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Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in 
modern societies due to shifts in lifestyle and dietary habits. Its complexity stems 
from genetic predisposition, environmental influences, and metabolic factors. 
Epigenetic processes govern various cellular functions such as transcription, 
chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, 
especially the process of histone methylation, are intricately intertwined with fat 
accumulation in the liver. Histone methylation is regulated by different enzymes 
like methyltransferases and demethylases and influences the expression of genes 
related to adipogenesis. While early-stage NAFLD is reversible, its progression to 
severe stages becomes almost irreversible. Therefore, early detection and 
intervention in NAFLD are crucial, and understanding the precise role of histone 
methylation in the early stages of NAFLD could be vital in halting or potentially 
reversing the progression of this disease.

Key Words: Non-alcoholic fatty liver disease; Mechanism; Histone methylation; 
Methyltransferases; Demethytrasferases; Epigenetic modification; Adipogenesis
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) is a global health concern accounting for a significant proportion of 
liver-related deaths. However, there are no Food and Drug Administration-approved drugs for NAFLD treatment. Epigenetic 
mechanisms play multiple roles in the pathogenesis of diseases and hold promise as potential therapeutic targets. Here, we 
review the impact of histone methylation on the alterations in metabolic homeostasis, inflammatory injury, fibrosis, and 
carcinogenesis during the progression of NAFLD, providing a theoretical foundation for target discovery and clinical 
treatment.

Citation: Xu L, Fan YH, Zhang XJ, Bai L. Unraveling the relationship between histone methylation and nonalcoholic fatty liver 
disease. World J Hepatol 2024; 16(5): 703-715
URL: https://www.wjgnet.com/1948-5182/full/v16/i5/703.htm
DOI: https://dx.doi.org/10.4254/wjh.v16.i5.703

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a prevalent hepatic disorder characterized by the intracellular accumulation 
of lipid droplets in liver cells, leading to hepatic steatosis. The pathogenesis of NAFLD primarily involves dysregulation 
of lipid homeostasis, with an aberrant increase in de novo lipogenesis and/or fatty acid uptake, coupled with impaired 
lipid processing. NAFLD encompasses a spectrum of liver diseases, ranging from simple steatosis non-alcoholic fatty 
liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC)[1]. 
However, the precise underlying mechanisms driving NAFLD remain incompletely understood, prompting ongoing 
research efforts to elucidate the intricate molecular pathways governing hepatic lipid accumulation.

There is a growing body of evidence supporting the pivotal role of epigenetic mechanisms in the pathogenesis of 
NAFLD[2], influencing adipocyte differentiation, fat metabolism and transport, insulin resistance, and the release of 
inflammatory factors[2,3]. Epigenetic modification is a critical physiological process that deals with altered gene 
expression or cellular pathways through adaptive mechanisms unrelated to changes in the DNA sequence, including 
epigenetic modifications of DNA, post-translational modifications of histone proteins, and miRNA and chromatin 
modifications. DNA methylation modification is a well-recognized genetic epigenetic trait that typically suppresses 
transcription. When external or intrinsic stimuli lead to abnormally elevated intracellular reactive oxygen species (ROS) 
levels, they not only trigger oxidative stress to damage DNA structure but may also cause global or gene-specific changes 
in DNA methylation status by modulating DNA methyltransferase activity[4,5]. These epigenetic adjustments can silence 
the expression of genes that would otherwise inhibit inflammatory lipid deposition and fibrosis, while promoting the 
overexpression of genes related to inflammatory factors and fibrosis, thereby exacerbating the progression of NAFLD 
from pure steatosis to a more severe inflammatory and fibrotic stage[6,7]. In addition, histone methylation is another 
important epigenetic modification that is crucial in regulating biological development and cellular responses. Dysreg-
ulated modifications of histone methylation contribute to functional abnormalities that exacerbate the progression of 
various diseases, including diabetes, hypertension, atherosclerosis, fatty liver disease, tumors, and autoimmune disorders
[8-11]. In recent years, the role of histone methylation in NAFLD has attracted increasing attention. This review aims to 
explore the relationship between histone methylation and NAFLD, enhancing our understanding of its potential clinical 
significance and providing a theoretical foundation for identifying promising therapeutic targets for NAFLD.

ELUCIDATING THE MOLECULAR MECHANISMS OF HISTONE METHYLATION MODIFICATION
Histones are indispensable constituents responsible for maintaining the integrity of chromatin structure and playing a 
pivotal role in the dynamic and long-term regulation of genes. The core region of the nucleosome is composed of two 
histone octamers, consisting of H2A, H2B, H3, and H4 subunits, which intricately associate with DNA double strands
[12]. The terminal amino acid residues of histones are susceptible to covalent modifications, including lysine and arginine 
methylation, acetylation, ubiquitination, phosphorylation, and adenosine diphosphate ribosylation. Among these, 
methylation represents a major form of histone modification[13]. The methylation status of histones profoundly affects 
the occurrence and development of various diseases, notably metabolic disorders, tumors, and immune dysfunctions. 
Correcting these aberrant modifications holds promise for reversing the associated phenotypes and treating the 
underlying diseases.

