

Supplementary Figure 1 The funnel plot of the included 41 case-control and cross-sectional studies for the analysis of relationship between *Hp* infection and cholelithiasis risk. *Hp*: *Helicobacter pylori*

Study	Odds Ratio	OR	95%-CI	P-value	Tau2	Tau	12
Omitting 2024-Sermet	I	1.54	[1.08; 2.19]	0.02	0.7915	0.8897	65%
Omitting 2023–Azimirad		1.49	[1.05; 2.10]	0.02	0.7598	0.8717	71%
Omitting 2022-Hashimoto		1.46	[1.04; 2.06]	0.03	0.7372	0.8586	70%
Omitting 2021-Kucuk		1.54	[1.09; 2.19]	0.02	0.7773	0.8817	71%
Omitting 2020-Zhang		1.54	[1.08; 2.19]	0.02	0.7913	0.8896	71%
Omitting 2019-Ari		1.53	[1.08; 2.17]	0.02	0.7718	0.8785	71%
Omitting 2019-Cherif		1.43	[1.02; 2.01]	0.04	0.6948	0.8336	68%
Omitting 2019-Kerawala		1.56	[1.10; 2.20]	0.01	0.7453	0.8633	71%
Omitting 2018-Fatemi		1.50	[1.06; 2.13]	0.02	0.7866	0.8869	71%
Omitting 2018–Xu	+	1.54	[1.08; 2.20]	0.02	0.7984	0.8935	71%
Omitting 2016-Choi		1.49	[1.05; 2.13]	0.03	0.8005	0.8947	70%
Omitting 2016-Dar		1.41	[1.02; 1.93]	0.04	0.6101	0.7811	71%
Omitting 2016-Patnayak		1.54	[1.09; 2.18]	0.01	0.7651	0.8747	71%
Omitting 2016-Tajeddin		1.54	[1.09; 2.17]	0.01	0.7542	0.8685	71%
Omitting 2015-Guraya		1.44	[1.02; 2.01]	0.04	0.6981	0.8356	67%
Omitting 2015-Zhang		1.53	[1.07; 2.18]	0.02	0.8048	0.8971	71%
Omitting 2014–Murphy		1.48	[1.05; 2.09]	0.03	0.7809	0.8837	71%
Omitting 2014-Takahashi		1.51	[1.05; 2.16]	0.02	0.8096	0.8998	59%
Omitting 2013-Zhou		1.53	[1.07; 2.18]	0.02	0.7980	0.8933	71%
Omitting 2012-Boonyanugomol		1.57	[1.11; 2.21]	< 0.01	0.7262	0.8522	70%
Omitting 2012-Jahani Sherafat		1.54	[1.09; 2.17]	0.01	0.7542	0.8685	71%
Omitting 2011-Yakoob		1.41	[1.02; 1.94]	0.04	0.6170	0.7855	71%
Omitting 2010-Bostanoglu		1.50	[1.07; 2.11]	0.02	0.7508	0.8665	70%
Omitting 2010-Popovie		1.48	[1.05; 2.10]	0.03	0.7880	0.8877	71%
Omitting 2009–Griniatsos		1.52	[1.07; 2.16]	0.02	0.7791	0.8827	71%
Omitting 2009-Yucebilgili		1.60	[1.18; 2.16]	< 0.01	0.5011	0.7079	68%
Omitting 2007-Misra		1.45	[1.03; 2.03]	0.03	0.7230	0.8503	69%
Omitting 2005-Abayli		1.44	[1.03; 2.02]	0.03	0.7126	0.8441	71%
Omitting 2005-Kobayashi		1.51	[1.06; 2.15]	0.02	0.7932	0.8906	71%
Omitting 2004-Farshad		1.44	[1.03; 2.00]	0.03	0.6842	0.8271	71%
Omitting 2003-Chen		1.53	[1.08; 2.18]	0.02	0.7910	0.8894	71%
Omitting 2003-Silva		1.46	[1.04; 2.07]	0.03	0.7480	0.8649	70%
Omitting 2002-Bulajic(a)		1.52	[1.07; 2.17]	0.02	0.7940	0.8911	71%
Omitting 2002-Bulajic(b)		1.47	[1.04; 2.07]	0.03	0.7543	0.8685	70%
Omitting 2002-Fukuda		1.51	[1.07; 2.13]	0.02	0.7643	0.8743	71%
Omitting 2001-Harada		1.50	[1.06; 2.11]	0.02	0.7579	0.8706	71%
Omitting 2000–Myung		1.52	[1.07; 2.16]	0.02	0.7805	0.8834	71%
Omitting 1999-Roe		1.55	[1.09; 2.19]	0.01	0.7598	0.8716	71%
Omitting 1998-Figura		1.53	[1.07; 2.18]	0.02	0.7991	0.8939	71%
Omitting 1993-Kochhar		1.55	[1.10; 2.18]	0.01	0.7316	0.8553	71%
Omitting 1991-Kellosalo		1.53	[1.08; 2.18]	0.02	0.7898	0.8887	71%
	:		-				
Random effects model		1.50	[1.07; 2.11]	0.02	0.7508	0.8665	70%
0.5	1 2						

