Advances in neovascularization after diabetic ischemia

Cai Y et al. Neovascularization after diabetic ischemia

Yue Cai, Guang-Yao Zang, Yan Huang, Zhen Sun, Li-Li Zhang, Yong-Jiang Qian, Wei Yuan, Zhong-Qun Wang

Abstract
With the high incidence of diabetes around the world, ischemic complications cause a serious influence on people's production and living. Neovascularization plays a significant role in its development. Therefore, neovascularization after diabetic ischemia has aroused people's attention and has become a hot spot in recent years. Neovascularization is divided into angiogenesis represented by atherosclerosis and arteriogenesis characterized by coronary collateral circulation. When mononuclear macrophages successively migrate to the ischemia anoxic zone after ischemia or hypoxia, they induce the secretion of cytokines, such as vascular endothelial growth factor and hypoxia-inducible factor, activate signaling pathways such as classic Wnt and phosphatidylinositol 3 kinase (PI3K)/protein Kinase B (Akt) pathways, trigger oxidative stress response, activate endothelial progenitor cells or enter the glycolysis or lactic acid process, and promote the formation of new blood vessels, remodeling them into mature blood vessels and restoring blood supply. However, the hypoglycemic condition has different impacts on neovascularization. Consequently, this review aimed to introduce the mechanisms of neovascularization after diabetic ischemia, increase our understanding of diabetic ischemic complications and their therapies, provide more treatment options for clinical practice, and effectively relieve patients' pain. It is
believed that in the near future, neovascularization will bring more benefits and hope to patients with diabetes.

Key Words: Diabetes mellitus; Angiogenesis; Arteriogenesis; Ischemia; Hypoxia

Core Tip: Our paper will be expanded from the following parts. First of all, we introduce the basic concepts and influencing factors of neovascularization, including angiogenesis and arteriogenesis. Second, the mechanisms contain cytokines, classical and novel signaling pathways, glycolysis and lactic acid process and so on are described in detail and vividly. Then, the neovascularization after diabetic ischemia was further described in combination with the complications of diabetes, such as diabetic atherosclerosis, diabetic retinopathy, diabetic nephropathy and diabetic foot ulcer. Last but not least, the treatment plans are listed, with its advantages and disadvantages, compared, may offer more treatment options.

INTRODUCTION

Diabetes mellitus is a complex, heterogeneous, whole-body chronic metabolic disease; it is predicted that by 2045, the number of patients with diabetes, aged 20-79 years, will increase to 783 million[1]. Diabetes-related complications include microvascular plaque formation, ischemia, and hypoxia caused by atherosclerosis. They are characterized by severe arterial ischemia, increased risk of amputation of peripheral artery disease, and so on. Promoting neovascularization to restore the blood flow of the ischemic area is conducive to disease outcomes while avoiding the risk. Hence, it is an urgent issue for scientific research workers.

NEOVASCULARIZATION AFTER ISCHEMIA
Neovascularization is caused by angiogenesis and arteriogenesis. Angiogenesis refers to the budding of new blood vessels in the vascular bed in an original way to form new vasculature, mainly in the capillaries\cite{2}. Arteriogenesis is the formation of new arteries by expanding lumen diameter and remodeling tube walls to restore blood flow in the ischemic area. The new route gradually disappears when the previously blocked artery is recanalized\cite{10}.

Angiogenesis

Physiological angiogenesis mainly occurs in embryo development, endometrial thickening, and wound healing; the process depends on the ratio of pro-angiogenic factors to anti-angiogenic factors. Pathological angiogenesis is often triggered in disease states, such as atherosclerosis, tumor, systemic lupus erythematosus, and so forth\cite{3}, to form abnormal blood vessels with thinner walls and higher permeability. Angiogenesis includes the following steps: (1) endothelial cells sprout under the action of angiogenic factors\cite{4}; (2) pericytes aggregate if their absence leads to increased lumen permeability\cite{5} and vascular instability; and (3) the basement membrane is reconstructed to develop mature and stable blood vessels.

Atherosclerosis can lead to severe complications such as myocardial infarction (MI), resulting in heart failure. Endothelial cells, which sprout under the action of angiogenic factors, significantly improve the patient's recovery, which is the focus of current research.

