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Abstract
BACKGROUND 
Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer. The 
primary treatment strategies for HCC currently include liver transplantation and 
surgical resection. However, these methods often yield unsatisfactory outcomes, 
leading to a poor prognosis for many patients. This underscores the urgent need 
to identify and evaluate novel therapeutic targets that can improve the prognosis 
and survival rate of HCC patients.

AIM 
To construct a radiomics model that can accurately predict the EZH2 expression in 
HCC.

METHODS 
Gene expression, clinical parameters, HCC-related radiomics, and fibroblast-
related genes were acquired from public databases. A gene model was developed, 
and its clinical efficacy was assessed statistically. Drug sensitivity analysis was 
conducted with identified hub genes. Radiomics features were extracted and 
machine learning algorithms were employed to generate a radiomics model 
related to the hub genes. A nomogram was used to illustrate the prognostic 
significance of the computed Radscore and the hub genes in the context of HCC 
patient outcomes.

RESULTS 
EZH2 and NRAS were independent predictors for prognosis of HCC and were 
utilized to construct a predictive gene model. This model demonstrated robust 
performance in diagnosing HCC and predicted an unfavorable prognosis. A 
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negative correlation was observed between EZH2 expression and drug sensitivity. Elevated EZH2 expression was 
linked to poorer prognosis, and its diagnostic value in HCC surpassed that of the risk model. A radiomics model, 
developed using a logistic algorithm, also showed superior efficiency in predicting EZH2 expression. The Radscore 
was higher in the group with high EZH2 expression. A nomogram was constructed to visually demonstrate the 
significant roles of the radiomics model and EZH2 expression in predicting the overall survival of HCC patients.

CONCLUSION 
EZH2 plays significant roles in diagnosing HCC and therapeutic efficacy. A radiomics model, developed using a 
logistic algorithm, efficiently predicted EZH2 expression and exhibited strong correlation with HCC prognosis.

Key Words: Hepatocellular carcinoma; Fibroblast; EZH2; Radiomics model; Diagnosis; Prognosis

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study integrated radiomics molecular analysis based on computed tomography images. It aimed to identify 
important molecular biomarkers associated with hepatocellular carcinoma (HCC), particularly EZH2, and establish a 
radiomics model to predict EZH2 expression and its association with the prognosis of HCC patients. The results of this study 
demonstrated a close correlation between the radiomics model, EZH2 expression, and HCC patient prognosis, suggesting 
that a radiomics analysis can provide additional molecular information and offer a new approach to clinical treatment of 
HCC.

Citation: Yu TY, Zhan ZJ, Lin Q, Huang ZH. Computed tomography-based radiomics predicts the fibroblast-related gene EZH2 
expression level and survival of hepatocellular carcinoma. World J Clin Cases 2024; 12(24): 5568-5582
URL: https://www.wjgnet.com/2307-8960/full/v12/i24/5568.htm
DOI: https://dx.doi.org/10.12998/wjcc.v12.i24.5568

INTRODUCTION
Liver cancer, a highly heterogeneous and malignant tumor associated with the digestive system, is the fourth-leading 
cause of cancer-related fatalities worldwide[1,2]. Hepatocellular carcinoma (HCC), the most common subtype of liver 
cancer, accounts for over 75% of all cases[3]. In China, HCC is responsible for the second-highest cancer mortality rate. 
This is due to various factors including historical, demographic, and health conditions[4]. Major contributors to the 
development of HCC include chronic infection with hepatitis B virus or hepatitis C virus, excessive alcohol consumption, 
and liver fibrosis[5]. Presently, the major treatment strategies for HCC are liver transplantation and surgical resection, but 
these methods often yield unsatisfactory outcomes[6]. This underscores the urgent need to identify novel therapeutic 
targets that can improve the prognosis and overall survival (OS) rate of HCC patients.

Persistent liver damage and fibrosis are significant risk factors for HCC development[7]. Research indicates that most 
HCC patients had preexisting cirrhosis, with approximately one-third of these cirrhosis patients eventually developing 
HCC[8]. Moreover, the tumor microenvironment (TME) has been shown to facilitate tumor progression[9]. In HCC, the 
interactions within the TME, composed of cancer-associated fibroblasts (CAFs), immune cells, endothelial cells, and HCC 
cells, significantly increase tumor proliferation, invasion, metastasis, and chemoresistance[9]. Additionally, CAFs, the 
primary component in TME stroma, have previously been shown to promote the aggressiveness of various cancers, 
including HCC[10,11].

