen the evidence on this important subject.

FOOTNOTES

Author contributions: Zhao LY conceived and designed the study; Zhao LY and Zhou XL were involved in literature search and data collection; Zhao LY analyzed the data; Zhao LY and Zhou XL wrote the paper; Zhao LY edited the manuscript; all authors read and approved the final manuscript.

Conflict-of-interest statement: The authors deny any conflict of interest for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
REFERENCES

Zhao LY et al. Association of COPD with MCI and dementia risk

and event-related potential, P300 analysis. Lung India 2013; 30: 5-11 [PMID: 23661909 DOI: 10.4103/0970-2113.106119]