After MI, blood congestion, thromboembolism, and compression of the surrounding tissue, proinflammatory factors are released, leading to impaired endothelial integrity, loss of myocardial cells, endothelial cell damage, increased capillary permeability, and secretion of proinflammatory cytokines to activate white blood cells and endothelial cells. This results in the release of a large number of inflammatory factors into the infarcted myocardium, thus promoting myocardial inflammation\cite{6}. The formation of neovascularization in the ischemic infarct area to provide nutrients and oxygen is the key to post-MI repair. Neovascularization in the surrounding area of infarction
increases vascular density and extends to the core area of infarction\(^7\), and hypoxia plays an essential role in this process. The most studied factor is hypoxia-inducible factor-1α (HIF-1α), whose reduced protein expression under high-glucose conditions leads to increased MI\(^8\). In anoxic environments, the HIF-1α/vascular endothelial growth factor (VEGF) pathway acts by releasing angiogenic factors. After MI, reactive oxygen species in cardiac fibroblasts increased by about 50%, resulting in mutations in the HIF phenotype marked by scar contraction and dysfunction\(^9\). HIF activation induces VEGF release, which activates endothelial cells (ECs) through the paracrine mechanism and can also be expressed in ECs to participate in angiogenesis. In addition, angiopoietin-like protein 4 stabilizes VEGF receptor 2 (VEGFR2)/Ca\(^{2+}\)-dependent cell adhesion molecule 5 complex to maintain endothelial structural integrity and promote macrophage transformation into a repair phenotype to enhance boundary region angiogenesis.

Arteriogenesis

Arteriogenesis refers to the growth of new arteries or the derived collateral vessels, mainly involved in the active proliferation of ECs and smooth muscle cells, resulting in lumen enlargement and wall remodeling. It comprises primarily two stages\(^10\): In the early stage, the diameter of lateral branches and tube walls increases under the influence of fluid shear stress. Subsequently, monocytes promote lumen remodeling by secreting metalloproteinases and cytokines. In addition, M1-type macrophages promote the progression of myocardial inflammation\(^11\). The release of inflammatory factors under ischemia and hypoxia promotes the progression of inflammation and the occurrence of glycolysis. Under this action, fibroblasts are transformed into ECs, triggering epigenetic modification. ECs and fibroblasts contribute to the formation of arteries\(^12\-14\).

Human coronary circulation has an extensive anastomotic network. Even one-third of ordinary people have collateral circulation to cope with MI caused by transient vascular occlusion\(^15\). Further, 20%-25% of patients with coronary artery disease (CAD) can
prevent MI, improve survival, and reduce mortality by promoting normal blood flow through collateral circulation during coronary artery occlusion. Approximately one in five patients cannot tolerate percutaneous coronary intervention (PCI) or coronary artery bypass grafting. Therefore, collateral growth promotion is a promising therapeutic strategy targeting arteriogenesis. In the absence of CAD, these arteries are only 100-200 μm in diameter and the lumen is impassable. When CAD causes a major artery occlusion, the collateral arteries are remodeled and the lumen is expanded to 100-800 μm in diameter to serve as part of the major artery[16], which is in line with normal routes and has one to two layers of smooth muscle cells. At the same time, the expansion of the diameter of the tube is accompanied by a decrease in the number of collateral arteries. The myocardial protection of large blood flow is more significant in the collateral arteries than in the new capillaries surrounding the infarct area[20].

Although collateral maturation is essential for preserving cardiac function, the related markers still lack[17]. Although the influence of coronary artery collateral formation and prognosis has been controversial at present[18], some studies showed[19] that patients with MI having coronary collateral circulation (CCC) have more severe stenosis and worse cardiac function. Therefore, from a macro point of view, it is believed that collateral circulation benefits at least one-fifth of patients who cannot undergo PCI and coronary artery bypass grafting. Physiological or pathological vascular reconstruction and blood flow redistribution can prevent excessive MI and reduce injury to the body. This therapeutic strategy has broad research prospects and is worth further exploration to benefit patients.