Effector proteins perform a pivotal function in modulating diverse biological processes by interacting with histones 
that are methylated differently. These processes encompass gene transcription, preservation of genome integrity, 
regulation of X-chromosome activity, formation of heterochromatin, and cell development[14]. The degree of methylation 
on specific residues within the histone octamer can influence the recruitment of effector proteins. This recruitment 
subsequently leads to chromatin structure changes, ultimately affecting downstream genes' transcriptional levels. Histone 
methylation primarily occurs at lysine (K) or arginine (R) residues in the N-terminal domain of H3 and H4 histones. 
Lysine residues can undergo mono-, di-, or tri-methylation modifications, while arginine residues undergo only mono- 
and di-methylation modifications. Lysine methylation is the most prevalent form of post-translational modification on 
histones. Common types of lysine methylation include H3K4, H3K9, H3K27, and H3K36 methylation. Unlike histone 

https://www.wjgnet.com/1948-5182/full/v16/i5/703.htm
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acetylation, the biological effects of lysine methylation can either activate or inhibit gene transcription, depending on the 
specific site and degree of methylation. For example, H3K4me2/3, H3K36me1/3, H3K79me1/2, and H4K20me1 are 
associated with transcriptional activation, while H3K9me2/3, H3K27me2/3, H3K79me3, and H4K20me3 are linked to 
transcriptional repression[15]. The methylation state of histones is primarily regulated by histone methyltransferases 
(HMT) and histone demethylases (HDM) synergistically[16]. Methyltransferases are enzymes that add methyl groups to 
specific lysines or arginines on histones. Different families of methyltransferases are involved in this process, including 
protein lysine methyltransferases and protein arginine methyltransferases. Examples of methyltransferase families 
include the SET domain family [such as su(var), enhancer of zest(E(z)), and trithorax] and the non-SET domain family. 
On the other hand, HDM are enzymes that remove methyl groups from lysines or arginines on histones. There are two 
families of HDM: The lysine-specific demethylase (LSD) family, which specifically removes mono- and di-methylation 
marks from histones H3K4 and H3K9, and the JMJD (JmjC domain-containing) family, which can remove various lysine 
methylation marks[17,18]. These enzymes play a crucial role in dynamically regulating histones' methylation status, 
thereby influencing gene expression.

HISTONE METHYLATION IN METABOLIC HOMEOSTASIS
NAFL is a complex and heterogeneous disease that results from the accumulation of lipotoxic substances in the liver. 
However, not all cases of NAFL progress to NASH[19], which is a more severe form of the disease that can lead to liver 
fibrosis, cirrhosis, and even liver cancer. Recent research has shown that histone methylation modifications can play a 
critical role in regulating the transcription of genes involved in glycolipid metabolism, a key pathway involved in the 
pathogenesis of NAFL (Table 1). Therefore, understanding the impact of histone methylation on the onset and 
progression of NAFL is crucial for developing effective strategies to manage the low conversion rate of NAFL to NASH 
and prevent the development of liver disease.

The role of H3K4 in regulating glycolipid metabolism
H3K4me3 is induced in the gene promoter region through the enzymatic activity of the histone methyltransferase MLL2/
KMT2B, thereby playing a crucial role in the preservation of glucose homeostasis[20]. The cofactor of the pax trans-
activating structural domain-interacted protein (PTIP) associates with the methyltransferases MLL3/KMT2C and MLL4/
KMT2D, leading to the H3K4me3 in the promoter regions of PPARγ and C/EBPα genes, which accelerates hepatic lipid 
synthesis[21,22]. Moreover, methyltransferases MLL3/KMT2C and MLL4/KMT2D induce an increase in H3K4me3 
within the promoter region of lipogenic genes (LPL, SREBF2, SCD1, etc.), thereby promoting the enrichment of E2F 
transcription factor 1 (E2F1) and facilitating the stimulation of lipid synthesis[23]. The demethylase LSD1 interacts with 
the transcription coregulatory factor PRDM16, leading to a reduction in the methylation levels of H3K4me1/2 within its 
promoter region. This decrease in methylation inhibits the glucocorticoid-activating enzyme HSD11B1, thereby exerting 
regulatory control over glycolipid metabolism[24,25]. The pivotal involvement of LSD1 in lipid metabolism has also been 
demonstrated in bats[24,26].