Supplementary Figure 2 The results of sensitivity analysis by omitting one of the included case-control and cross-sectional studies

Supplementary Table 1 MOOSE Checklist

Criteria	Brief description of how the criteria were handled in the meta-analysis
Reporting of background she	ould include
Problem definition	Helicobacter pylori (Hp) infection in the biliary system has been reported in
	several studies, but the relationship between Hp and cholelithiasis remains
	controversial. Given their high prevalence, understanding the association
	between <i>Hp</i> infection and cholelithiasis is crucial for effective management
	of both conditions.
Hypothesis statement	Hp infection is associated with an increased risk of developing
	cholelithiasis.
Description of study	Cholelithiasis
outcomes	
Type of exposure or	<i>Hp</i> tested positive
intervention used	
Type of study designs used	The studies included were either case-control, cohort or cross-sectional in
	design.
Study population	No limitations were imposed.
Reporting of search strategy	should include
Qualifications of searchers	Each step was conducted by 2 investigators independently.
Search strategy, including	We searched up to May 10, 2024, with the search strategy of "((Helicobacter
time period included in the	pylori) OR (H. pylori) OR (HP) OR (Helicobacter) OR (Helicobacter
synthesis and keywords	species) OR (Helicobacter spp.) OR (Helicobacter genus) OR (Helicobacter
	pylori infection) OR (Helicobacter infection) OR (pylori) OR (enterohepatic
	Helicobacter spp.) OR campylobacter OR (campylobacter infection) OR
	campylobacteriosis OR (Campylobacter pylori* OR Campylobacter pylori
	subsp. Pylori) OR (campylobacter spp)) AND (cholelithiasis or
	cholecystolithiasis or hepatolithiasis OR choledocholithiasis OR gallstone*
	OR gall*stone* OR (gallbladder AND stone*) OR (gallbladder AND
	cholelith*) OR (gallbladder AND lithiasis) OR bilestone* OR (bile AND

	stone*) OR (bile AND lithiasis) OR (bile AND cholelith*) OR (biliary AND
	calculus) OR (biliary AND stone*) OR (biliary AND cholelith*) OR (biliary
	AND lithiasis))".
Effort to include all available	We searched 4 major databases and applied no restriction other than the
studies, including contact	criteria mentioned in the Material and Methods section.
with authors	
Databases and registries	PubMed, Embase, Web of Science, and Cochrane Library.
searched	
Search software used, name	We did not utilize any software for searching. EndNote was employed to
and version, including	screen retrieved citations and eliminate any redundancies.
special features	
Use of hand searching	We manually searched relevant studies for additional references.
List of citations located and	The detailed search process is shown in Figure 2. The citation list could be
those excluded, including	provided if necessary.
justifications	
Method of addressing	Non-English studies were excluded.
articles published in	
languages other than	
English	
Method of handling	The studies unable to get detailed data and unpublished papers were left
abstracts and unpublished	out.
studies	
Description of any contact	None.
with authors	
Reporting of methods should	1 include
Description of relevance or	The Material and Methods section defined detailed inclusion and exclusion
appropriateness of studies	criteria.
assembled for assessing the	
hypothesis to be tested	