Impact factors

As mentioned earlier, neovascularization is affected by various pro-angiogenesis/anti-angiogenesis factors. The mechanisms and roles of pro-angiogenesis factors, such as HIF, macrophages, VEGF family, noncoding RNA, and hepatocyte growth factor (HGF), and anti-angiogenesis factors, such as thrombospondin-1 and interleukin 12 (IL-12), were summarized in this study (Tables 1 and 2)[7,21-45].

5 / 27
MECHANISMS OF NEOVASCULARIZATION AFTER DIABETIC ISCHEMIA

Glycolysis

Studies have shown that 80% of ATP in ECs is produced by glycolysis\[^{46}\], mainly due to the limited number of mitochondria. The energy generated needs to be supplied to the distal tissues. In addition, the ATP generation by glycolysis is faster than that by oxidative phosphorylation. Therefore, glycolysis is the leading way of energy supply for ECs in normal and hypoxic states. Hypoxia or lack of nutrition can promote the production of VEGF, fibroblast growth factor, and other angiogenic factors\[^{47}\], the concentration and the activity of hexokinase, and membrane expression of glucose transporter protein 1. The ECs differentiate into specific cells under high VEGF levels, forming platelet pseudopodia and filiform pseudopodia, promoting migration and stem cell proliferation. Stable glycolysis produces lactic acid\[^{48}\], promoting VEGF expression and inducing angiogenesis under multiple effects.

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase \[^{3}\] (PFKFB3) transcription through HIF-1\(\alpha\) is induced by hypoxia, which is an essential regulator of glycolysis and can be phosphorylated by activating kinases such as mitogen-activated protein kinase\[^{49}\]. PFKFB3 can promote the synthesis of fructose-2 6-diphosphate, activate phosphofructokinase 1, and promote glycolysis. The Notch-Delta-like ligand 4 signaling pathway can promote stem cell extension, tip cell growth, and blood vessel germination\[^{53}\].

Some intermediate products of glycolysis enter the pentose phosphate pathway (PPP). The nicotinamide adenine dinucleotide phosphate (NADPH) produced during this process is necessary for nitric oxide (NO) biosynthesis, promoting angiogenesis. When macrophage metabolism shifts to glycolysis, M1 proinflammatory macrophages facilitate glycolysis, interrupting the tricarboxylic acid cycle and producing lactic acid rather than metabolizing pyruvate to acetyl-CoA. Anti-inflammatory M2 macrophages inhibit the PPP.
Lactylation

Lactic acid has long been considered a metabolic waste. Recent studies have shown that lactic acid can be expressed as a signaling molecule in wound healing and angiogenesis[50]. Lactic acid can modify histones to regulate macrophage polarity and expression of tissue repair genes such as arginase-1[51]. In inflammatory diseases such as atherosclerosis, macrophages secrete proinflammatory cytokines such as tumor necrosis factor γ (TNF-γ) and IL-12 to cause extensive damage to surrounding tissue, and anaerobic glycolysis causes lactic acid accumulation[50]. The macrophage polarity transition is a hallmark of the disease, and lactic acid converts macrophages from proinflammatory phenotype into repairing phenotype, removes cell debris, and promotes wound healing. Inflammatory macrophages undergo modifications, which promote the repair characteristics of macrophages in response to inflammatory damage[52]. In addition, lactic acid can covalently couple with various histone lysine residues during histone acetylation to promote the transcription of homeostasis-related genes. In the late stage of lactic acid and histone lactate modification and accumulation, the cells switch to a steady-state phenotype, in which inflammatory genes are difficult to induce. Studies have shown that lactic acid can promote the secretion of VEGF, activate the nuclear factor kappa-B (NF-κB)/C-X-C motif chemokine 8 (CXCL8) pathway, and stabilize HIF-1α, playing a role in promoting angiogenesis signaling molecules. The overall function of lactic acid is to transform the inflammatory phenotype of macrophages into a repair phenotype. We hypothesized that lactic acid was associated with angiogenesis. However, the integration mechanism of lactic acid and hypoxia, such as HIF, chromatin remodeling, and other processes extending to angiogenesis, is still unclear and needs further research (Figure 1).

