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Abstract
BACKGROUND 
Human induced pluripotent stem cell (hiPSC) technology is a valuable tool for 
generating patient-specific stem cells, facilitating disease modeling, and invest-
igating disease mechanisms. However, iPSCs carrying specific mutations may 
limit their clinical applications due to certain inherent characteristics.

AIM 
To investigate the impact of MERTK mutations on hiPSCs and determine whether 
hiPSC-derived extracellular vesicles (EVs) influence anomalous cell junction and 
differentiation potential.

METHODS 
We employed a non-integrating reprogramming technique to generate peripheral 
blood-derived hiPSCs with and hiPSCs without a MERTK mutation. Chromo-
somal karyotype analysis, flow cytometry, and immunofluorescent staining were 
utilized for hiPSC identification. Transcriptomics and proteomics were employed 
to elucidate the expression patterns associated with cell junction abnormalities 
and cellular differentiation potential. Additionally, EVs were isolated from the 
supernatant, and their RNA and protein cargos were examined to investigate the 
involvement of hiPSC-derived EVs in stem cell junction and differentiation.

RESULTS 
The generated hiPSCs, both with and without a MERTK mutation, exhibited 
normal karyotype and expressed pluripotency markers; however, hiPSCs with a 
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MERTK mutation demonstrated anomalous adhesion capability and differentiation potential, as confirmed by 
transcriptomic and proteomic profiling. Furthermore, hiPSC-derived EVs were involved in various biological 
processes, including cell junction and differentiation.

CONCLUSION 
HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential. 
Furthermore, hiPSC-derived EVs played a regulatory role in various biological processes, including cell junction 
and differentiation.

Key Words: Cell junction; Cellular differentiation; Extracellular vesicle; Human induced pluripotent stem cells; 
Transcriptomics; Proteomics

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Patient-specific human induced pluripotent stem cell (hiPSC) technology is a valuable tool for disease modeling 
and the investigation of disease mechanisms, but altered biological properties caused by pathogenic genes may limit hiPSC 
applications. Through transcriptomics and proteomics, this study revealed cell junction abnormalities and aberrant cellular 
differentiation potential in hiPSCs with a MERTK mutation. Furthermore, the profiles of hiPSC-derived extracellular 
vesicles collected for transcriptomic and proteomic analysis indicated their involvement in the changes of biological charac-
teristics occurring in hiPSCs.

Citation: Zhang H, Wu LZ, Liu ZY, Jin ZB. Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell 
junction abnormalities and aberrant cellular differentiation potential. World J Stem Cells 2024; 16(5): 512-524
URL: https://www.wjgnet.com/1948-0210/full/v16/i5/512.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i5.512

INTRODUCTION
Induced pluripotent stem cells (iPSCs) are a type of stem cells that are generated from adult somatic cells, typically 
peripheral blood or fibroblasts, through different reprogramming processes. iPSCs possess similar potential for division 
and differentiation as embryonic stem cells (ESCs) and can be induced to differentiate into various cell types, tissues, and 
even organs[1,2]. The groundbreaking research on human iPSCs that has significant implications in the fields of 
regenerative medicine and stem cell research was first demonstrated by Takahashi et al[3] in 2007. Since then, numerous 
research teams have aimed to develop iPSC-derived products for the treatment of various diseases, with some already 
undergoing clinical trials[4]. Currently, there are high expectations for multiple applications of iPSCs, although there 
remain many challenges to overcome.

Autologous iPSC-based therapy offers several advantages, such as personalized drug discovery via patient-derived 
iPSC models that share the same genetic characteristics as the patient, thereby avoiding the need for immunosup-
pressants and reducing transplantation-related immune risks. Biologically, patient-specific iPSCs are derived from the 
patient’s own cells, thereby avoiding ethical controversies and legal constraints[5]. However, for patients with specific 
gene mutations, iPSCs derived from somatic cell reprogramming usually carry the same gene mutations[6]. Although 
these iPSCs or ESCs with mutations may appear to be similar to healthy controls, with unlimited proliferative potential, 
they may differ in various aspects, such as cell apoptosis, metabolism, proliferation, and directed differentiation potential, 
compared to healthy PSCs[7,8].