Rationale for the selection	The information was extracted including publication year, first author,
and coding of data	region, types of cholelithiasis, sample sizes, sample sources and detection
	methods of Hp , and the Hp status of each group.
Documentation of how data	The decisions were made independently by 2 investigators. Any
were classified and coded	disagreement would be settled by a third investigator.
Assessment of confounding	It is in strict accordance with the Material and Methods section.
Assessment of study quality,	The methodologic index for non-randomized studies (MINORS) was used
including blinding of quality	to assess the quality of included studies.
assessors; stratification or	
regression on possible	
predictors of study results	
Assessment of heterogeneity	The heterogeneity was assessed by I ² .
Description of statistical	The details of statistical analysis were described in the Material and
methods in sufficient detail	Methods section.
to be replicated	
Provision of appropriate	A flow chart, a pie chart, forest plots, a funnel plot, and tables were used
tables and graphics	in our article.
Reporting of results should i	nclude
Graph summarizing	The pooled results were shown by forest plots.
individual study estimates	
and overall estimate	
Table giving descriptive	Table 4 revealed the characteristics of included studies.
information for each study	
included	
Results of sensitivity testing	Subgroup analyses were conducted according to regions.
Indication of statistical	The summarized odds ratios (OR) and hazard ratios (HR) were presented
uncertainty of findings	with a 95% confidence interval (CI) and we also performed the calculation
	of I ² , and sensitivity analyses.
Reporting of discussion shou	ıld include

Quantitative assessment of	The funnel plot and Peters' test were used to evaluate the publication bias.
bias	
Justification for exclusion	We applied the exclusion criteria mentioned in the Material and Methods
	section.
Assessment of quality of	The MINORS points of included studies were in the supplemental tables
included studies	and the mean points were reported.
Reporting of conclusions sho	ould include
Consideration of alternative	We provided existing evidence of the underlying mechanisms of Hp-
explanations for observed	related cholelithiasis, the probable explanation of different results in
results	various studies, and the possible source of heterogeneity.
Generalization of the	The pooled results indicated the <i>Hp</i> infection is positively associated with
conclusions	cholelithiasis especially in specific groups.
Guidelines for future	Further studies are required to confirm the relationship between Hp
research	infection and cholelithiasis as well as the mechanism behind this.
Disclosure of funding source	The funding source is presented in the manuscript.

		NO. c	of	NO.	of	non-	Cholelithiasis	Cholelithiasis	Non-cholelithiasis	Non-	MINORS
Year	First author	cholelithiasis		cholelith	niasis		+	-	+	cholelithiasis -	
2024	Loosen ^[1]	2394		34669			920	1474	10727	23942	18
2024	Sermet ^[2]	8753		5565			4599	4154	3052	2513	18
2023	Azimirad ^[3]	9		6			4	5	1	5	18
2023	Cen ^[4]	60		1132			34	26	492	640	16
2022	Higashizono ^[5]	23843		588087			1513	22330	28545	559542	14
2022	Hashimoto ^[6]	14		47			6	8	6	41	18
2021	Kucuk ^[7]	131		82			41	90	31	51	20
2020	Zhang ^[8]	935		935			428	507	453	482	17
2019	Kerawala ^[9]	45		45			34	11	39	6	17
2019	Cherif ^[10]	48		41			35	13	13	28	20
2019	Ari ^[11]	27		33			3	24	5	28	16
2018	Xu ^[12]	995		16976			432	563	7371	9605	18
2018	Fatemi ^[13]	52		25			46	6	20	5	17
2016	Tajeddin ^[14]	74		28			2	72	2	26	17

Supplementary Table 2 The detailed data of included studies for risk analysis

2016	Patnayak ^[15]	40	5	8	32	2	3	17
2016	Dar ^[16]	50	25	20	30	0	25	14
2016	Choi ^[17]	39	607	25	14	282	325	14
2015	Zhang ^[18]	882	9134	323	559	3087	6047	18
2015	Guraya ^[19]	95	30	75	20	12	18	16
2014	Takahashi ^[20]	694	14857	273	421	4220	10637	18
2014	Murphy ^[21]	10	214	10	0	188	26	18
2013	Zhou ^[22]	267	59	55	212	12	47	20
2012	Jahani Sherafat ^[23]	74	28	2	72	2	26	18
2012	Boonyanugomol ^[24]	53	103	22	31	62	41	14
2011	Yakoob ^[25]	89	49	21	68	0	49	16
2010	Popovié ^[26]	3	204	3	0	139	65	18
2010	Bostanoglu ^[27]	47	3	0	47	0	3	14
2009	Yucebilgili ^[28]	41	27	2	39	13	14	15
2009	Griniatsos ^[29]	89	42	4	85	2	40	20
2007	Misra ^[30]	116	45	45	71	5	40	14
2005	Kobayashi ^[31]	30	27	17	13	14	13	14