Methylation of H3K9 in adipogenesis, glycolipid, and insulin metabolism
HMT SUV39H1/KMT1A and EHMT1/KMT1D play a crucial role in enriching the H3K9me2/3 in the gene promoter 
region. This modification inhibits the transcriptional activity of AP-2α on C/EBPα, thereby suppressing adipogenesis[27]. 
Additionally, EHMT1/KMT1D is an essential methyltransferase involved in the transcriptional regulation of PRDM16 in 
lipid metabolism[28,29]. Furthermore, the G9a/KMT1C/EHMT2 methyltransferase plays a regulatory role in upregu-
lating the H3K9me marks specifically within the gene promoter regions. This modification effectively inhibits the 
interaction between the early oncogenic transcription factor C/EBPβ and PPARγ, suppressing PPARγ expression and 
consequent inhibition of adipogenesis[30]. In addition to its role in lipid metabolism regulation, the methylation of H3K9, 
mediated by G9a/KMT1C/EHMT2, also significantly influences glucose metabolism. This is achieved by modulating the 
transcriptional level of HMGA1, a key regulator of the insulin receptor (INSR). As a result, this epigenetic modification 
contributes to the amelioration of impaired hepatic insulin sensitivity, thereby improving overall glucose metabolism[31].

On the contrary, a cluster of H3K9 demethylases featuring the Jumonji structural domain, such as JMJD2B, JMJD1C, 
JHDM2a, and JHDM1D, has been observed to diminish the levels of H3K9me3, thereby promoting the progression of 
hepatic steatosis. JMJD2B not only functions to enhance the expression of PPARγ similar to the H3K4 methyltransferase 
MLL4 but also interacts with the hepatic receptor LXRα, thereby facilitating the deposition of aberrant lipid content[32,
33]. JMJD1C collaborates with USF1 to activate the transcription of genes associated with adipogenesis, leading to 
elevated expression of adipogenic genes[34]. Moreover, JHDM2a diminishes the levels of H3K9me2 on the PPAR 
response element (PPRE) of UCP1 following β-adrenergic activation, thereby facilitating the recruitment of PPARγ, RXRα, 
and their coactivators (Pgc1aα, CBP/p300, and Src1) to the PPRE, consequently repressing the expression of genes 
associated with adipogenesis[35,36]. Hence, the knockout of JHDM2 in mice manifests obesity, hypertriglyceridemia, 
hypercholesterolemia, hyperinsulinemia, and hyperleptinemia. Additionally, these mice display increased adipose tissue 
deposition and elevated lipid levels[36]. Furthermore, a study by Kim et al[37] demonstrated that JHDM1D induces 
hepatic steatosis by causing a diminished enrichment of H3K9me2 in the promoter region of DGAT2, a key enzyme 
involved in triglyceride synthesis. Moreover, LSD1 has emerged as a significant regulator of H3K9me1/2/3 methylation 
in the context of lipid metabolism[26,38]. Specifically, it has been reported that HDM containing a plant homologous 
structural domain finger 2 (Phf2) component play a crucial role in modulating glucose metabolism through their impact 
on the methylation status of H3K9me2 within the promoter region of ChREBP[39,40]. Furthermore, dysregulations in 
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Table 1 Effect of histone methylation on glycolipid metabolism

Histone 
methylation HMTs/HDMs Mechanisms Effects on glycolipid 

metabolism Ref.

H3K4me3↑ MLL2/KMT2B - Regulation of glucose 
homeostasis

[20]

MLL3/KMT2CH3K4me3↑

MLL4/KMT2D

(+) KMT2C (2D) + PTIP→promoter (PPARγ) ←Transcript 
(C/EBPα); (+) KMT2C (2D) + PTIP→promoters (LPL, SREBF2, 
SCD1) ←Transcript (E2F1)

Lipid synthesis↑ [21,23,68]

SUV39H1/KMT1A Lipid synthesis↓H3K9me2/3↑

EHMT1/KMT1D

(-) KMT1A (1D) →Transcript (C/EBPα) ←Enhancer (AP-2α); (-
) KMT1D + PRDM16→promoter (HSD11B1)

Blood glucose↑

[27,28]

Lipid synthesis↓H3K9me2/3↑ EHMT2/KMT1C (-) KMT1C→promoter (PPARγ) ←Transcript (C/EBPα); (+) 
KMT1C→Expression of HMGA1

Impaired insulin signal↓

[30,31]

H3K27me3↑ EZH2/KMT6A (-) KMT6A→promoter (Mogat1) →MAG→DAG Lipid synthesis↑ [42,45]

(+) DOT1L→Pathways of SREBPH3K79me1/2/↑ DOT1L

(+) DOT1L→Brown and beige fat production and thermo-
genesis

Lipid synthesis↑ [49]

Lipid synthesis↑H3K4me1/2↓ LSD1/KDM1A (-) KDM1A + PRDM16→promoter (HSD11B1)

Blood glucose↓

[24,25]

(+) KDM4B + PTIP→promoter (PPARγ) ←Transcript 
(C/EBPα)

H3K9me2/me3↓ JMJD2B/KDM4B

(+) KDM4B + LXRα

Lipid synthesis↑ [32,33]

H3k9me3↓ JMJD1C/KDM3C (+) KDM3C + USF1→promoter; (Lipogenesis genes) Lipid synthesis↑ [34]

H3K9me1/2↓ JHDM2a/KDM3A (+) KDM3A (β-adrenaline) →PPRE←promoter (PPARγ + 
RXRα)

Lipid synthesis↓ [35,36]