Genetics plays a crucial role in understanding the structure and function of organisms and has been widely applied in 
various medical fields, including clinical diagnosis, drug development, and disease prediction. In this study, an enhancer 
of the EZH2 subunit was identified as a key fibroblast-related gene (FRG) in HCC. Furthermore, EZH2 demonstrated 
significant diagnostic value in HCC. As a core component of the polycomb repressive complex 2, EZH2 is involved in the 
onset and progression of various cancers, including prostate, breast, melanoma, bladder, and endometrial[12]. In 
malignant tumors, EZH2 suppresses the expression of numerous tumor suppressor genes, thereby facilitating carcino-
genesis[13].

Radiomics, an emerging technological tool, transforms standard medical images into quantitative representations. By 
analyzing quantitative imaging features, radiomics has substantially lowered the cost of diagnosing diseases and the need 
for invasive surgeries[14]. Preoperative computed tomography (CT) radiomics is widely used for diagnosing, staging, 
and assessing the treatment efficacy in HCC, demonstrating robust evaluation and prediction capabilities[15].

In this study, FRGs were retrieved and used to develop a gene model associated with HCC prognosis through various 
bioinformatics analyses. The drug sensitivity analysis and molecular docking results highlighted the significant role of 
EZH2 in treating HCC patients. Subsequently, leveraging CT images, this study aimed to establish a radiomics model for 
predicting EZH2 expression levels, offering valuable insights for clinical HCC treatment.

https://www.wjgnet.com/2307-8960/full/v12/i24/5568.htm
https://dx.doi.org/10.12998/wjcc.v12.i24.5568
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MATERIALS AND METHODS
RNA-seq and CT imaging data collection
Figure 1 illustrates the research process undertaken in this study. RNA-seq data and clinicopathological information (age, 
sex, pathological stage, and grade) of HCC patients were retrieved from The Cancer Genome Atlas (TCGA) database 
(https://tcga-data.nci.nih.gov/tcga/). The samples without complete expression and clinical information in the TCGA-
HCC dataset were excluded. Subsequently, HCC patient CT image data was downloaded from The Cancer Imaging 
Archive (TCIA) database (http://www.cancerimagingarchive.net). The TCIA data was carefully filtered to exclude any 
data that did not overlap with the TCGA data as well as CT images from tumor excision patients and those with poor 
image pixels. Ultimately, this study included 339 HCC tumor samples, 50 normal samples, and 41 imaging datasets. 
Notably, all tumor samples received radiation and pharmaceutical therapy. Additionally, the GSE25097 dataset, 
comprising 249 normal and 268 HCC samples, was retrieved from the Gene Expression Omnibus database, using the 
GPL10687 platform.

Acquisition and enrichment analysis of differentially expressed FRG in HCC
The GeneCard database (https://www.genecards.org/) was used to screen for FRGs, using the keyword “Fibroblast.” 
Next, differentially expressed genes (DEGs) between normal and tumor tissues in the TCGA-HCC dataset were identified 
using the limma package in R language, with a threshold setting of | log2 (Fold change) | > 2.0 and P < 0.05. Finally, 
Venn diagram analysis was used to identify FRGs that are DEGs in HCC.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on 
the FRGs differentially expressed in HCC, using the org.Hs.eg.db and clusterProfiler packages in R software. GO 
describes the function of all gene products in various organisms and identifies characteristic biological features of high-
throughput genomes, including biological process, cellular component, and molecular function[16]. KEGG is a widely 
used database that stores information on genomes, biological pathways, diseases, and drugs.