2005	Abayli ^[32]	77	20	18	59	0	20	12
2004	Farshad ^[33]	33	40	6	27	0	40	12
2003	Silva ^[34]	46	18	18	28	2	16	16
2003	Chen ^[35]	70	52	22	48	17	35	14
2002	Fukuda ^[36]	15	23	1	14	1	22	18
2002	Bulajic(b) ^[37]	65	7	35	30	1	6	17
2002	Bulajic(a) ^[38]	63	26	37	26	15	11	16
2001	Harada ^[39]	53	16	1	52	0	16	14
2000	Myung ^[40]	30	13	26	4	11	2	14
1999	Roe ^[41]	11	21	3	8	9	12	14
1998	Figura ^[42]	112	112	92	20	90	22	17
1993	Kochhar ^[43]	3	15	0	3	8	7	17
1991	Kellosalo ^[44]	47	41	26	21	23	18	18

+: *Helicobacter pylori* positive; -: *Helicobacter pylori* negative. MINORS: Methodological index for non-randomized studies.

Year	First author	Phenotype	Sample	Method for <i>Hp</i>	NO. of Sample	Hp +	Hp -	MINORS
		Choledocholithiasis	Bile	PCR	10	1	9	
2001 Harada ^[39]		Cholecystolithiasis	Bile/ biliary epithelium	PCR	23	0	23	14
2005 Kobayashi ^[31]		Cholecystolithiasis	Bile	PCR	26	14	12	11
		Choledochocystolithiasis	Bile	PCR	4	3	1	14
2010	L oo [45] a	Pigmented	gallstones	PCR	12	2	10	10
2010 Lee [3] a		Cholesterol	gallstones	PCR	10	0	10	10
2013 Zhou ^[22]		Cholesterol	Gallbladder	PCR	82	14	68	20
		Pigment Gallbladder		PCR	43	8	35	20
201 (D [16]		Choledocholithiasis	Bile	PCR	19	9	10	14
2016	Dar	Cholelithiasis	Bile	PCR	18	4	14	14
2016	Data aval [15]	Pigment	Gallbladder	Immunostaining	27	6	21	17
2016	Гашауак	Cholesterol	Gallbladder	Immunostaining	3	0	3	17
		Common bile duct stone	Bile	PCR	19	1	18	
		Gallbladder stone	Bile	PCR	44	1	43	
2016	Tajeddin ^[14]	Cholesterol	Bile	PCR	47	1	46	17
		Black pigment	Bile	PCR	23	0	23	
		Brown pigment	Bile	PCR	4	1	3	
		Cholesterol gallstones	Bile	PCR	87	10	77	
2017	Seyyedmajidi ^{[46] a}	Black pigment stones	Bile	PCR	41	4	37	12
		Brown pigment stones	Bile	PCR	22	2	20	
2021	Jahantab ^{[47] a}	Cholesterol	Bile	Antigen test	31	6	25	11

Supplementary Table 3 The detailed data of included studies for phenotype analysis

PigmentBileAntigen test1012873	
--------------------------------	--

a: These studies are non-comparative studies. MINORS: Methodological index for non-randomized studies; Hp: Helicobacter pylori; PCR: polymerase

chain reaction.