H3K9me2↓

H3K27me2↓

JHDM1D/KDM7A (+) KDM7A→promoter (DGAT2) Lipid synthesis↑ [37]

H3K27me3↓ JMJD3/KDM6B (+) KDM6B + islet1→promoter (SNAI1) Lipid synthesis↓ [46]

H3K27me3↓ - (+) promoter (LepRb) →slug-Epigenetic reediting-Leptin 
resistance axis

Leptin resistance↑ [48]

H3K36me2↑

H3K27me3↓

NSD2 (-) NSD2→promoter (PPARγ) Lipid synthesis↓ [47]

Lipid synthesis↑H3K9me2/3↓ Phf2 (+) Phf2→ChREBP→promoter (FASN)

Fructose decomposition↑

[39,40]

H4K20me1↓ KDM7B (-) promoter (RNA Pol II) →H4K20me1→Expression of 
glycolytic genes

Lipid synthesis↑ [55]

H4K20me3↓ - (+) ChREBP→ChoRE + promoter (FASN) 
→H4K20me3→Expression of FASN

Lipid synthesis↑ [53]

HMTs: Histone methyltransferases; HDMs: Histone demethylases; Mogat1: Monoacylglycerol O-acyltransferase 1; DAG: Diacylglycerol; FASN: Fatty acid 
synthase; E2F1: E2F transcription factor 1; PTIP: Pax trans-activating structural domain-interacted protein; PPRE: The PPAR response element; Phf2: Plant 
homologous structural domain finger 2.

H3K9 methylation have been implicated in the induction of endoplasmic reticulum stress[41].

Methylation of H3K27 in hepatic steatosis and lipolysis
The elevation of tri-methylation of H3K27 has been observed to enhance the expression of genes involved in lipid 
synthesis[42]. EZH2/KMT6A, identified as the specific methyltransferase responsible for H3K27 methylation, plays a 
significant role in modulating diverse phenotypes of NAFLD and operates through distinct gene targets at different 
stages of the disease progression[42-44]. EZH2/KMT6A acts to upregulate H3K27me2/3 Levels within the promoter 
region, thereby impeding the enzymatic conversion of monoacylglycerol to diacylglycerol (DAG) mediated by Monoacyl-
glycerol O-acyltransferase 1 (Mogat1), consequently leading to the induction of hepatic steatosis[42,45]. On the contrary, 
JHDM1D has been shown to downregulate H3K27me2 within the promoter region of DGAT2, consequently inducing 
hepatic steatosis[37]. Additionally, JMJD3 diminishes the level of H3K27me3 within the promoter region of SNAI1, 
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leading to the inhibition of angiogenesis and exacerbation of lipolysis[46]. It is worth noting that NSD2 plays a dual role 
as a methyltransferase with specificity for H3K27 and H3K36. Alongside its regulatory influence on H3K27me3 within the 
promoter region to modulate glycolipid metabolism, NSD2 also perturbs lipid synthesis by regulating the level of 
H3K36me2 in the promoter region of PPARγ[47]. In addition to the intricate regulatory roles played by methyltrans-
ferases and demethylases in histone methylation, aberrations in transcription factors can also impact the levels of histone 
methylation within promoter regions. For instance, the dysfunction of the transcription factor Slug has been shown to 
diminish the extent of H3K27me3 methylation within the promoter region of the hypothalamic leptin action factor LepRb. 
This reduction subsequently culminates in the upregulation of LepRb transcription and the potentiation of the slug-
epigenetic re-editing-leptin resistance axis in hypothalamic neurons, ultimately disrupting lipid metabolism[48].

Methylation of H3K79 in cholesterol synthesis and adipocyte differentiation
The direct impact of H3K79 methylation is evident in influencing gene programs responsible for controlling lipid biosyn-
thesis and regulating macrophage function. This includes crucial lipid regulators like sterol regulatory element binding 
proteins SREBP1 and SREBP2, which are known to profoundly influence the lipid metabolism and inflammatory 
response of macrophages[49]. DOT1L, as the sole methyltransferase, assumes the critical responsibility of facilitating the 
mono- and dimethylation modification of H3K79. This enzymatic activity subsequently exerts a profound influence on 
the expression of genes associated with crucial biological processes, including cholesterol synthesis pathways[50], 
lymphatic system development[51], and thermogenic adipocyte differentiation[52].

The inhibition of H4K20me3 within the promoter region of fatty acid synthase (FASN) has been shown to facilitate the 
de novo synthesis of FASN, which can consequently lead to hepatic steatosis[53]. Through modulating the levels of 
H4K20 methylation, the methyltransferase KMT5A plays a pivotal role in promoting the expression of key regulators 
involved in lipid metabolism, namely SREBP1, SCD, FASN, and ACC[54]. In contrast, the demethylase KDM7B, 
functioning as a counterregulatory enzyme to KMT5A, impedes the dissociation of RNA Pol II from the proximal region 
of the promoter and diminishes the H4K20me1[55]. As a result, this enzymatic activity influences the expression of genes 
involved in hepatic glucose and fatty acid metabolism[55].