Construction of a gene model
Firstly, least absolute shrinkage and selection operator regression analysis was performed on the differentially expressed 
FRGs using the glmnet package in R software to identify key genes associated with the OS of HCC patients from the 
TCGA dataset. Secondly, univariate and multivariate Cox regression analyses were conducted sequentially to identify 
genes significantly associated with HCC prognosis. Finally, based on the multivariate Cox regression analysis, an HCC 
prognostic gene model was established using the following formula: Risk score = gene exp1 × β1 + gene exp2 × β2 + ... + 
gene expn × βn, where “gene exp” represents the expression level of the gene, and β represents the corresponding 
coefficient of the multivariate Cox regression.

Evaluation and validation of the gene model
The receiver operating characteristic (ROC) curve analysis was performed on the TCGA and GSE25097 HCC datasets 
using the R package pROC. This was to assess the diagnostic efficacy of the gene model. Kaplan-Meier analysis of the risk 
score and OS in the TCGA data was conducted using the survival package and visualized using the survminer package in 
R software. Additionally, R software generated a forest plot to determine the relationship between the gene risk score and 
HCC prognosis across different clinical feature groups. Multivariate Cox regression analysis was employed to verify the 
independent prognostic value of the risk score.

Drug sensitivity analysis and molecular docking
The Cancer Therapeutics Response Portal database contains data on the sensitivity of different tumor cells to various 
chemotherapy drugs. The database was used to calculate the sensitivity of genes to different chemotherapy drugs with 
the help of the oncoprdict package in R software. Then, the crystal structures of these genes were obtained from the 
Research Collaboratory for Structural Bioinformatics database (https://www.rcsb). The binding efficiency of genes with 
crucial chemotherapy drugs was analyzed using the Autodock software (Version 4.2.6). A binding energy l ≤ -1.5 kcal/
mol indicates a good binding effect[17].

Extraction of radiomics features
The entire tumor region was manually delineated by two radiologists using 3D Slicer (Version 5.4.0) who also 
independently described the lesions without knowledge of the patient’s clinical details. The pyradiomics package in 
Python software was used for radiomics feature extraction and data normalization. A total of 837 radiomics features were 
acquired, including first-order features, shape, and texture.

The intraclass correlation coefficient was calculated using the R “irr” package to evaluate the consistency of the 
extracted radiomics features based on the region of interest outlined by the two radiologists. Intraclass correlation 
coefficient values ≥ 0.75 indicated good consistency, 0.51-0.74 indicated moderate consistency, and ≤ 0.50 indicated poor 
consistency[18].

Selection of radiomics features
The TCIA image data related to HCC were divided into two groups based on the median expression level of EZH2. 
Radiomics features related to EZH2 were selected using the XG Boost package in Python. Feature importance analysis 
was conducted using multiple machine learning algorithms to identify radiomics features closely associated with EZH2.

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://www.cancerimagingarchive.net
http://www.cancerimagingarchive.net
https://www.genecards.org/
https://www.genecards.org/
https://www.rcsb
https://www.rcsb
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Figure 1 Entire analytical process of the study. DEGs: Differentially expressed genes; HCC: Hepatocellular carcinoma; TCGA: The Cancer Genome Atlas; 
TCIA: The Cancer Imaging Archive.

Construction and evaluation of the radiomics model
Two radiomics models related to EZH2, specifically logistic regression and random forest models, were constructed using 
multiple machine learning algorithms. A comprehensive multimodel analysis was conducted to determine the radiomics 
model with superior performance in predicting EZH2. Subsequently, a restricted cubic spline analysis was executed on 
the Radscore and EZH2 using the rms package in R software to predict their nonlinear relationship. Ultimately, a 
nomogram was constructed to evaluate the correlation of EZH2 and Radscore and the prognosis of HCC patients.

Statistical analysis
Data analysis and visualization were performed using R (Version 4.2.2) and Python (Version 3.6.6). Quantitative data was 
expressed as mean ± standard deviation, median, or quartile. The Student’s t-test or Wilcoxon test was employed to 
analyze comparisons between groups. Categorical variables were represented as counts and percentages, and group 
comparisons were performed using the χ2 test. The Delong test was used to compare the differences in area under the 
curve (AUC) values. A P value of less than 0.05 was considered statistically significant.