Extracellular vesicles (EVs) are tiny membrane-wrapped structures that are released by cells into the extracellular 
environment[9]. EVs contain various molecules, including nucleic acids, proteins, and metabolites, which allow them to 
function in signal transduction and cell-cell communication[10-12]. Recipient cells can take up the EVs that donor cells 
have released to achieve intracellular signal transmission and self-regulation[13]. Autocrine EVs can carry information 
required for cell signaling pathway activation or cell self-regulation, which contributes to the cell’s adjustment of its 
intrinsic state and functionality as it adapts to different environmental and physiological demands. Furthermore, EVs can 
be released by neighboring cells and taken up by nearby target cells, thereby enabling intercellular signal transduction. 
Paracrine EVs play a crucial role in regulating cellular differentiation, apoptosis, angiogenesis, immune response, cellular 
migration, and tissue repair[10,13].

Although mesenchymal stem cells (MSCs) have been studied extensively in the context of EVs, the composition and 
functions of iPSC-derived EVs remain largely unknown[14,15]. In this study, we proposed that iPSCs with specific gene 
mutations will exhibit differences in their transcription and protein levels, as well as their ability to regulate their own 
and neighboring cells’ proliferation and differentiation capacities through the secretion of EVs. Investigating iPSCs and 
their secreted EVs is crucial for achieving a comprehensive understanding and effective utilization of iPSCs.

https://www.wjgnet.com/1948-0210/full/v16/i5/512.htm
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Mutations in the MERTK gene, which is responsible for encoding a receptor tyrosine kinase that is involved in cellular 
signal transduction, particularly in immune regulation, apoptotic debris clearance, cell survival, proliferation, and 
migration, have become a particular focus of interest[16-18]. Although MERTK receptors are typically expressed in 
immune cells[19], our observations during cultivation revealed that iPSCs carrying MERTK gene mutations exhibited 
altered cell junctions compared to the control iPSCs. Furthermore, they exhibited lower efficiency in directed cellular 
differentiation induced by small molecular compounds compared to that of the control iPSCs.

A recent study also reported altered bioenergetics and aberrant differentiation potential occurring in patient-specific 
iPSCs carrying mitochondrial mutations[8]. Similar to MSC-derived EVs, iPSC-derived EVs contain abundant com-
ponents, including microRNA (miRNA) and proteins, that play a role in regulating various biological functions[15]. 
Therefore, we aimed to investigate the transcriptomic and proteomic profiles of iPSCs carrying a MERTK gene mutation 
and their secreted EVs to elucidate the biological characteristics of iPSCs.

MATERIALS AND METHODS
Establishment and maintenance of iPSC lines
Peripheral blood mononuclear cells (PBMCs) in 6 mL peripheral blood were collected from healthy donors or patients 
who provided written informed consent, with approval from the Institutional Ethics Committee. PBMCs were cultured in 
StemSpan™ Serum-Free Expansion Medium II supplemented with StemSpanTM Erythroid Expansion Supplement 
(STEMCELL Technologies) for 7 d to expand the erythroid cells. A total of 1 × 106 erythroid progenitors were nucleo-
fected with episomal plasmids encoding reprogramming factors Oct4, Sox2, Myc, Nanog, Lin28, and Klf4[20]. Nucleo-
fection was executed using the Amaxa P3 Primary Cell 4D Nucleofector X Kit and program EA-100 (LONZA). 
Transfected erythroid progenitors were cultured in ReproTeSR™ xeno-free reprogramming medium and later tran-
sitioned to Essential 8 hPSC medium (STEMCELL Technologies), and iPSC colonies appeared after approximately 20 d of 
culturing. Five iPSC clones were carefully selected, purified, and expanded until passage 5, following previously 
established methods[21]. The purified iPSCs were maintained in ncEpic hPSC medium (Nuwacell Biotechnologies) and 
were passaged using 0.5 mmol/L ethylenediaminetetraacetic acid solution (Thermo Fisher Scientific). The cells were 
cultured in a 37 °C incubator with 5% CO2.

Mutation sequencing
Genomic DNA was extracted from iPSC cell lines using a DNA extraction kit (QIAGEN) and amplified through a 
polymerase chain reaction (PCR). MERTK gene mutation was verified via Sanger sequencing using forward primer 
GGAAGACCACATACAGGAA and reverse primer TGAAGGAAGCGATTATTGC.