REFERENCES

1 Loosen SH, Killer A, Luedde T, Roderburg C, Kostev K. Helicobacter pylori infection associated with an increased incidence of cholelithiasis: A retrospective real-world cohort study of 50 832 patients. *J Gastroenterol Hepatol* 2024 [PMID: 38714499 DOI: 10.1111/jgh.16597]

2 Sermet M. Association between gastric abnormalities and cholelithiasis: A cross-sectional study. *Annals of Clinical and Analytical Medicine* 2024; **15**(2): 117-121 [DOI: 10.4328/ACAM.22017]

3 Azimirad M, Sadeghi A, Hosseinkhan N, Mirbagheri SZ, Alebouyeh M. Microbiome analysis of bile samples in patients with choledocholithiasis and hepatobiliary disorders. *Germs* 2023; **13**(3): 238-253 [PMID: 38146380 DOI: 10.18683/germs.2023.1390]

4 Cen L, Wu J, Zhu S, Pan J, Zhou T, Yan T, Shen Z, Yu C. The potential bidirectional association between Helicobacter pylori infection and gallstone disease in adults: A two-cohort study. *European Journal of Clinical Investigation* 2023; **53**(2) [PMID: 36134512 DOI: 10.1111/eci.13879]

5 Higashizono K, Nakatani E, Hawke P, Fujimoto S, Oba N. Risk factors for gallstone disease onset in Japan: Findings from the Shizuoka Study, a population-based cohort study. *Plos One* 2022; **17**(12) [PMID: 36584097 DOI: 10.1371/journal.pone.0274659]

6 Hashimoto K, Nagao Y, Nambara S, Tsuda Y, Kudou K, Kusumoto E, Sakaguchi Y, Kusumoto T, Ikejiri K. Association Between Anti-Helicobacter pylori Antibody Seropositive and De Novo Gallstone Formation After Laparoscopic Sleeve Gastrectomy for Japanese Patients with Severe Obesity. *Obesity Surgery* 2022; **32**(10): 3404-3409 [PMID: 36006591 DOI: 10.1007/s11695-022-06253-z]

7 Kucuk S, Kucuk IG. THE RELATIONSHIP BETWEEN HELICOBACTER PYLORI AND GALLBLADDER PATHOLOGIES, DYSPLASIA AND GALLBLADDER CANCER. *Acta Medica Mediterranea* 2021; **37**(5): 2613-2620 [PMID: WOS:000702178700038 DOI: 10.19193/0393-6384_2021_5_403] 8 Zhang J, Zhang Y, Chen Y, Chen W, Xu H, Sun W. Helicobacter pyloriis not a contributing factor in gallbladder polyps or gallstones: a case-control matching study of Chinese individuals. *Journal of International Medical Research* 2020; **48**(10) [PMID: 33045881 DOI: 10.1177/0300060520959220]

9 Kerawala AA, Bakhtiar N, Abidi SS, Awan S. Association of gallstone and helicobacter pylori. *Journal of Medical Sciences (Peshawar)* 2019; **27**(4): 269-272

10 Cherif S, Rais H, Hakmaoui A, Sellami S, Elantri S, Amine A. Linking Helicobacter pylori with gallbladder and biliary tract cancer in Moroccan population using clinical and pathological profiles. *Bioinformation* 2019; **15**(10): 735-742 [PMID: 31831956 DOI: 10.6026/97320630015735]

11 Ari A, Tatar C, Yarikkaya E. Relationship between Helicobacter pyloripositivity in the gallbladder and stomach and effect on gallbladder pathologies. *Journal of International Medical Research* 2019; **47**(10): 4904-4910 [PMID: 31831956 DOI: 10.1177/0300060519847345]

12 Xu MY, Ma JH, Yuan BS, Yin J, Liu L, Lu QB. Association between Helicobacter pylori infection and gallbladder diseases: A retrospective study. *J Gastroenterol Hepatol* 2018; **33**(6): 1207-1212 [PMID: 29178198 DOI: 10.1111/jgh.14054]

13 Fatemi SM, Doosti A, Shokri D, Ghorbani-Dalini S, Molazadeh M, Tavakoli H, Minakari M, Tavakkoli H. Is There a Correlation between Helicobacter Pylori and Enterohepatic Helicobacter Species and Gallstone Cholecystitis? *Middle East journal of digestive diseases* 2018; **10**(1): 24-30 [PMID: 29682244 DOI: 10.15171/mejdd.2017.86]

14 Tajeddin E, Sherafat SJ, Majidi MRS, Alebouyeh M, Alizadeh AHM, Zali MR. Association of diverse bacterial communities in human bile samples with biliary tract disorders: a survey using culture and polymerase chain reaction-denaturing gradient gel electrophoresis methods. *European Journal of Clinical Microbiology & Infectious Diseases* 2016; **35**(8): 1331-1339 [PMID: 27193890 DOI: 10.1007/s10096-016-2669-x]