HISTONE METHYLATION IN INFLAMMATORY INJURY
NASH represents an advanced stage of NAFLD, exhibiting features such as hepatic steatosis, inflammation, hepatocyte 
injury, and fibrosis, which can progress over time[56]. The C57BL/6J and DBA/2J mouse models, induced by an adipose-
derived methyl-deficiency diet, manifest specific phenotypic changes characteristic of NASH. These changes are 
concomitant with variations in the levels of H3K9, H3K27, and H4K20 methylation[57], underscoring the pivotal role of 
histone methylation in the initiation and advancement of NASH. In a broader context, histone methylation exerts 
influence not only on the acute physiological alterations that underlie the transition from NAFL to NASH, but also 
directly modulates factors implicated in liver inflammation (Table 2), including hepatocyte lipotoxicity, mitochondrial 
dysfunction, endoplasmic reticulum stress, and other related mechanisms[56].

The methyltransferase SET7/9 is responsible for upregulating the levels of H3K4me3 within the promoter region of 
inflammatory genes induced by tumor necrosis factor-α. This process further facilitates the recruitment of the p65 factor 
to the promoter region, thereby amplifying the NF-κB-mediated inflammatory cascade response[58]. Consequently, these 
mechanisms contribute to the exacerbation of NASH[58]. Furthermore, the enzymatic activity of the methyltransferase 
EZH2/KMT6A, which catalyzes the elevation of H3K27me2/3, has been recognized as a pivotal determinant in liver 
inflammation[44]. Additionally, the methylation of H3K79, facilitated by the methyltransferase DOT1L, has emerged as 
highly pertinent to macrophage inflammatory response[49].

The demethylase JHDM1D has been observed to attenuate the levels of H3K9me2 and H3K27me2 within the promoter 
region of DGAT2. This mechanism effectively alleviates the inhibitory impact imposed by these methylations, 
consequently activating the NF-κB-mediated inflammatory cascade responses in NASH[37]. Considering the frequent 
comorbidity between NAFLD and diabetes, it is postulated that the heightened inflammatory response associated with 
diabetes may play a contributory role in the progression from NAFLD to NASH. Additionally, the demethylation of 
H3K27me by JMJD3 induces chromatin accessibility in macrophages, thereby facilitating the recruitment of transcription 
factors to the promoter region of STING. This subsequently triggers the activation of the TBK1/IRF3/IFN-α pathway or 
NF-κB pathway, ultimately leading to the initiation of chronic inflammation[59-63].

While the pathogenesis of NASH is primarily regulated by lysine methylation of histones, there is a growing 
recognition of the crucial contributions made by arginine methylation. Specifically, the arginine methyltransferase 
PRMT5/MEP50 enhances the levels of H3R2me3 within the promoter region of OXR1A, subsequently promoting the 
transcription of growth hormone within the pituitary gland, inducing oxidative stress in hepatocytes, and ultimately 
accelerating the progression from NAFLD to NASH[64,65]. Meanwhile, recent research advances indicate that inhibition 
of PRMT5 induces an increase in hepatic triglyceride levels, leading to severe adverse liver consequences, i.e. inducing 
NAFLD[66].

HISTONE METHYLATION IN LIVER FIBROSIS
In the scenario of persistent exposure to deleterious environmental factors or repetitive injury, the hepatic tissue 
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Table 2 Effect of histone methylation on inflammatory injury

Histone 
methylation HMTs/HDMs Mechanisms Effects on Inflammatory Injury Ref.

H3K4me3↑ SET7/9/KMT7 (+) SET7/9→promoter (TNF-α→Pro-inflammatory genes) ←NF-κB 
p65

Inflammatory reaction↑ [58]

H3K79me1/2/3↑ DOT1L (+) DOT1L→Pathways of SREBP→ (-) Inflammatory expression of 
macrophages

Inflammatory reaction↓ [49]

H3R2me3↑ PRMT5 (+) PRMT5→promoter (OXR1A) →Growth Hormone Oxidation stress↑ [64,
65]

In case of non-diabetic injury: (+) IFN-β→JAK1/3-
STAT3→JMJD3→STING-TBK1/IRF3/IFN-α

In case of non-diabetic 
injury:Wound Recovery

H3K27me3↓ JMJD3/KDM6B

In case of diabetic injury: (-) IL-6→JAK1/3-STAT3→JMJD3→IFN-α; 
(+) IL-6→JAK1/3-STAT3→JMJD3→NF-κB

In case of diabetic injury:Inflam-
matory reaction↑

[59-
63]

HMTs: Histone methyltransferases; HDMs: Histone demethylases; TNF-α: Tumor necrosis factor-α.