Oxidative stress

When the body is subjected to various diabetic stimuli, the mitochondria is stimulated to produce superoxide, leading to the formation of the powerful oxidant nitrite, which damages DNA and depletes intracellular NAD (+)[80], resulting a pathological state.
Two common mechanisms\(^{88}\) contribute to increased oxidative stress\(^{97}\) in diabetes: one is an increase in free radical production and the other is a decrease in the levels of protective endogenous antioxidants. Also, natural antioxidants include dandelion\(^{101}\), saffron\(^{92,93}\), hawthorn\(^{90}\), vitamin C, vitamin E\(^{95}\), however, rhizoma polygonate in traditional Chinese medicine can dephosphorylate DNA to damage DNA\(^{96}\). In addition, hyperglycemia activates NF-κB, which can lead to changes in the inflammatory response, upregulation of COX-2, inducible nitric oxide synthase (iNOS)\(^{91}\), TNF-α, and IL-1, promotion of cell proliferation and inhibition of cell death. The increased expression of iNOS catalyzes the production of large amounts of NO\(^{98}\). The inhibition of TLR2/4 signaling can avoid NF-κB translocation, ultimately reducing cell apoptosis\(^{94}\). The hyperglycemic environment can stimulate the mitochondrial respiratory chain to produce a large number of oxygen free radicals, activate protein kinases C\(^{87}\), and promote the NADPH-related processes of oxidative stress, leading to endothelial cell apoptosis. A small number of reactive oxygen species (ROS) can maintain normal physiological function\(^{54}\); however, an excess of ROS cause oxidative stress\(^{99}\), which can activate multiple stress kinases and related proteases and affect their activities\(^{100}\), aggravates cytotoxicity, and attacks cells, leading to endothelial progenitor cell senescence, apoptosis, and inhibition of migration and proliferation. Superoxide anions and H\(_2\)O\(_2\) in the ROS family play a major role in this process. In addition, the activity of endodermal NOS is reduced, the metabolism of tetrahydrobiopurine (BH4) is abnormal, and dihydrobiopterin (BH2) cannot be recovered in diabetes, resulting in a lower level of BH4\(^{55}\). NOS induces the formation of many superoxide anions instead of NO, aggravating oxidative stress. Advanced glycation end products lead to an imbalance in ROS production and clearance and increased endothelial permeability\(^{56}\). Oxidative stress impairs angiogenesis through multiple mechanisms.

Endothelial progenitor cells
Endothelial progenitor cells (EPCs) are fusiform cells with limited proliferative capacity in the early stage and cells with high proliferative capacity in the late stage\cite{58}. During tissue ischemia, EPCs can be mobilized from bone marrow to damaged blood vessels for vascular repair or angiogenesis, or the number of circulating EPCs increases via various factors, including VEGF, stromal cell-derived factor-1 (SDF-1), or stem cell factor. EPCs can proliferate, migrate, adhere, and differentiate into ECs, repair damaged ECs, and secrete angiogenic factors such as VEGF to promote angiogenesis in ischemic tissues\cite{57}.

In diabetes, endothelial dysfunction and delayed angiogenesis promote the occurrence and development of diabetic vascular complications. In the high-glucose environment, the number of EPCs is reduced and their functions are impaired\cite{59}. In addition, EPCs are less responsive to ischemia, VEGF, SDF-1, and other stimuli, and the mobilization mechanism is damaged. EPCs may also secrete anti-angiogenic factors. The high-glucose environment leads to the excessive production of ROS, excessive activation of NADPH oxidase, and a significant decrease in the levels of manganese-containing superoxide dismutase and other antioxidant enzymes, resulting in EPC dysfunction\cite{60}. The excessive production of ROS significantly increases the levels of oxLDL, inhibits protein kinase B (Akt) phosphorylation and endothelial NOS (eNOS) expression, decreases NO activity, inhibits the phosphatidylinositol 3 kinase (PI3K)/Akt/eNOS signaling pathway, and induces the apoptosis of EPCs, migration of EPCs, and formation of functional defects in the lumen\cite{61}. In addition, the severe inflammatory environment of diabetes causes impaired adhesion and proliferation of EPCs, as well as neovascularization.