15 Patnayak R, Reddy V, Jena A, Gavini S, Thota A, Nandyala R, Chowhan

AK. Helicobacter pylori in Cholecystectomy Specimens-Morphological and Immunohistochemical Assessment. *Journal of clinical and diagnostic research : JCDR* 2016; **10**(5): EC01-03 [PMID: 27437221 DOI: 10.7860/jcdr/2016/14802.7716]

16 Dar MY, Ali S, Raina AH, Raina MA, Shah OJ, Shah MA, Mudassar S. Association of Helicobacter pylori with hepatobiliary stone disease, a prospective case control study. *Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology* 2016; **35**(5): 343-346 [PMID: MEDLINE:27633033]

17 Choi YS, Do JH, Seo SW, Lee SE, Oh H-C, Min YJ, Kang H. Prevalence and Risk Factors of Gallbladder Polypoid Lesions in a Healthy Population. *Yonsei Medical Journal* 2016; **57**(6): 1370-1375 [PMID: 27593864 DOI: 10.3349/ymj.2016.57.6.1370]

18 Zhang FM, Yu CH, Chen HT, Shen Z, Hu FL, Yuan XP, Xu GQ. Helicobacter pylori infection is associated with gallstones: Epidemiological survey in China. *World J Gastroenterol* 2015; **21**(29): 8912-8919 [PMID: 26269681 DOI: 10.3748/wjg.v21.i29.8912]

19 Guraya SY, Ahmad AA, El-Ageery SM, Hemeg HA, Ozbak HA, Yousef K, Abdel-Aziz NA. The correlation of Helicobacter pylori with the development of cholelithiasis and cholecystitis: the results of a prospective clinical study in Saudi Arabia. *European Review for Medical and Pharmacological Sciences* 2015; **19**(20): 3873-3880 [PMID: WOS:000365040600014]

20 Takahashi Y, Yamamichi N, Shimamoto T, Mochizuki S, Fujishiro M, Takeuchi C, Sakaguchi Y, Niimi K, Ono S, Kodashima S, Mitsushima T, Koike K. Helicobacter pylori infection is positively associated with gallstones: a largescale cross-sectional study in Japan. *Journal of Gastroenterology* 2014; **49**(5): 882-889 [PMID: 23736795 DOI: 10.1007/s00535-013-0832-z]

21 Murphy G, Michel A, Taylor PR, Albanes D, Weinstein SJ, Virtamo J, Parisi D, Snyder K, Butt J, McGlynn KA, Koshiol J, Pawlita M, Lai GY, Abnet CC, Dawsey SM, Freedman ND. Association of Seropositivity to Helicobacter

Species and Biliary Tract Cancer in the ATBC Study. *Hepatology* 2014; **60**(6): 1963-1971 [PMID: 24797247 DOI: 10.1002/hep.27193]

22 Zhou D, Guan WB, Wang JD, Zhang Y, Gong W, Quan Zw. A Comparative Study of Clinicopathological Features between Chronic Cholecystitis Patients with and without Helicobacter pylori Infection in Gallbladder Mucosa. *PLoS ONE* 2013; **8**(7) [PMID: 23936177 DOI: 10.1371/journal.pone.0070265]

23 Jahani Sherafat S, Tajeddin E, Reza Seyyed Majidi M, Vaziri F, Alebouyeh M, Mohammad Alizadeh AH, Nazemalhosseini Mojarad E, Reza Zali M. Lack of association between Helicobacter pylori infection and biliary tract diseases. *Pol J Microbiol* 2012; **61**(4): 319-322 [PMID: 23484417]

24 Boonyanugomol W, Chomvarin C, Sripa B, Bhudhisawasdi V, Khuntikeo N, Hahnvajanawong C, Chamsuwan A. Helicobacter pylori in Thai patients with cholangiocarcinoma and its association with biliary inflammation and proliferation. *HPB (Oxford)* 2012; **14**(3): 177-184 [PMID: 22321036 DOI: 10.1111/j.1477-2574.2011.00423.x]