Karyotype analysis
Human iPSCs (hiPSCs) were treated for 2 h with colchicine to arrest cells in mitotic metaphase, followed by cell 
harvesting. Cells were then swollen via incubation in a pre-warmed 75 mmol/L KCl hypotonic solution at 37 °C for 15 
min. Following cell swelling, cells were fixed using a freshly prepared methanol/acetic acid fixative solution. Cell 
suspensions were dropped and evenly spread onto pre-chilled glass slides. After air-drying the slides, they were stained 
with Giemsa working solution for 20-30 min, followed by rinsing and drying. Chromosome analysis was performed 
using a Zeiss Metafer chromosome automated scanning and imaging system.

Differentiation of three germ layers
For in vitro differentiation of three germ layers, iPSC aggregates were cultured in suspension within DMEM/F12 medium 
(Gibco) with 20% KSR (Gibco), 0.1 mM 2-mercaptoethanol (Sigma), 0.1 mM non-essential amino acids (Sigma), 2 mM 
GlutaMAX (Life Technologies), 10 mM Y-27632 (Selleck), 100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco) 
supplement for 8 d to form embryoid bodies. Then the embryoid bodies were transferred into DMEM/F12 medium with 
10% foetal bovine serum (Gibco), 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acids, 2 mM GlutaMAX 100 U/
mL penicillin and 100 mg/mL streptomycin supplement, and attached to glass slides coated with 0.1% gelatin (Millipore) 
for 10 d.

Flow cytometry
The generated hiPSCs were fixed with 4% paraformaldehyde after digestion into single cells. Following a 5-min 
incubation with 0.1% Triton X-100, the cells were blocked with a 3% fetal bovine serum solution for 30 min. Cells were 
then incubated with mouse monoclonal antibodies against human SSEA4 (Abcam, ab16287) or TRA-1-81 (Milli-
poreSigma, MAB4381) at room temperature for 1 h, followed by a 30-min incubation with secondary antibodies 
(Invitrogen, 1:400 dilution) at room temperature in the dark. After washing with Dulbecco’s phosphate-buffered saline 
(DPBS), flow cytometry analysis was performed on a BD Accuri™ C6 Plus Flow Cytometer using excitation wavelengths 
of 488 or 594 nm. Data analysis was carried out using FlowJo™ software (version 10.4).

EVs obtained through the EXODUS system were incubated with fluorescently labeled antibodies in the dark for 30 
min. After resuspension in DPBS, the samples were centrifuged at 4 °C, 110000 g for 70 min twice to remove excess dye. 
The supernatant was carefully removed, and the samples were resuspended in PBS for analysis using a N30E Nano-
particle Flow Cytometer (NanoFCM, China). Fluorescein isothiocyanate-conjugated mouse anti-human CD9, CD63, and 
CD81 antibodies obtained from BD were utilized (Supplementary Figure 1A).

https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
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Immunofluorescence staining
Cells were seeded on glass coverslips at an appropriate density, fixed in 4% PFA for 15 min, and washed with PBS. 
Permeabilized and blocked cells with 0.5% Triton X-100 and 4% bovine serum albumin for 1 h. Cells were incubated 
overnight at 4 °C with primary antibody, then incubated with secondary antibody and DAPI solution for 1 h at room 
temperature. Following primary antibodies were used: OCT4 (Cat. #ab18976; Abcam), SOX2 (Cat. #sc-365823; Santa 
Cruz), NANOG (Cat. #ab80892; Abcam), SSEA4 (Cat. #ab16287; Abcam), GFAP (Cat. #HPA056030; Sigma), α-SMA (Cat. 
#A5228; Sigma), AFP (Cat. #MAB1368; R&D System). Images were acquired using an Olympus confocal system 
(SpinSR10, Japan).

EVs isolation
Cells were seeded on plates at a density of 5.0 × 104 cells/cm2, and the supernatant was collected until the cells reached 
approximately 90% confluence. The supernatant was centrifuged at 4 °C 300 g for 10 min, followed by centrifugation at 4 
°C, 3000 g for 20 min, and temporary storage at -80 °C. Prior to EV separation, the supernatant was thawed at 4 °C, 
centrifuged at 4 °C 12000 g for 30 min, then filtered through a 0.22-μm filter. The EXODUS platform was employed for EV 
isolation, and after the program was run, the EVs were resuspended in DPBS and restored at -80 °C for subsequent steps.

Nanoparticle tracking analysis
Nanoparticle tracking analysis was employed to assess the size distribution and concentration of EVs using a NanoSight 
NS300 instrument (Malvern). The analysis settings were optimized, and each sample was diluted 1000- to 2000-fold with 
DPBS before measurement. Each sample was diluted in triplicate, and each diluted sample was measured three times 
with a capture time of 30 s to ensure measurement accuracy (Supplementary Figure 1B).