undergoes a cascade of pathological alterations, encompassing diffuse injury, progressive fibrosis, the formation of 
regenerative nodules, and ultimately culminating in the transition from NASH to the fibrotic stage. The fibrotic stage 
epitomizes the final phase of NASH, typified by permanent liver damage, heightened mortality rates, and increased 
susceptibility to cirrhosis and liver cancer. The progression of liver fibrosis largely depends on the differentiation of 
hepatic stellate cells (HSCs), which entails the suppression of PPARγ activation and the acquisition of a fibroblast-like 
phenotype[67]. Numerous investigations have underscored the involvement of various histone methylation patterns in 
orchestrating this process (Table 3). These include the enhancement of H3K4me3 mediated by methyltransferases MLL3/
4[68], modification of H3K27me3 orchestrated by EZH2/KMT6A[44], alterations in H3K36me2 regulated by G9a/
KMT1C/EHMT2 and NSD2[30,47], as well as the demethylation of H3K9me2 facilitated by demethylase JMJD1A/
JHDM2a/KDM3A[36]. These regulations necessitate the presence of methylated CpG-binding protein-2 within the 
promoter region of PPARγ, which in turn activates the upstream or downstream methyltransferases to modulate H3K9 
methylation, thereby repressing transcription initiation. Additionally, it alters H3K27 methylation to impede transcription 
elongation, consequently governing the activation of diverse fibrogenic genes such as TGF-β1, TIMP-1, αSMA, and type I 
collagen[67,69,70].

HISTONE METHYLATION IN FATTY LIVER CARCINOGENESIS
HCC emerges due to hepatocyte cycle aberrations or disturbances in the interplay between progenitor cells and 
oncogenes, often precipitated by inadequate treatment and a compromised microenvironment. This malignancy is charac-
terized by a high mortality rate and restricted therapeutic interventions[71]. To ameliorate the five-year survival rate of 
patients and effectively manage HCC linked with fatty liver disease, comprehending the function of histone methylation 
in modulating proliferation, differentiation, and invasive potential is essential (Table 4).

The augmentation of H3K4 methylation is frequently correlated with the activation of oncogenes and cell cycle 
regulators, consequently leading to an unfavorable prognosis in HCC patients with an elevated risk of metastasis and 
recurrence. The accumulation of a substantial quantity of H3K4me2, catalyzed by the methyltransferase KMT7/SETD7, 
promotes the progression from the G1 to the S phase of the HCC cell cycle, thereby facilitating the proliferation and 
differentiation of HCC cells[72,73]. The attenuation of gene transcription via the reduction of H3K4 methylation predom-
inantly impacts the expression of tumor suppressor genes as opposed to oncogenes, culminating in the emergence of liver 
cancer characterized by susceptibility to metastasis, recurrence, and an unfavorable prognosis[74]. As an illustration, the 
KDM5B/JARID1B demethylase curtails the transcriptional expression of E2F1, P15, and P27 factors by diminishing the 
levels of H3K4me1/2/3[75], thereby instigating uncontrolled proliferation of HCC cells[76]. The demethylases LSD1/2 
have been noted to diminish the levels of H3K4me1/2 and H3K9me1/2, consequently engendering proliferation, differ-
entiation, invasion, and migration of HCC cells through modulation of the cell cycle. Furthermore, they activate β-linked 
protein signaling by directly inhibiting the expression of several repressors in this pathway[77-80]. This activation 
culminates in the translocation of β-linked proteins to the nucleus, forming complexes with the nuclear transcriptional 
complex TCF/LEF. Subsequently, these complexes upregulate the expression of downstream target genes, thereby 
facilitating the process of hepatocarcinogenesis[81-84].

In contradistinction to the stimulatory impact of heightened H3K4 methylation, the augmentation of H3K9 methylation 
typically functions as a transcriptional repressor, impeding the expression of oncogenic factors. For instance, the 
enrichment of H3K9me1/2 brought about by the action of G9a/KMT1C impedes the expression of the oncogene 
RARRES3 and the pro-apoptotic gene Bcl-G[85,86]. The methyltransferase SUV39H1/KMT1A triggers the establishment 
of H3K9me3, thereby expediting the progression of HCC[87,88]. Nonetheless, the attenuation of H3K9 methylation 
actively engages in gene transcription and facilitates the progression of HCC. The diminishment of H3K9me1/2 induced 
by the demethylase KDM3A/JMJD1A activates the PI3K/AP-1 and JAK2-STAT3 signaling pathways, thereby promoting 
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Table 3 Effect of histone methylation on hepatic fibrosis

Histone methylation Functions Effects on fibrosis Ref.

Expression of PPARγ↓H3K9me1/2/3↑ (Upstream) (-) Transcription initiation

Hepatic Fibrosis↑

[67,69,70]

Expression of PPARγ↓H3K27me1/2/3↑ (Downstream) (-) Transcriptional extensions

Hepatic Fibrosis↑

[67,69,70]

H3K4me2/3↑

H3K36me3↑

(The whole process) (+) Genes for fibrosis (TGF-β1, TIMP-1, α-SMA and Collagen type I) Hepatic Fibrosis↑ [67,69,70]

Table 4 Effect of histone methylation on carcinogenesis of fatty liver

Histone methylation HMTs/HDMs Functions Effects on HCC Ref.