25 Yakoob J, Khan MR, Abbas Z, Jafri W, Azmi R, Ahmad Z, Naeem S, Lubbad L. Helicobacter pylori: association with gall bladder disorders in Pakistan. *British Journal of Biomedical Science* 2011; **68**(2): 59-64 [PMID: 21706915 DOI: 10.1080/09674845.2011.11730324]

26 Popovié N, Nikolić V, Karamarković A, Blagojević Z, Šijački A, Šurbatović M, Ivančević N, Gregorić P, Ilić M. Prospective evaluation of the prevalence of Helicobacter pylori in abdominal surgery patients. *Hepato-Gastroenterology* 2010; 57(97): 167-171

27 Bostanoglu E, Karahan ZC, Bostanoglu A, Savas B, Erden E, Kiyan M. Evaluation of the presence of Helicobacter species in the biliary system of Turkish patients with cholelithiasis. *Turkish Journal of Gastroenterology* 2010; **21**(4): 421-427 [PMID: 21331997 DOI: 10.4318/tjg.2010.0130]

28 Yucebilgili K, Mehmetoglu T, Gucin Z, Salih BA. Helicobacter pylori DNA in gallbladder tissue of patients with cholelithiasis and cholecystitis. *Journal of Infection in Developing Countries* 2009; **3**(11): 856-859 [PMID: 20061681 DOI:

10.3855/jidc.334]

29 Griniatsos J, Sougioultzis S, Giaslakiotis K, Gazouli M, Prassas E, Felekouras E, Michail O, Avgerinos E, Pikoulis E, Kouraklis G, Delladetsima I, Tzivras M. Does Helicobacter Pylori Identification in the Mucosa of the Gallbladder Correlate with Cholesterol Gallstone Formation? *West Indian Medical Journal* 2009; **58**(5): 428-432 [PMID: WOS:000277060800006]

30 Misra V, Misra SP, Dwivedi M, Shouche Y, Dharne M, Singh PA. Helicobacter pylori in areas of gastric metaplasia in the gallbladder and isolation of H. pylori DNA from gallstones. *Pathology* 2007; **39**(4): 419-424 [PMID: 17676484 DOI: 10.1080/00313020701444473]

Kobayashi T, Harada K, Miwa K, Nakanuma Y. Helicobacter genus DNA fragments are commonly detectable in bile from patients with extrahepatic biliary diseases and associated with their pathogenesis. *Digestive Diseases and Sciences* 2005; **50**(5): 862-867 [PMID: 15906758 DOI: 10.1007/s10620-005-2654-1]
Abayli B, Colakoglu S, Serin M, Erdogan S, Isiksal YF, Tuncer I, Koksal F, Demiryurek H. Helicobacter pylori in the etiology of cholesterol gallstones. *J Clin Gastroenterol* 2005; **39**(2): 134-137 [PMID: 15681909]

33 Farshad S, Alborzi A, Malek Hosseini SA, Oboodi B, Rasouli M, Japoni A, Nasiri J. Identification of Helicobacter pylori DNA in Iranian patients with gallstones. *Epidemiol Infect* 2004; **132**(6): 1185-1189 [PMID: 15635979 DOI: 10.1017/s0950268804002985]

34 Silva CP, Pereira-Lima JC, Oliveira AG, Guerra JB, Marques DL, Sarmanho L, Cabral MM, Queiroz DM. Association of the presence of Helicobacter in gallbladder tissue with cholelithiasis and cholecystitis. *J Clin Microbiol* 2003; **41**(12): 5615-5618 [PMID: 14662950 DOI: 10.1128/jcm.41.12.5615-5618.2003]

35 Chen W, Li D, Cannan RJ, Stubbs RS. Common presence of Helicobacter DNA in the gallbladder of patients with gallstone diseases and controls. *Digestive and Liver Disease* 2003; **35**(4): 237-243 [PMID: 12801034 DOI: 10.1016/s1590-8658(03)00060-4]

36 Fukuda K, Kuroki T, Tajima Y, Tsuneoka N, Kitajima T, Matsuzaki S, Furui

J, Kanematsu T. Comparative analysis of Helicobacter DNAs and biliary pathology in patients with and without hepatobiliary cancer. *Carcinogenesis* 2002; **23**(11): 1927-1931 [PMID: 12419842 DOI: 10.1093/carcin/23.11.1927]