Transmission electron microscopy
EVs were diluted to an appropriate concentration and then dripped on carbon-coated copper grids for 90 s. Subsequently, 
negative staining was performed with uranyl acetate dye for 30 s; excess dye was removed; and the sample was dried. 
Images were captured using a Tecnai G2 12 transmission electron microscope (FEI, United States) (Supplementary Figure 
1C).

RNA sequencing
Library preparation and sequencing of iPSCs were executed as previously described[22]. Briefly, total RNA from lysed 
samples was extracted using TRIzol™ Reagent, while the total RNA from EVs was extracted using the exoRNeasy 
Serum/Plasma Maxi Kit (Qiagen). The purity and integrity of RNA in the samples were assessed, and mycoplasma 
contamination detection was performed. Libraries were constructed using the NEBNext® Ultra™ II RNA Library Prep Kit 
and NEBNext Multiplex Small RNA Library Prep Set (NEB, United States). High-throughput sequencing was conducted 
on the Illumina PE150 and SE50 platform. Data were aligned to the human genome (version hg38), and miRNA and 
target genes were predicted using TargetScan and miRanda databases. Additionally, long non-coding RNA (lncRNA) and 
co-expression target gene correlations were calculated using cor.test R (version 4.3.0) for data analysis and visualization. 
Library construction and sequencing were conducted by Novogene Bioinformatics Technology Co., Ltd.

Proteomics
The total protein was extracted from the samples, and the protein concentration was determined using the Bradford 
method. Specimen separation was achieved using 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, 
followed by 4D label-free detection and quantification analysis using the timsTOF pro2 platform (Novogene Bioin-
formatics Technology Co., Ltd). The obtained data were analyzed using R, with differentially expressed proteins (DEPs) 
defined as those with a fold change > 2 and P-value < 0.05.

Cell counting kit-8 analysis
Cell counting kit-8 (CCK-8) analysis was conducted using previously published protocol[23]. Briefly, 2000 cells per well 
were seeded on a 96-well plate. After 12-h culture, 10-μL CCK-8 solution was added to each well. After incubation in the 
dark for 1 h, the absorbance value at 450 nm was detected by a microplate reader (Molecular Devices).

Statistical analysis
Statistical analysis was performed using GraphPad Prism 8.3.0 and R Studio software (version 4.3). All data are presented 
as the mean ± standard error. A two-tailed unpaired Student’s t-test was used to compare the two groups.

RESULTS
Generation of patient-specific iPSCs with a homozygous MERTK mutation
A young proband presenting with night blindness and progressive vision loss was diagnosed with retinitis pigmentosa 
(RP), while neither parent exhibited similar symptoms (Figure 1A). Exon sequencing targeting 164 recognized genes 
associated with retinal diseases was executed[24], revealing a homozygous MERTK gene mutation (c.296_297delCA). 
Sanger sequencing confirmed the mutation (Figure 1B). This deletion caused a frameshift mutation, resulting in the 
substitution of the 99th threonine with serine and the appearance of a new reading frame. Translation terminated at the 8th 

https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
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Figure 1 Identification of the MERTK mutation in the retinitis pigmentosa patient. A: Family pedigree; B: Sanger sequencing of the healthy control 
and the retinitis pigmentosa (RP) patient. Two-base deletion of CA in the RP patient (red arrows); C: Protein translation of the healthy control and RP patient. The 99th 
threonine was replaced by serine in the RP patient (green arrows), resulting in the emergence of a new reading frame, leading to translation termination at the 8th 
codon downstream; D: MERTK protein structure prediction of the healthy control and the RP patient; E: MERTK gene expression in ophthalmic tissue.

codon downstream (Figure 1C)[25]. Protein tertiary structure prediction showed that the normal MERTK protein 
exhibited complex protein domains, while the mutant MERTK protein retained only a short peptide chain (Figure 1D). 
The Single Cell Portal database indicated that the MERTK gene was expressed in various cell types found in ophthalmic 
tissue, such as rods, cones, bipolar cells, microglia, retinal pigment epithelium, etc. (Figure 1E).