RESULTS
Identification and enrichment analysis of differentially expressed FRGs
Initially, 144247 FRGs were extracted from the GeneCards database, but this was narrowed down to 666 FRGs based on a 
threshold score ≥ 5. A differential analysis of the HCC data revealed 8205 DEGs between HCC and normal tissues, which 
included 7366 upregulated genes and 839 downregulated genes (P < 0.05, Figure 2A). A total of 299 FRGs were identified 
to be differentially expressed in HCC (Figure 2B).

The biological processes that differentially expressed FRGs are a part of were identified by enrichment analysis in GO. 
The analysis revealed that these genes were primarily a part of various stimuli response pathways, such as chemicals, 
organic substances, and stress. Some were also involved in cell proliferation (Figure 2C). KEGG enrichment analysis 
revealed that the differentially expressed FRGs were primarily associated with pathways known to play a role in cancer 
pathogenesis and survival, such as PI3K-Akt signaling pathway, proteoglycans in cancer, focal adhesion, hepatitis B, 
HCC, and hepatitis C alcoholism (Figure 2D). These pathways are closely related to the onset and development of 
tumors.

Construction of a gene model
To construct a gene model associated with HCC prognosis, a sequence of analyses was conducted, including least 
absolute shrinkage and selection operator regression analysis as well as univariate and multivariate Cox regression. 
Among the 299 differentially expressed FRGs, 7 genes were significantly associated with the OS of HCC patients 
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Figure 2 Identification and enrichment analysis of differentially expressed fibroblast-related genes. A: Volcano plot was used to visualize the 
results of differential analysis between normal and tumor tissues in hepatocellular carcinoma (HCC); B: Venn diagram of fibroblast-related genes (FRGs) and HCC-
differentially expressed genes (DEGs); C: Gene ontology (GO) enrichment analyses of differentially expressed FRGs; D: Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses of differentially expressed FRGs.

(Figure 3). Furthermore, EZH2 and NRAS were found to independently predict the prognosis of HCC patients (P < 0.05, 
Table 1). The gene model was constructed based on the outcomes of the multivariate Cox regression analysis using the 
formula: Risk score = 0.083 × EZH2 + 0.03 × NRAS.

Evaluation and validation of the gene model
The differential expression analysis of the risk score between the HCC and normal groups was conducted. Notably, 
significantly higher risk scores were observed in the HCC group in the TCGA and GSE25097 HCC datasets (P < 0.05, 
Figure 4A and B). Additionally, the risk score as a continuous and categorical variable was found to be independent of 
age, sex, grade, and pathological stage (S1 + S2; stage I and stage II; S3 + S4; stage III and stage IV) (P > 0.05, Table 2 and 
Figure 4C-F). Subsequently, ROC analysis was performed to explore the diagnostic efficiency of the gene model. In the 
TCGA-HCC and GSE25097 datasets, the gene model efficiently distinguished HCC from normal samples, with an AUC 
value of 0.94 and 0.95, respectively (P < 0.05) (Figure 4G and H). These results indicated that the risk model was highly 
effective in diagnosing HCC.

Prognostic value of the gene model
A Kaplan-Meier analysis was conducted to investigate the association of the risk score with HCC prognosis. As depicted 
in Figure 5A, a higher risk score indicates a poor prognosis for HCC patients. Additionally, among HCC patients aged ≤ 
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Table 1 Correlation between key genes and prognosis of hepatocellular carcinoma patients

Univariate analysis Multivariate analysis
Characteristic Total, n

Hazard ratio (95%CI)     P value Hazard ratio (95%CI) P value
ATIC 339 1.042 (1.027-1.058)     < 0.001 1.011 (0.989-1.033) 0.348

EZH2 339 1.196 (1.128-1.269)     < 0.001 1.087 (1.006-1.174) 0.035

HDGF 339 1.010 (1.006-1.014)     < 0.001 1.004 (0.999-1.026) 0.104

HEXB 339 1.027 (1.014-1.039)     < 0.001 1.013 (0.999-1.026) 0.060

HSPA4 339 1.040 (1.023-1.058)     < 0.001 1.017 (0.996-1.039) 0.117

NRAS 339 1.066 (1.042-1.091)     < 0.001 1.031 (1.003-1.059) 0.032

PPT1 339 1.030 (1.019-1.041)     < 0.001 1.004 (0.988-1.020) 0.665

CI: Confidence interval.