H3K4me2↑ SETD7/KMT7 (+) Cell cycle G1 phase → S phase ↑ [72,73]

H3K9me1/2↑ G9a/KMT1C (-) Expression of oncogenic factor RARRES3 and pro-apoptotic gene Bcl-G ↑ [85,86]

H3K9me3↑ SUV39H1/KMT1A (+) Cell cycle G1 phase → S phase ↑ [87,88]

H3K27me3↑ EZH2/KMT6A (+) Wnt/β-linked protein signaling pathways ↑ [91,92]

H4K20me1↑ SET8/KMT5A (+) Cell cycle G1 phase → S phase ↑ [94,95]

(+) Cell cycle G1 phase → S phaseH3K4me1/2/3↓ JARID1B/KDM5B

(-) Oncogenic expression ← transcription factors (E2F1, P15 and P27)

↑ [75]

H3K4me1/2↓ (+) Cell cycle G1 phase → S phase

(-) H3K4me1/2↓→Inhibitor expression (β-linked protein signaling)H3K9 me1/2↓

LSD1/LSD2/KDM1A

(+) β-linked protein +TCF/LEF→Target gene expression (Oncogenic)

↑ [77-79,90]

(+) PI3K/AP-1 pathway

(+) JAK2-STAT3 signaling pathways

H3K9me1/2↓ JMJD1A/KDM3A

(+) Wnt/β-linked protein signaling pathways

↑ [89,90]

HMTs: Histone methyltransferases; HDMs: Histone demethylases.

the initiation of HCC[89]. Moreover, KDM3A/JMJD1A regulates the expression or activity of the β-linked protein and the 
C-Myc gene, thereby expediting the malignant transformation of HCC[90].

Like H3K9 methylation, hypermethylation of H3K27 also serves as a universal repressor in gene transcription. The 
accrual of H3K27me3, facilitated by the methyltransferase EZH2, inhibits the transcription of Wnt signaling antagonists, 
consequently activating Wnt/β-catenin protein signaling and fostering tumor aggressiveness[91-93]. On the contrary, the 
methylation of H4K20 induced by the methyltransferase KMT5A is involved in the activation of gene transcription, 
regulation of DNA replication, repair of DNA damage, and control of the cell cycle[94,95], ultimately resulting in a 
negative prognosis and adverse outcomes in HCC. Unfortunately, the association between H3K27 and H4K20 
methylation and HCC remains poorly studied. This knowledge gap hinders our understanding of the detrimental 
outcomes associated with a poor prognosis for this disease.

In addition, recent studies have found that abnormal accumulation of lipids leads to disruption of ROS homeostasis in 
the body, resulting in an enhanced state of oxidative stress in vivo and that oxidative stress affects the development of 
NAFLD by altering epigenetic programs through the regulation of histone demethylase activity[96]. Under oxidative 
stress, H2O2-induced ROS decreased PRMT5 (arginine methyltransferase 5) protein levels, increased RORα protein levels 
in HepG2 cells, and inhibited HCC progression[97]. Under oxidative overstimulation, H2O2-induced ROS increased the 
formation of H4K20me3 in HCC cells and induced HCC formation[98]. To further complicate matters, when ROS alters 
histone methylation levels alters histone methylation levels, they can give feedback to alter the oxidative stress state, 
further affecting the development of NAFLD. For example, an aberrant increase in ROS in macrophages induces a 
decrease in the H3K27me3 demethylase, KDM6A, which leads to an increase in H3K27me3 in the NOX2 promoter, which 
promotes macrophage M1 polarization and leads to inflammation[99]. H3K4-specific histone methyltransferase WD 
repeat sequence-containing protein 5 and histone H3K79 methyltransferase (DOT1L) enhance the activation of the 
STING-NLRP3-GSDMD axis, promote hepatic ROS generation, and cause hepatocyte apoptosis and liver inflammation in 
liver fibrosis[100].
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POTENTIAL CLINICAL APPLICATION OF HISTONE METHYLATION
The increasing severity of NAFLD underscores the urgent need for effective preventive and management strategies. 
Delving into the realm of epigenetics provides a fresh perspective for identifying potential therapeutic targets for 
NAFLD. Given the pivotal involvement of histone methylation in the pathogenesis of NAFLD, the exploration of 
targeting histone methylation has emerged as a prominent and noteworthy area of investigation within the realm of 
NAFLD therapeutics. Kim's study provided significant insights into the essential contribution of histone methyltrans-
ferase MLL4 in the progression of hepatic steatosis mediated by ABL1 and PPARγ in murine models. The findings 
suggest that the ABL1-PPARγ2-MLL4 axis represents a critical regulatory pathway in steatosis development under 
conditions of nutrient overload, thereby offering potential avenues for targeting this axis in developing anti-steatosis 
drugs[101]. Moreover, the growing body of evidence strongly indicates that pharmacological inhibition of the methyl-
transferase EZH2 presents a highly promising therapeutic approach for effectively managing NAFLD. As a result, a 
diverse range of small molecule inhibitors explicitly targeting EZH2, along with several naturally occurring compounds 
exhibiting inhibitory effects on EZH2 activity, have been successfully developed[102,103]. Significantly, it has been 
demonstrated that treatment with DZNep effectively inhibits the proliferation of HSC-derived fibroblasts by modulating 
multiple histone methylation pathways[104,105]. Additionally, Xu et al[106] have provided evidence suggesting that 
pharmacological intervention targeting the methyltransferase Dot1L may represent a promising therapeutic approach for 
addressing diverse tissue fibrosis disorders in human subjects. Furthermore, emerging evidence suggests that the 
targeted intervention of the methyltransferase KMT5A in HCC therapies exerts a significant inhibitory effect on HCC cell 
proliferation and invasion. Additionally, this therapeutic approach enhances the cells' responsiveness to chemotherapy. 
These compelling findings hold substantial implications for the clinical management of HCC, paving the way for 
promising advancements in HCC therapy in the future[107].