Fresh peripheral blood obtained from the MERTK patient and healthy individuals was used to generate iPSC lines 
using a non-viral, non-integrating method (Figure 2A). The generated iPSC clones displayed clear edges and close-packed 
cells (Figure 2B) and exhibited a normal karyotype (Figure 2C). More than 90% of cells expressed stem cell markers 
SSEA4 and TRA-1-81 (Figure 2D). Both iPSC lines were subjected to immunofluorescence staining for pluripotency 
markers SSEA4, OCT4, SOX2, and NANOG (Figure 2E and F). In vitro differentiation demonstrated that the iPSCs from 
the patient and control were capable of differentiation into three germ layers (Figure 2G and H). These results 
demonstrated the successful construction of patient-specific iPSCs with a homozygous MERTK mutation.

iPSCs with the homozygous MERTK mutation exhibited altered junction and reduced differentiation efficiency
Despite their similar appearance, MERTK-mutated iPSCs showed slight deviations from the control iPSCs under the same 
culture conditions. On the 2nd to 3rd d after passage, the robust proliferative capability of the stem cells resulted in gradual 
expansion of the cell clones. On the VTN-coated culture plate, the majority of iPSC clones from the control group adhered 
tightly to the plate and exhibited extensive growth, with only a few small clones or individual cells floating on the surface 
of the culture medium (Figure 3A). However, iPSCs with the MERTK mutation showed both large and small clones 
floating on the surface of the culture medium (Figure 3B). Furthermore, during the directed induction of epithelial cell 
differentiation, control cells displayed neat and close arrangement on the culture plate (Figure 3C), whereas cells with a 
MERTK mutation tended to float on the surface of the culture medium, resulting in large voids and reduced differen-
tiation efficiency (Figure 3D). CCK-8 detection confirmed that there was no significant difference in the proliferation 
ability of the two groups (Figure 3E). The cadherin family is a group of transmembrane proteins that play an important 
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Figure 2 Generation and identification of the human induced pluripotent stem cells derived from the retinitis pigmentosa patient. A: 
Timeline of human induced pluripotent stem cell generation; B: Imaging by phase-contrast microscopy. Scale bar = 200 μm; C: Karyotype analysis of the healthy 
control (left) and retinitis pigmentosa patient (right); D: Flow cytometry of pluripotency markers SSEA-4 and TRA-1-81; E and F: Immunostaining of pluripotency 
markers OCT4, NANOG, SOX2, and SSEA4 of the healthy control and retinitis pigmentosa patient. Scale bar = 20 μm; G and H: In vitro differentiation of control (G) 
and patient (H) induced pluripotent stem cells into three germ layers, endoderm (AFP+), mesoderm (α-SMA+) and ectoderm (GFAP+). Scale bar = 20 μm. PB: 
Peripheral blood; PBMC: Peripheral blood mononuclear cell; iPSC: Induced pluripotent stem cell.

role in cell junction or adhesion[26]. RNA-seq data suggested that the expressions of the cadherin subfamily members 
DCHS1 and CELSR2 were downregulated in iPSCs with a MERTK mutation, and quantitative PCR approved this result 
(Figure 3F, Supplementary Figure 2A).

MERTK-mutated iPSCs displayed gene expression differences in cell adhesion and differentiation
Principal component analysis displayed certain differences between the gene expressions of two iPSC lines (Figure 4A). 

https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
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Figure 3 Abnormal adherent capability and aberrant differentiation potential. A and B: Imaging of clones floating on the surface of the culture medium 
by phase-contrast microscopy. Scale bar = 1000 μm; C and D: Imaging of cells during epithelial cell differentiation. Scale bar = 200 μm (C), scale bar = 400 μm (D); E: 
Cell counting kit-8 detection of human induced pluripotent stem cell proliferation ability. mean ± SEM, n = 12-14; F: Quantitative polymerase chain reaction analysis of 
representative cadherin subfamily members CELSR2 and DCHS1. mean ± SEM, n = 5. Two-tailed t-test. aP < 0.05, bP < 0.05. NS: No significance. ESC: Embryonic 
stem cell.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially 
expressed mRNA revealed differences in cell differentiation and cell adhesion (Figure 4B-D). A total of 121 differentially 
expressed miRNAs were identified, and GO and KEGG enrichment analyses of their predicted target genes indicated 
their involvement in cell adhesion, cell-cell junction, and cell differentiation (Figure 4E-G). Additionally, these target 
genes were significantly associated with central nervous system development, the extracellular matrix, and extracellular 
exosome. Similarly, GO and KEGG enrichment analyses of the predicted target genes of differentially expressed lncRNA 
showed similar results (Supplementary Figure 3). The number of DEPs in iPSCs was significantly fewer than that of RNA 
(Figure 4H). GO and Reactome pathway enrichment analyses of these DEPs suggested that MERTK-mutated iPSCs 
exhibited reduced mesodermal development potential and lower protein expressions of gap junction trafficking and 
regulation compared to the control (Figure 4I). These findings indicated that MERTK-mutated iPSCs had reduced cell 
adhesion capacity and differentiation potential.