Table 2 Relationship between risk score and clinicopathological parameters in hepatocellular carcinoma patients

Variables Total, n = 339 Risk score-low, n = 170 Risk score-high, n = 169 P value

Age 61.000 (51.000, 68.000) 62.000 (52.000, 69.000) 59.000 (51.000, 67.000) 0.083

Sex 0.310

Female 107 (31.6%) 58 (34.1%) 49 (29.0%)

Male 232 (68.4%) 112 (65.9%) 112 (71.0%)

Stage 0.876

S1+S2 252 (74.3%) 127 (74.7%) 125 (74.0%)

S3+S4 87 (25.7%) 43 (25.3%) 44 (26.0%)

Grade 0.457

G1+G2 212 (62.5%) 103 (60.6%) 109 (64.5%)

G3+G4 127 (35.5%) 67 (39.4%) 60 (35.5%)

S1 + S2: Stage I and stage II; S3 + S4: Stage III and stage IV.

Figure 3 Selection of hub genes related to hepatocellular carcinoma prognosis. A: Least absolute shrinkage and selection operator (LASSO) 
correlation coefficient change curve; B: LASSO cross-validation curve.
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Figure 4 Evaluation and validation of risk model. A and B: Based on the Cancer Genome Atlas (TCGA)-Hepatocellular carcinoma (HCC) and GSE25097 
datasets, the risk score was higher in the HCC samples; C: Relationship of risk score with age; D: Relationship of risk score with sex; E: Relationship of risk score 
with grade; F: Relationship of risk score with pathological stage; G: Receiver operating characteristic (ROC) curve of the risk score in the TCGA-HCC; H: ROC curve 
of the risk score in the GSE25097 datasets for distinguishing HCC and normal samples. S1 + S2: Stage I and stage II; S3 + S4: Stage III and stage IV. AUC: Area 
under the curve; CI: Confidence interval.

55 [hazard ratio (HR) = 4.46 (2.32-8.58), P < 0.05] and > 55 [HR = 2.55 (1.60-4.07), P < 0.05], female [HR = 2.97 (1.25-7.08), P 
< 0.05] and male [HR = 3.03 (1.89-4.85), P < 0.05], G1 + G2 [HR = 2.13 (1.36-3.35), P < 0.05] and G3 + G4 [HR = 4.15 (2.13-
8.09), P < 0.05], and S1 + S2 [HR = 3.01 (1.94-4.66), P < 0.05] and S3 + S4 [HR = 3.62 (1.63-8.05), P < 0.05], high-risk scores 
were associated with poorer prognosis (Figure 5B). These results indicated that higher risk scores were significantly 
related to unfavorable prognosis regardless of age, sex, grade, and stage. Furthermore, when age, sex, grade, pathological 
stage, and risk score were analyzed using a multivariate Cox regression analysis, the results showed that the risk score 
independently predicted poor prognosis in HCC patients (P < 0.05) (Table 3).

Drug sensitivity analysis and molecular docking
The goal was to investigate the therapeutic significance of specific genes within the gene model and identify potential 
therapeutic targets. To achieve this, the correlation between the expression levels of two genes, EZH2 and NRAS, and the 
sensitivity of commonly used chemotherapy and targeted drugs were examined. Leveraging data from the Cancer 
Therapeutics Response Portal database, it was found that EZH2 expression was significantly negatively correlated with 
drug sensitivity (Figure 6A). Subsequently, four drugs, belinostat, BRD-K34222889, ciclopirox, and cytarabine 
hydrochloride, were selected for molecular docking analysis. Remarkably, EZH2 exhibited favorable interactions with 
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Table 3 Correlation between risk scores in clinical features and hepatocellular carcinoma prognosis

Multivariate analysis
Characteristic Total, n

Hazard ratio (95%CI) P value

Risk score 339 5.339 (3.139-9.078) < 0.001

Age 339 1.018 (1.002-1.034) 0.028

Sex 339 1.010 (1.006-1.014) 0.172

Grade 339 1.113 (0.744-1.664) 0.603

Stage 339 0.888 (0.579-1.363) 0.588

CI: Confidence interval.