However, when patients with diabetes suffer from vascular complications, the number and function of EPCs in different parts (microvessels and large vessels) are different. For example, when such patients suffer from peripheral artery disease, the number of EPCs decreases. However, the proliferative capacity of EPCs is increased in patients with proliferative retinopathy.
Slit2/Robo1/PI3K/Akt/VEGF signaling pathways

Endothelial cell-derived Slit2 plays a pro-angiogenic role in EC migration and lumen formation through its Roundabout 1 (Robo1) receptor. High glucose levels directly induce Slit2 production or Slit2/Robo1 binding. Robo1 inhibits the activation of the PI3K/Akt pathways and HIF-1α/VEGF signaling pathways and inhibits angiogenesis. PI3K inhibitors also inhibit the HIF-1α/VEGF signaling pathway. Hence, Robo1 may be a potential therapeutic target in diabetic ischemic complications with abnormal angiogenesis, such as diabetic nephropathy and diabetic retinal disease[62]. The interference of this signaling pathway can inhibit angiogenesis (Figure 2).

NEOVASCULARIZATION AFTER DIABETIC ISCHEMIA

Diabetes atherosclerosis

Atherosclerotic plaques lead to local hypoxia and trigger angiogenesis of the outer membrane of the vessel. The newly formed vessels are immature and leaky due to the lack of a tight connection between the pericellular cells and ECs. Lipids, inflammatory factors, and red blood cells invade the plaques, leading to vessel rupture within the plaques. Proteolytic enzymes released by neovascularization promote inflammatory cell infiltration, and inflammatory factors trigger angiogenesis[63,64]. At the same time, intraplaque bleeding leads to a rapid increase in plaque volume, the fibrous cap changes to a contraction phenotype, and the fibrous cap becomes thinner[65], increasing the risk of plaque rupture[66]. However, Brezinski et al.[67,68] put forward an opposite view that plaque rupture is caused by insufficient angiogenesis. The axial extension of neovascularization allows the healing of most plaques, while insufficient angiogenesis cannot sustain the growth of ECs in long necrotic plaques, resulting in plaque rupture and acute coronary syndrome.

Under high-glucose conditions, the senescence and death of EPCs are accelerated, the PI3K/Akt/eNOS signaling pathway is inhibited, advanced glycation end products increase and fibrin formation is accelerated[69,70]. This triggers endoplasmic reticulum stress and oxidative stress, resulting in insulin resistance and accelerated atheromatous
plaque formation. The endothelial cell differentiation is blocked, and angiogenesis is
damaged (Figure 3).

Diabetic retinopathy

Diabetic retinopathy (DR) can be divided into early nonproliferative DR and late
proliferative DR in terms of progression, leading to pathological retinal angiogenesis[71],
Neovascularization extends along the surface of the retina into the vitreous cavity. Still,
such vessels are fragile and easily broken, easily leading to vitreous hemorrhage, retinal
detachment or macular nonperfusion, and related photoreceptor dysfunction[72]. The
earliest change is the thickening of the vascular basement membrane (BM). In a high-
glucose environment, BM hardens and changes the elasticity of blood vessels, affecting
the retinal blood flow and the dynamic balance between the inside and outside of blood
vessels[73].

After the blood glucose level increases, blood-retinal barrier degrades briefly in a few
days or weeks, and then Muller cells are activated. Pericytes are lost in about 2 mo,
followed by ECs, leading to vascular degeneration 6 mo after diabetes[72]. Vascular
degeneration is caused by the loss of pericytes that control vascular patency, resulting
in decreased vascular patency, vascular blockage, endothelial cell fusion/degeneration,
and finally basal membrane dissolution, vascular degeneration, and formation of
capillaries without ECs. However, under physiological conditions, ECs of retinal
capillaries express a high level of tight connections, limiting the circulation of nutrients,
soluble factors, and cells into tissues[74], and vascular degeneration destroys this
structural function.