MERTK-mutated iPSC-derived EVs helped regulate cell adhesion and differentiation
EVs played a crucial role in regulating the extracellular microenvironment, and the transcriptomics and proteomics 
profiles indicated that MERTK-mutated iPSCs displayed different gene and protein expressions in the extracellular matrix 
and extracellular exosomes compared to the control (Figure 4C, Supplementary Figure 3D). Compared to the intracellular 
RNA components, the amount of differentially expressed RNA cargos in the EVs was significantly lower (Figure 5A and 
C). GO-cellular component enrichment analysis revealed that the differentially expressed mRNA cargo in MERTK-
mutated iPSC-derived EVs was significantly enriched in the adherens junction (Figure 5B). GO enrichment analysis of the 
predicted target genes of differentially expressed miRNAs and lncRNAs indicated that MERTK-mutated iPSC-derived 
EVs might regulate cell junctions (Figure 5D, Supplementary Figure 4).

Using a 4D-label free proteomics platform, we detected more than 800 proteins in the two types of vesicles and found 
an overlap between some of the top 10 and bottom 10 expressed proteins between patient iPSCs and control iPSCs 
(Figure 5E). DEPs were more abundant compared to RNA cargos in the two types of EVs (Figure 5F). GO analysis 
revealed that these DEPs were significantly enriched in cell-cell junctions, cell junction organization, regulation of cell 
junction assembly, and cell adhesion activity (Figure 5G-I). Additionally, these DEPs potentially impact epithelial cell 
differentiation (Figure 5I). KEGG and Reactome pathway enrichment analyses revealed that DEPs were significantly 
enriched in tight junction, adherens junction, and signaling by Rho GTPases (Figure 5J and K). Gene set enrichment 
analysis revealed that patient-specific iPSC-derived EVs might be involved in downregulated tight junction, gap junction, 
and epithelial cell differentiation potential (Figure 5L).

DISCUSSION
The invention of iPSC technology has provided new opportunities for the treatment of degenerative diseases. Patient-
specific iPSCs facilitate personalized treatment. In this study, iPSCs were generated from fresh peripheral blood rather 
than skin fibroblasts to minimize UV exposure-associated DNA damage[27]. The non-integrating plasmid repro-

https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
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Figure 4 Transcriptomic and proteomic analyses identifying defects of cell adhesion and differentiation in patient-derived human 
induced pluripotent stem cells. A: Principal component analysis of mRNA expression; B: Differentially expressed mRNAs between patient human induced 
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pluripotent stem cells (iPSCs) and control iPSCs; C: Gene Ontology (GO) enrichment analysis for differentially expressed genes; D: Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis for differentially expressed genes; E: Differentially expressed microRNAs (miRNAs) between patient iPSCs and control 
iPSCs; F: GO enrichment analysis for differentially expressed miRNA target genes; G: KEGG and Reactome enrichment analyses for differentially expressed miRNA 
target genes; H: Differentially expressed proteins between patient iPSCs and control iPSCs; I: GO and Reactome enrichment analyses for differentially expressed 
proteins. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: Biological progress; CC: Cellular component; MF: Molecular function; 
miRNA: MicroRNA; DEP: Differentially expressed protein.

gramming method increased the preclinical relevance of this study. The two generated iPSC lines exhibited similar 
morphological appearance, presence of normal karyotypes, and expression of pluripotency markers (Figure 2). Sanger 
sequencing confirmed that the obtained iPSCs retained the same genetic mutations as those found in the somatic cells 
from which they were derived.

