MINIREVIEWS
731 Percutaneous direct endoscopic pancreatic necrosectomy

ORIGINAL ARTICLE

Case Control Study
743 Factors associated with hypertension remission after gastrectomy for gastric cancer patients
Kang B, Liu XY, Cheng YX, Tao W, Peng D

Retrospective Cohort Study
754 3D laparoscopic-assisted vs open gastrectomy for carcinoma in the remnant stomach: A retrospective cohort study
Wu D, Song QY, Li XG, Xie TY, Lu YX, Zhang BL, Li S, Wang XX

Nomogram to predict permanent stoma in rectal cancer patients after sphincter-saving surgery
Kuo CY, Wei PL, Chen CC, Lin YK, Kuo LJ

Retrospective Study
778 Pre-colonoscopy special guidance and education on intestinal cleaning and examination in older adult patients with constipation

Model established based on blood markers predicts overall survival in patients after radical resection of types II and III adenocarcinoma of the esophagogastric junction
Wei ZJ, Qiao YT, Zhou BC, Rankine AN, Zhang LX, Su YZ, Xu AM, Han WX, Luo PQ

Over-the-scope-grasper: A new tool for pancreatic necrosectomy and beyond - first multicenter experience

Identifying survival protective factors for chronic dialysis patients with surgically confirmed acute mesenteric ischemia
Liau SK, Kuo G, Chen CY, Lu YA, Lin YJ, Lee CC, Hung CC, Tian YC, Hsu HH

Efficacy of staple line reinforcement by barbed suture for preventing anastomotic leakage in laparoscopic rectal cancer surgery
Ban B, Shang A, Shi J

Observational Study
833 Early detection of colorectal cancer based on circular DNA and common clinical detection indicators
Li J, Jiang T, Ren ZC, Wang ZL, Zhang PJ, Xiang GA
CASE REPORT

849 Recurrent small bowel obstruction secondary to jejunal diverticular enterolith: A case report
Lee C, Menezes G

855 Interventional radiology followed by endoscopic drainage for pancreatic fluid collections associated with high bleeding risk: Two case reports
Xu N, Li LS, Yue WY, Zhao DQ, Xiang JY, Zhang B, Wang PJ, Cheng YX, Linghu EQ, Chai NL

LETTER TO THE EDITOR

862 Sirolimus vs tacrolimus: Which one is the best therapeutic option for patients undergoing liver transplantation for hepatocellular carcinoma?
Ahmed F, Zakaria F, Enebong Nya G, Mouchli M

867 Statistical proof of Helicobacter pylori eradication in preventing metachronous gastric cancer after endoscopic resection in an East Asian population
Karbalaei M, Keikha M

874 Risk prediction of common bile duct stone recurrence based on new common bile duct morphological subtypes
Saito H, Tada S
Risk prediction of common bile duct stone recurrence based on new common bile duct morphological subtypes

Hirokazu Saito, Shuji Tada

Abstract

Stones in the common bile duct (CBD) are reported worldwide, and this condition is majorly managed through endoscopic retrograde cholangiopancreatography (ERCP). CBD stone recurrence is an important issue after endoscopic stone removal. Therefore, it is essential to identify its risk factors to determine the necessity of regular follow-up in patients who underwent endoscopic removal of CBD stones. The authors identified that the S and polyline morphological subtypes of CBD were associated with increased stone recurrence. New morphological subtypes of CBD presented by the authors can be important risk predictors of recurrence after endoscopic stone removal. Furthermore, the new morphological subtypes of CBD may predict the risk of residual CBD stones or technical difficulty in CBD stone removal. Further studies with a large sample size and longer follow-up durations are warranted to examine the usefulness of the newly identified morphological subtypes of CBD in predicting the outcomes of ERCP for CBD stone removal.

Key Words: Endoscopic retrograde cholangiopancreatography; Common bile duct stone; Stone removal; Recurrence; Common bile duct morphology; Risk prediction
Core Tip: It is important to identify the risk factors associated with the recurrence of common bile duct (CBD) stones after endoscopic treatment as it helps determine the necessity of regular follow-up in patients who underwent endoscopic CBD stone removal. CBD morphology can be an important predictor of stone recurrence after endoscopic stone removal. Further studies with a large sample size and a longer follow-up period are warranted to examine the efficacy of the new CBD morphological subtypes presented by the authors for predicting endoscopic retrograde cholangiopancreatography outcomes after CBD stone removal.

Citation: Saito H, Tada S. Risk prediction of common bile duct stone recurrence based on new common bile duct morphological subtypes. World J Gastrointest Surg 2022; 14(8): 874-876
DOI: https://dx.doi.org/10.4240/wjgs.v14.i8.874

TO THE EDITOR
We read with interest the retrospective cohort study by Ji et al. In their study, the authors presented that the morphologies of the common bile duct (CBD), especially the S and polyline types, were associated with increased recurrence of CBD stones. Identifying the risk factors for recurrence after endoscopic stone removal is important to determine the necessity of regular follow-up examination for patients who underwent endoscopic removal of CBD stones.

Several studies have reported the risk factors of CBD stone recurrence after endoscopic treatment. To the best of our knowledge, this is the first study to demonstrate that CBD morphology can be associated with CBD stone recurrence after endoscopic treatment. The new morphological subtypes of CBD presented in this study can be important predictors of the risk of CBD stone recurrence after endoscopic CBD stone removal.

Several aspects of this study need to be discussed. First, the recurrence of cholesterol CBD stones, which account for 10% of all CBD stones, was not evaluated in this study because CBD stones reported in this study were diagnosed using abdominal computed tomography. Furthermore, the follow-up protocol for evaluating stone recurrence was unclear. Second, CBD morphology was evaluated using a cholangiogram from an endoscopic nasobiliary drainage (ENBD) tube; however, evaluating CBD morphology using magnetic resonance cholangiopancreatography before endoscopic treatment may be a better option as the shape of the ENBD tube may affect the CBD morphology. Third, the new CBD morphological subtypes suggested by the authors may be useful for predicting residual stones after endoscopic removal as the CBD morphology may be responsible for the technical difficulties associated with endoscopic CBD stone removal. Finally, the authors’ new CBD morphological subtypes were not risk predictors of multiple stone recurrence in this study, which included a small sample size and a short follow-up period of 19 mo; however, the author’s new CBD morphological subtypes may have the potential to predict multiple stone recurrence. Therefore, further studies with a larger sample size and a longer follow-up period are warranted to investigate the usefulness of the new CBD morphological subtypes for predicting the outcomes of endoscopic retrograde cholangiopancreatography for endoscopic CBD stone removal.

FOOTNOTES
Author contributions: Saito H wrote the letter; Tada S revised the letter.
Conflict-of-interest statement: The authors declare that there are no conflicts of interest in relation to this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Country/Territory of origin: Japan
ORCID number: Hirokazu Saito 0000-0001-8729-9604; Shuji Tada 0000-0001-9087-5457.
S-Editor: Zhang H
L-Editor: A
Saito H et al. Common bile duct morphological subtypes

REFERENCES