Consistent with numerous pathological processes, in a hypoxic and ischemic
environment, angiogenesis-related factors are promoted, retinal neovascularization
occurs, and newly formed blood capillaries migrate to other capillaries and merge to
form new blood capillaries[74]. However, the high-glucose environment can promote the
development of diabetic retinal neovascularization. Proliferative retinopathy is
accompanied by tractional retinal detachment and vision loss. Therefore, the treatment
aims to inhibit neovascularization. The standard treatment methods include laser therapy and anti-VEGF therapy. The intravitreal injection of VEGF inhibitors has excellent short-term safety. However, whether long-term anti-VEGF may have long-term adverse effects on the function of retinal neurons is unclear.

Diabetic nephropathy

In the early stage of diabetic nephropathy, hypoxia induces HIF generation, and endothelial growth factor or angiopoietin maintains renal vascular density, resulting in increased abnormal angiogenesis, vascular immaturity, plasma protein leakage, increased proteinuria, and significantly increased glomerular filtration rate. In the late stage, glomerular capillaries are sparse, and the production of nephrogenic erythropoietin is increased, which aggravates renal hypoxia, and glomerular cells lose vitality. In this process, eNOS activity declines, the utilization rate of NO decreases, oxidative stress abates HIF activation, and VEGF expression is significantly lowered. Also, the levels of anti-angiogenesis factors such as platelet response protein 1 and endothelial inhibition significantly increase, the levels of inflammatory cytokines increase, and VEGF expression is inhibited. Further, endothelial progenitor cell function is impaired, the inflammatory response is enhanced, and the expression of adherence factors is upregulated, which is accompanied by impaired capillary ECs, endothelial barrier dysfunction, and reduced angiogenesis, resulting in abnormal angiogenesis and vascular leakage. *Podocytes are an important source of growth factors that regulate endothelial cell proliferation and angiogenesis.* Their number increases in the early stage of diabetes and decreases in the late stage. The number of mesangial cells increases, the capillary BM thickens, and the capillary number and area increase, directly or indirectly resulting in glomerular hyperplasia and mesangial expansion.

At present, no precise treatment is available for diabetic nephropathy to inhibit angiogenesis. VEGFA inhibitors can be used, but their levels need to be maintained at an appropriate level *in vivo*. A deviation from moderate levels can cause damage.
Diabetic foot ulcer

Diabetic foot ulcer (DFU) is characterized by neuropathy caused by hyperglycemic levels, arterial stenosis caused by lipid deposition, and ischemic lesions of lower extremities. The DFU healing process can be divided into three overlapping phases: early steady-state and inflammation, arteriogenesis, and matrix deposition; mid-late reshaping; and epithelial cell remodeling. Neutrophil granulocyte and macrophages produce cytokines and promote cell proliferation; fibroblasts are rich in collagen fibers and induce angiogenesis and vascularization. Neurological and ischemic lesions lead to impaired healing.

DFU arteriogenesis is reduced in diabetes. Hypoxia and ROS decrease transcriptional activities of HIF, VEGF, angiopoietin 2, and fibroblast growth factor and inhibit collateral development and arteriogenesis after limb ischemia. Hyperglycemic levels result in impaired growth factor production and macrophage function, collagen accumulation inhibition, and poor migration and proliferation of keratinocytes and fibroblasts, leading to impaired angiogenesis. At the same time, wound infection reduces the active matrix metalloproteinase 8 (MMP-8) level, increases the active MMP-9 level, inhibits laminin, enhances keratinocyte migration, reduces arteriogenesis, and slows wound healing.

For the treatment of DFU, the current strategy is to increase arteriogenesis, eliminate oxidative stress, and eliminate ulcer infection. The best strategy for DFU treatment is to inhibit MMP-9 without affecting MMP-8, which can reduce inflammation and increase arteriogenesis. Applying prolyl hydroxylase domain inhibitors with clinical potential can stabilize HIF and increase its activity to promote arteriogenesis. Mesenchymal stem cells produce growth hormones that drive arteriogenesis and reepithelialization.