Strict criteria and specific standards are required for validating iPSCs as genuine and appropriate entities for research 
and clinical purposes. These characteristics are crucial for ensuring the dependability, replicability, and security of iPSC-
derived products. In previous publications, researchers typically control the quality of iPSCs through several aspects. 
First, iPSCs need possess the ability to differentiate into all three germ layers, ectoderm, endoderm, and mesoderm, 
which is typically confirmed by in vitro differentiation experiments or by the establishment of teratoma formation in vivo. 
Here, we performed in vitro differentiation and completed immunofluorescence staining for typical markers AFP, α-SMA, 
and GFAP of three germ layers[20], which demonstrated the pluripotency of generated iPSCs (Figure 2G and H). Second, 
iPSCs must express pluripotency markers, such as OCT4, SOX2, SSEA-4, TRA-1-81, and NANOG, which have been 
confirmed in this study by immunofluorescence staining or flow cytometry. Third, iPSCs need display similar biological 
and functional characteristics to ESCs, such as similar morphology, proliferation ability, gene expression patterns, or 
typical markers. In this study, CCK-8 analysis demonstrated similar division and proliferation under the same laboratory 
circumstance. This study lacked a more in-depth comparison between iPSCs and ESCs. G-banding chromosome 
karyotype analysis was commonly used for evaluating the genetic stability of PSCs, and detecting structural and 
numerical variations in chromosomes. However, it has limited detection sensitivity, which makes it difficult to identify 
variations below the threshold through the microscope. Therefore, pre-clinical or clinical study requires whole exome 
sequencing or whole genome sequencing to reach a higher diagnostic efficiency[28-30]. Episomal iPSC reprogramming 
plasmids used in this study are a non-viral, non-integrating system that allows reprogramming somatic cells into iPSCs in 
feeder-free conditions. After about 10 cell cycles, most episomal plasmids are lost, leading to the generation of iPSCs free 
of genomic integration or genetic alterations. Generated iPSCs by this system even can be utilized for pre-clinical research 
and human gene therapy according to manual (catalog# SC900A-1). Chemical reprogramming provides an innovative 
approach, with higher controllability and ease of standardization, holding promising prospects for future clinical applic-
ations, although it has not been widely applied[31]. Furthermore, we are exploring the directed differentiation into 
several cell types in a controlled setting using these iPSC lines.

The establishment of iPSCs is a prerequisite for subsequent directed differentiation, requiring iPSCs to have good 
proliferative capabilities and multidirectional differentiation potential. However, there is no clear assessment index for 
the differentiation potential of stem cells. During the differentiation process of retinal epithelial cells, in the early stage of 
directional induction, large-scale detachment of MERTK mutant cells led to the appearance of a large space at the bottom 
of the culture plate, and the cells along the edge of the space exhibited morphology alterations, from tightly connected 
round cells to spindle cells with irregular edges, which were similar to the characteristics of epithelial-mesenchymal 
transition (Figure 3). These cells usually cannot be further induced into terminal cells. Our statistics demonstrated that the 
probability of differentiation failure is approximately 50%, although this phenomenon has never been reported to have 
occurred in healthy iPSCs or ESCs. A previous study indicated that cell adhesion and cell junctions influence differen-
tiation and development[27,32-34]. Furthermore, cell differentiation and cell-cell adhesion are influenced by disparities in 
protein expressions[35,36]. We investigated this phenomenon by examining RNA and protein expression. Our systematic 
transcriptomics and proteomics analyses revealed that iPSCs carrying a MERTK mutation exhibited differential 
expression of genes that are significantly involved in the regulation of cell junction, adherens junction, tight junction, gap 
junction, focal adhesion, and cell differentiation (Figure 4). Additionally, a recent study reported that defects in 
mitochondrial gene expression led to reduced stem cell differentiation potential[18]. In our study, the expression of 
representative mitochondrial genes, MT-ND1, MT-ND2, and MT-ND4, were significantly reduced in MERTK mutant cells 
(Supplementary Figure 2), which might have caused aberrant differentiation potential. However, the specific mechanism 
by which energy metabolism affects cell differentiation potential through epigenetics is the focus of attention in the field 
and requires further exploration.