Figure 5 Prognostic model of the risk model. A: Kaplan-Meier curve showed that a higher risk score was associated with poor prognosis; B: Correlation 
between risk scores in clinical features and hepatocellular carcinoma prognosis. S1 + S2: Stage I and stage II; S3 + S4: Stage III and stage IV. CI: Confidence 
interval; H: High; HR: Hazard ratio; L: Low; OS: Overall survival.

these drugs (Table 4). The most promising docking outcomes were visualized using the PyMOL software (P < 0.05, 
Figure 6B). These findings underscored the potential of EZH2 as a therapeutic target for HCC, prompting further invest-
igation of its value in HCC treatment.

Clinical value of EZH2 in HCC
The EZH2 protein levels were significantly higher in the HCC group compared to the normal group (P < 0.05, Figure 7A). 
Interestingly, patients with EZH2 overexpression had significantly shorter survival (P < 0.05, Figure 7B). Furthermore, 
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Table 4 Binding energy between EZH2 and four chemotherapy drugs in molecular docking

Medicine Hub targets (PDB ID) Binding energy in kcal/mol

Belinostat EZH2 (5h14) -4.58

BRD-K34222889 EZH2 (5h14) -4.23

Ciclopirox EZH2 (5h14) -4.07

Cytarabine hydrochloride EZH2 (5h14) -1.75

PDB ID: Protein database ID.

Figure 6 Drug sensitivity analysis and molecular docking. A: Correlation of EZH2 and NRAS with chemotherapy and cancer drugs; B: Molecular docking 
between EZH2 and belinostat. FDR: False discovery rate.

using the ROC analysis with AUC values, it was shown that EZH2 outperformed NRAS and the risk score in predicting 
HCC, achieving the highest AUC value of 0.978 (P < 0.05, Figure 7C and Table 5). The clinical efficacy of EZH2, NRAS, 
and the risk score was compared using the decision curve analysis (Figure 7D). These results confirmed the significance 
of EZH2 in HCC and its potential as a diagnostic marker.

Screening of radiomics features related to EZH2 and radiomics model construction
The XGBoost-RFE algorithm was used to screen the radiomics features related to EZH2. The six features included 
original_glrlm_LongRunLowGrayLevelEmphasis, original_glrlm-SizeZoneNonUniformityNormalized, wavelet-
LHL_glcm-DifferenceAverage, wavelet-LHL_glcm-Imc2, wavelet-LHL_firstorder- Maximum, and wavelet-LHL_glrlm-
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Table 5 Difference in the area under the curves of EZH2, NRAS, and the risk score in diagnosing hepatocellular carcinoma

Name EZH2 NRAS Risk score
EZH2 / < 0.05 < 0.05

NRAS < 0.05 / < 0.05

Risk score < 0.05 < 0.05 /

/: Not applicable.

Figure 7 Clinical value of EZH2 in hepatocellular carcinoma. A: Expression of EZH2 in hepatocellular carcinoma (HCC) and normal groups; B: High (H) 
levels of EZH2 were associated with poor HCC prognosis; C: Receiver operating characteristic curve of EZH2, NARS, and risk score (RS) in diagnosing HCC; D: 
Decision curve analysis of EZH2, NRAS, and RS in diagnosing HCC. AUC: Area under the curve; CI: Confidence interval; HR: Hazard ratio; L: Low.

LongRunLowGrayLevelEmphasis. Both logistic and random forest algorithms were used to assess feature importance. 
Notably, original_glrlm- LongRunLowGrayLevelEmphasis and wavelet-LHL_glrlm-LongRunLowGrayLevelEmphasis 
were closely related to EZH2 (Figure 8). Based on these findings, we selected original_glrlm- LongRunLowGrayLevelEm-
phasis and wavelet-LHL_glrlm-LongRunLowGrayLevelEmphasis to construct the EZH2 prediction-related radiomics 
model. These steps ensured a comprehensive understanding of the EZH2 radiomics signature and its potential implic-
ations for HCC prediction.