TREATMENT

For treating diabetic ischemic neovascularization, the most crucial way is to control blood glucose levels. On this basis, various therapeutic methods, including gene
therapy and vaccine research, have been proposed, which have broad prospects. For example, Ad.trx1 gene therapy can stabilize the microenvironment in the myocardium, reduce oxidative stress and cell death, and induce neovascularization and maturation. This is a novel treatment that may improve disease progression and patient recovery. Injection of VEGF and HGF can promote neovascularization and exert anti-inflammatory and anti-fibrotic effects, but gene therapy is still controversial due to its insignificant effect and needs further study. Anti-angiogenesis antibodies can be generated by the intramuscular injection of the VEGF DNA vaccine; however, the technology is still immature, and the efficacy and long-term impact are not apparent. Hence, further clinical research is needed. Also, angiotensin-converting enzyme inhibitors can antagonize inflammation, increase the number of EPCs, and improve the mobilization ability in patients with diabetes. However, this treatment causes irritating cough, bilateral renal artery stenosis, and other adverse side effects. In addition, endothelial progenitor cell mobility promotes reendothelialization, repairs damaged ECs, promotes angiogenesis, and restores blood flow. It is believed that with further research, more treatments can be developed to benefit mankind (Figure 4).

CONCLUSION
The advantages and disadvantages of neovascularization to the body are based on different environments. For AS, MI, peripheral arterial disease, CCC, and DFU, neovascularization needs to be promoted to restore the perfusion of the ischemic area and reduce body damage. Neovascularization should be inhibited for diabetic retinopathy and tumor to reduce the risk of retinal stripping or tumor metastasis. Although the involvement of neovascularization in disease pathogenesis is still not specific, it has huge prospects for treating ischemia in diabetes.

REFERENCES
1 International Diabetes Federation. IDF diabetes atlas[EB/OL]. [DOI:10.1136/bmjdrce-2021-002122]

7 Howangyin KY, Silvestre JS. Diabetes mellitus and ischemic diseases: molecular mechanisms of vascular repair dysfunction. *Arterioscler Thromb Vasc Biol* 2014; 34: 1126-1135 [PMID: 24675660 DOI: 10.1161/ATVBAHA.114.303090]

41 Nusse R, Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169: 985-999 [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016]

52 Alvarez R, Mandal D, Chittiboina P. Canonical and Non-Canonical Roles of PFKFB3 in Brain Tumors. Cells 2021; 10 [PMID: 34831136 DOI: 10.3390/cells10112913]

72 Hammes HP. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. *Diabetologia* 2018; 61: 29-38 [PMID: 28942458 DOI: 10.1007/s00125-017-4435-8]

83 Shimamura M, Nakagami H, Sanada F, Morishita R. Progress of Gene Therapy in Cardiovascular Disease. *Hypertension* 2020; **76**: 1038-1044 [PMID: 32772646 DOI: 10.1161/HYPERTENSIONAHA.120.14478]

<table>
<thead>
<tr>
<th>#</th>
<th>Source URL</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>www.frontiersin.org</td>
<td>"Vascular endothelial cell specification in health and disease", Angiogenesis, 2021</td>
</tr>
<tr>
<td>3</td>
<td>pubmed.ncbi.nlm.nih.gov</td>
<td>"Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment", Angiogenesis, 2018</td>
</tr>
<tr>
<td>4</td>
<td>Junhui Liu, Weiping Hou, Tao Guan, Luyao Tang, Xuefei Zhu, Yi Li, Shihui Hou, Jun Zhang, Hua Chen, Yunjian Huang.</td>
<td>"Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment", Angiogenesis, 2018</td>
</tr>
<tr>
<td>6</td>
<td>academic.oup.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Domain</td>
<td>Internet</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7</td>
<td>atm.amergroups.com</td>
<td>Internet</td>
</tr>
<tr>
<td>8</td>
<td>link.springer.com</td>
<td>Internet</td>
</tr>
<tr>
<td>9</td>
<td>www.atsjournals.org</td>
<td>Internet</td>
</tr>
<tr>
<td>10</td>
<td>www.mdpi.com</td>
<td>Internet</td>
</tr>
</tbody>
</table>

- EXCLUDE QUOTES ON
- EXCLUDE BIBLIOGRAPHY ON
- EXCLUDE SOURCES < 12 WORDS
- EXCLUDE MATCHES < 12 WORDS