iPSCs transcriptomics analysis suggested differences in gene expression related to EV secretion between the two types 
of iPSCs. EVs contain various bioactive substances and play an important role in regulating cell junction, adhesion, cell 
growth, development, and differentiation. Xie et al[37] reported that EVs from nasopharyngeal carcinoma cells containing 
miR-455 could target reducing zonula occludens 1 expression. Chai et al[38] found that BCR-ABL1-driven exosome-
miR130a-3p interacted with gap-junction Cx43, thereby affecting gap junctional intercellular communications. Moreover, 
circulating EVs from sickle cell patients have been shown to regulate endothelial gap junctions[39]. EVs act as important 
paracrine mediators, providing biochemical cues for inducing stem cell differentiation[40,41]. Therefore, we collected the 
supernatants of the two types of iPSCs to isolate EVs and conducted transcriptomic and proteomic analyses. The 
systematic analysis revealed that differential RNA expression was significantly enriched in neural system development, 
adhesion connection, and cell cycle regulation. Using 4D label-free high-throughput sequencing technology, we found 
that the DEPs in EVs were more abundant and prominently clustered in cell connections, adhesion connections, as well as 

https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/03832969-b616-463d-b2dc-1ba0017b5743/WJSC-16-512-supplementary-material.pdf
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Figure 5 Transcriptomic and proteomic analyses indicating that human induced pluripotent stem cell-derived extracellular vesicles play 
a crucial role in regulating cell adhesion and differentiation. A: Differentially expressed mRNAs between patient human induced pluripotent stem cell 
(iPSC)-derived extracellular vesicles (EVs) and control iPSC-derived EVs; B: Gene Ontology (GO)-cellular component enrichment analysis of differentially expressed 
mRNAs; C: Differentially expressed microRNA between patient iPSC-derived EVs and control iPSC-derived EVs; D: GO-cellular component enrichment analysis of 
differentially expressed microRNA target genes; E: Abundance of proteins from patient iPSC-derived EVs and control iPSC-derived EVs. The abscissa represents the 
protein number, and the ordinate represents the normalized protein expression score. The top 10 and bottom 10 expressed proteins are displayed; F: Differentially 
expressed proteins between patient iPSC-derived EVs and control iPSC-derived EVs; G-I: GO enrichment analysis for differentially expressed proteins; J and K: 
Kyoto Encyclopedia of Genes and Genomes and Reactome enrichment analyses for differentially expressed proteins; L: Gene set enrichment analysis of patient 
iPSC-derived EVs and control iPSC-derived EVs. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: Biological progress; CC: Cellular 
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component; MF: Molecular function.

cell cycle and programmed cell death. While there were fewer differential RNAs in the exosomes, there were more differ-
ential proteins compared to cells. EVs derived from iPSCs with a MERTK mutation exhibited poorer ability to regulate 
cell adhesion, greater ability to regulate apoptosis or programmed cell death, and poorer ability to regulate cell differen-
tiation. These results suggested that proteins in EVs play a more important role in regulating stem cell proliferation and 
differentiation, and the biological property of EVs is an important dimension for more fully characterizing iPSCs.

However, this research has some limitations. The phenotypic differences among iPSCs, such as differentiation potential 
and cell morphology, have a 5%-46% possibility of being attributed to individual variations[42]. In addition to genetic 
background, donor-specific epigenetics after reprogramming may influence stem cell variability[36], and the expression 
of quantitative trait loci might also contribute to the maintenance of iPSC lines and their differentiation capability[36,43]. 
Due to the extremely low incidence of this homozygous mutation on the second exon, we lacked the additional samples 
necessary for validating the phenotype. Nevertheless, this research provides evidence indicating that iPSCs carrying a 
MERTK gene mutation may exhibit altered junctions and aberrant differentiation potential.

In this study, we reported for the first time a homozygous mutation in the MERTK gene (c.296_297delCA, p.T99Sfs*8) 
and established an iPSC line associated with this mutation. We also reported, for the first time, that iPSCs with a MERTK 
mutation show impaired adhesion capabilities, tight junctions, and directional differentiation potential. By combining 
cellular RNA and protein expression with EV components, we revealed that intracellular components and EVs colle-
ctively regulate cell tight junctions and differentiation. Our findings suggest that repairing pathogenic gene mutations 
before conducting stem cell therapy in patients carrying gene mutations is a favorable strategy.

CONCLUSION
We first reported a homozygous mutation in the MERTK gene (c.296_297delCA, p.T99Sfs*8) and established an iPSC line 
associated with this mutation. We demonstrated that iPSCs with a MERTK mutation exhibited impaired adhesion 
capabilities, tight junctions, and directional differentiation potential. Our findings elucidated the collective regulation of 
intracellular components and EVs on cell tight junctions and cellular differentiation. These findings highlighted the 
importance of repairing the pathogenic gene mutations prior to stem cell therapy.
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