Evaluation of the radiomics model
A comprehensive multimodel analysis was conducted to construct the optimal radiomics model for predicting EZH2. The 
results revealed that the model built using the logistic algorithm not only exhibited better prediction capabilities but also 
demonstrated greater stability (Table 6 and Figure 9). Consequently, the Radscore was calculated based on the logistic 
algorithm as follows: Radscore = 0.095 × original_glrlm- LongRunLowGrayLevelEmphasis + 0.671 × wavelet-LHL_glrlm-
LongRunLowGrayLevelEmphasis. This approach ensured a robust and accurate prediction of EZH2 status using 
radiomics features.
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Table 6 Results of predicting EZH2 in the training set and validation set based on the logistic and random forest classifier algorithm

Classification model AUC Accuracy Sensitivity Specificity F1 score

Logistic 0.792 0.667 0.800 0.833 0.833 Validation

Random Forest 0.812 0.750 1.000 0.750 0.833 

Logistic 0.787 0.750 0.679 0.881 0.744 Training

Random Forest 1.000 0.938 1.000 1.000 1.000 

AUC: Area under the curve.

Figure 8 Screening of radiomics features related to EZH2 and radiomics model construction. A: Feature importance based on the logistic 
algorithm; B: Feature importance based on the random forest algorithm.

Clinical value of the logistic algorithm-radiomics model
The restricted cubic spline revealed a linear relationship between EZH2 and Radscore (Figure 10A). Specifically, the 
Radscore was higher in the EZH2 high expression group than in the EZH2 low expression group (Figure 10B). Moreover, 
the Radscore and EZH2 played a crucial role in predicting the OS of HCC patients (Figure 10C). These findings 
emphasized the significance of EZH2 and its association with patient outcomes in HCC.

DISCUSSION
This study combined radiomics and molecular analyses based on CT images to identify important molecular biomarkers 
associated with HCC, particularly EZH2. The study also aimed to establish a radiomics model that can predict EZH2 
expression and determine its association with HCC prognosis. Consequently, a significant correlation was observed 
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Figure 9 Results of predicting EZH2 in the training set and validation set based on the logistic and random forest classifier algorithm. A: 
Receiver operating characteristic (ROC) curve in the training sets based on the logistic and random forest classifier algorithm; B: ROC curve in the validation sets 
based on the logistic and random forest classifier algorithm; C: Precision (PR) curve in the training sets based on the logistic and random forest classifier algorithm; 
D: PR curve in the validation sets based on the logistic and random forest classifier algorithm. AP: Average precision; AUC: Area under the curve.

between the radiomics model, EZH2 expression, and HCC patient prognosis. This finding suggests that radiomics 
analysis can provide additional molecular information and offer a new approach to the clinical treatment of HCC.

The incidence rate of HCC is increasing globally, and it is generally associated with poor prognosis. Increasing 
evidence suggests that crosstalk between tumor cells, including HCC, and stromal cells promotes tumor progression[19]. 
Additionally, CAFs are the predominant stromal cells in the TME of HCC[20]. Liver cirrhosis with a significant number of 
activated fibroblasts typically predates HCC[21]. Venn diagram analysis identified 299 differentially expressed FRGs in 
HCC, which are primarily involved in biological processes related to stimuli response pathways including chemical, 
organic substance, and stress. These pathways are known to participate in tumor development. Through multiple 
analyses, we established a risk model related to the prognosis of HCC patients composed of two genes, EZH2 and NRAS.

Drug sensitivity analysis revealed a significant negative correlation between EZH2 and select chemotherapeutic and 
targeted drugs, while NRAS showed no significant correlation. Molecular docking results showed that the EZH2 (5h14) 
protein exhibited the strongest binding affinity with the small molecule ligand, belinostat, with a binding energy of -4.58 
kcal/mol. In studies with human acute early granulocytic leukemia cells, belinostat independently depleted the histone 
EZH2, leading to the modification of H3 and H4 histones and ultimately achieving therapeutic effects[22]. This suggests 
that EZH2 may be a potential therapeutic target for HCC, and belinostat may exert its therapeutic effect by reducing 
EZH2 expression levels in HCC.