Numerous experimental studies have demonstrated the potential of demethylases G9a/EHMT2, JMJD1C/KDM3C, 
JMJD2B/KDM4B, and Phf2/JHDM1E/KDM7C to serve as targetable epigenetic loci for preventing the progression of 
NAFLD[31,32,34,39,40,108-110]. Bricambert et al[39] have elucidated a novel epigenetic regulatory mechanism involving 
Phf2/JHDM1E/KDM7C in both murine and human models. This mechanism entails the facilitation of demethylation of 
H3K9me2 within the promoter region of ChREBP. Consequently, it acts as a protective checkpoint by attenuating the 
excessive accumulation of lipids and ROS in the liver, thereby mitigating the pathogenesis of NAFLD[39]. In this context, 
the development of small molecules tailored to selectively activate JMJC-containing HDM has shed light on the potential 
of Phf2/JHDM1E/KDM7C as a promising epigenetic target for NAFLD prevention[111-113]. Moreover, emerging 
evidence indicates that targeting the JMJD2B-PPARγ signaling pathway may represent a viable therapeutic strategy for 
managing NAFLD[32].

Regrettably, there is a scarcity of clinically significant small molecule inhibitors focusing on histone methylation. 
Among the small molecule inhibitors presently undergoing clinical trials, Tazemetostat, an EZH2-selective inhibitor of 
H3K27me3 hypermethylation, has exhibited promising efficacy in addressing relapsed or refractory B-cell non-Hodgkin's 
lymphoma and advanced solid tumors[106,114,115]. Notably, Tazemetostat has demonstrated its effectiveness both as a 
monotherapy (NCT01897571) and in combination with R-CHOP (NCT02889523) for newly diagnosed cases[106,115]; 
TAK-418, a new LSD1 inhibitor that hinders the demethylation of H3K4me1/2, shows potential in treating central 
nervous system disorders like Kabuki syndrome (NCT03228433, NCT03501069)[116]. Pinometostat, a small molecule 
inhibitor targeting DOT1L, effectively reduces methylation of H3K79 and holds promise for managing acute leukemia in 
adults (NCT01684150)[117]. In contrast, the PRMT5 small molecule inhibitor GSK3326595 is undergoing clinical trials in 
patients with solid tumors and non-Hodgkin's lymphoma (Meteor 1) (NCT0278330), and it is important to be alert to the 
fact that prolonged low-dose use of GSK3326595 induces NAFLD. The clinical trial stage has revealed the heightened 
effectiveness of small molecule inhibitors targeting histone methylation in disease treatment. While their impact on 
NAFLD/NASH remains unexplored, these findings provide valuable insights for researchers aiming to develop histone 
methylation-targeted drugs for treating NAFLD/NASH.

CONCLUSION
As a complex disease with genetic, environmental, and metabolic stresses, the pathogenesis of NAFLD involves variables, 
including genetic, environmental, immunological, and nutritional factors. Despite ongoing research, the relevant 
mechanisms remain elusive. However, the exploration of epigenetic mechanisms offers a novel approach to investigating 
NAFLD-related mechanisms and identifying therapeutic targets, particularly for the reversal of NAFLD. Numerous 
studies have demonstrated that histone covalent modification plays a crucial role in the signaling pathway network that 
can either activate or silence genes in response to specific signals. Among these signals, histone methylation modification 
is a significant determinant in the development of NAFLD and is intimately associated with the progression of NAFLD, 
the development of fibrosis, and carcinogenesis. Based on existing research, it is evident that lifestyle modifications have 
the potential to modulate the epigenome, leading to improved outcomes in NAFLD. Moreover, the advent of inhibitors 
targeting histone-modifying enzymes holds great promise as a groundbreaking advancement in the therapeutic 
management of NAFLD. Furthermore, non-invasive diagnostic modalities, including serum biochemical markers, liquid 
biopsies, and advanced imaging techniques, are poised to enhance the detection and characterization of NAFLD 
progression. Additionally, improved diagnosis and treatment strategies for patients with NASH-related HCC have the 
potential to effectively impede the progression of the disease.
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