Further analysis revealed a significant association between EZH2 expression and poor prognosis in HCC patients. 
EZH2 also displayed significant HCC diagnostic capabilities. Therefore, EZH2 was selected as the primary gene for 
subsequent analysis. Previous studies have shown that EZH2 plays an important role in cell lineage determination and 
related signaling pathways, serving as a major regulator of DNA damage repair, autophagy, cell cycle progression, and 
cell senescence suppression[23]. The oncogenic mechanism of EZH2 is primarily by suppressing the expression of tumor 
suppressor genes in cancer cells[24].

In gliomas, EZH2 can suppress the differentiation of astrocytes by inhibiting the expression of BMPR1B, resulting in 
increased tumorigenicity in gliomas[25]. EZH2 also promotes cancer metastasis by silencing E-cadherin and inducing 
epithelial-mesenchymal transition[26]. In scar research, RUNX3 mediates the proliferation of fibroblasts by deacetylating 
EZH2 through SIRT1[27]. In pulmonary fibrosis research, EZH2 negatively regulates autophagy in the fibrosis through 
the lncAPE-ELAVL1 complex[28]. Additionally, CAFs can promote angiogenesis through the VEGF-mediated EZH2 
pathway, and overexpression of EZH2 is strongly associated with tumor invasion and reduced survival in liver cancer 
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Figure 10  Clinical value of the radiomics model. A: Linear association of EZH2 and radiomics model; B: Higher Radscore in the high EZH2 expression 
group; C: Value of the rad score and EZH2 in predicting hepatocellular carcinoma prognosis.

patients[29-31]. In conclusion, EZH2 is not only important for fibroblasts but also plays a significant role in tumor 
initiation and progression. This is consistent with the results of this study, which found a significant correlation between 
high EZH2 expression and poor prognosis in HCC patients.

Radiomics is typically used for diagnosis and postoperative treatment efficacy assessment in HCC[14]. Using the data 
from preoperative liver-enhanced CT, Feng et al[32] constructed a radiomics model to predict the macro trabecular-
massive subtype of HCC. Additionally, Xia et al[33] were able to predict microvascular invasion in HCC using extracted 
radiomics features from the preoperative registration or subtraction CT images. This study innovatively linked the 
radiomics features with EZH2 expression to use EZH2 expression to predict the OS of HCC patients from CT image data. 
A radiomics model related to EZH2 expression was constructed, and the radiomics features included original_glrlm-
LongRunLowGrayLevelEmphasis and wavelet-LHL_glrlm-LongRunLowGrayLevelEmphasis. Gray-Level Run-Length 
Matrix quantifies gray-level runs, defined as consecutive pixels with the same gray level value[34]. LongRunLowGray-
LevelEmphasis is one of the 16 features of Gray-Level Run-Length Matrix, which is a measure of image texture, 
specifically the roughness. In tendinopathy imaging studies, GLLM-LongRunLowGrayLevelEmphasis can determine 
tissue changes longitudinally[35]. The higher the value, the rougher the texture. Aside from analyzing the distribution of 
the gray level of an image, it can also extract representative texture features[31]. In this study, the Radscore was higher in 
the EZH2 high expression group, and the radiomics model was efficient in predicting EZH2 in HCC. The nomogram 
demonstrated the importance of the Radscore and EZH2 in predicting the OS of HCC patients. Thus, the radiomics model 
infers an association with EZH2 and correlates with the prognosis of HCC patients.

This study leverages advanced imaging and bioinformatics tools to bridge the gap between macroscopic imaging 
features and microscopic genetic alterations. However, the radiomics and genomics data were obtained from public 
databases. Additionally, the scarcity of information on the CT images of HCC patients in the TCIA database made it 
impossible to divide the data into training and validation sets. Lastly, the analytical methods employed in the study 
primarily consisted of bioinformatics and statistics, lacking relevant experimental validation.

CONCLUSION
In conclusion, the gene model developed in this study, specifically related to fibroblasts in HCC, exhibited a strong 
association with HCC prognosis. Furthermore, the study identified EZH2 as a potential therapeutic target linked to the 
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prognosis of HCC patients. Additionally, a radiomics model associated with EZH2 can predict EZH2 expression using CT 
features, which contributes to the diagnosis and treatment of HCC patients. By combining radiomics with molecular 
profiling in HCC, this study opens up new avenues for personalized and more effective treatment strategies.
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