37 Bulajic M, Stimec B, Milicevic M, Loehr M, Mueller P, Boricic I, Kovacevic N, Bulajic M. Modalities of testing Helicobacter pylori in patients with nonmalignant bile duct diseases. *World Journal of Gastroenterology* 2002; **8**(2): 301-304 [PMID: WOS:000175104600023]

38 Bulajic M, Maisonneuve P, Schneider-Brachert W, Muller P, Reischl U, Stimec B, Lehn N, Lowenfels AB, Lohr M. Helicobacter pylori and the risk of benign and malignant biliary tract disease. *Cancer* 2002; **95**(9): 1946-1953 [PMID: 12404289 DOI: 10.1002/cncr.10893]

39 Harada K, Ozaki S, Kono N, Tsuneyama K, Katayanagi K, Hiramatsu K, Nakanuma Y. Frequent molecular identification of Campylobacter but not Helicobacter genus in bile and biliary epithelium in hepatolithiasis. *Journal of Pathology* 2001; **193**(2): 218-223 [DOI: 10.1002/1096-9896(2000)9999:9999<:::Aid-path776>3.0.Co;2-h]

40 Myung SJ, Kim MH, Shim KN, Kim YS, Kim EO, Kim HJ, Park ET, Yoo KS, Lim BC, Seo DW, Lee SK, Min YI, Kim JY. Detection of Helicobacter pylori DNA in human biliary tree and its association with hepatolithiasis. *Digestive Diseases and Sciences* 2000; **45**(7): 1405-1412 [PMID: 10961722 DOI: 10.1023/a:1005572507572]

41 Roe IH, Kim JT, Lee HS, Lee JH. Detection of Helicobacter DNA in bile from bile duct diseases. *Journal of Korean Medical Science* 1999; **14**(2): 182-186 [PMID: 10331565 DOI: 10.3346/jkms.1999.14.2.182]

42 Figura N, Cetta F, Angelico M, Montalto G, Cetta D, Pacenti L, Vindigni C, Vaira D, Festuccia F, De Santis A, Rattan G, Giannace R, Campagna S, Gennari C. Most Helicobacter pylori-infected patients have specific antibodies, and some also have H. pylori antigens and genomic material in bile: is it a risk factor for gallstone formation? *Digestive diseases and sciences* 1998; **43**(4): 854-862 [PMID: 9558044 DOI: 10.1023/a:1018838719590] 43 Kochhar R, Malik AK, Nijhawan R, Goenka MK, Mehta SK. H. pylori in postcholecystectomy symptoms. *Journal of Clinical Gastroenterology* 1993; **17**(3): 269-270 [PMID: 8228094 DOI: 10.1097/00004836-199310000-00022]

44 Kellosalo J, Alavaikko M, Laitinen S. Effect of biliary tract procedures on duodenogastric reflux and the gastric mucosa. *Scandinavian journal of gastroenterology* 1991; **26**(12): 1272-1278 [PMID: 1763297 DOI: 10.3109/00365529108998624]

45 Lee JW, Lee DH, Lee JI, Jeong S, Kwon KS, Kim HG, Shin YW, Kim YS, Choi MS, Song SY. Identification of Helicobacter pylori in Gallstone, Bile, and Other Hepatobiliary Tissues of Patients with Cholecystitis. *Gut Liver* 2010; **4**(1): 60-67 [PMID: 20479914 DOI: 10.5009/gnl.2010.4.1.60]

46 Seyyedmajidi M, Hosseini SA, Hajiebrahimi S, Ahmadi A, Banikarim S, Zanganeh E, Seyedmajidi S. Companion of Helicobacter Pylori Presence in Stomach and Biliary Tract in the Patients with Biliary Stones. *International Journal of Advanced Biotechnology and Research* 2017; **8**(4): 124-129 [PMID: WOS:000416165800016]

47 Jahantab MB, Safaripour AA, Hassanzadeh S, Yavari Barhaghtalab MJ. Demographic, Chemical, and Helicobacter pylori Positivity Assessment in Different Types of Gallstones and the Bile in a Random Sample of Cholecystectomied Iranian Patients with Cholelithiasis. *Can J Gastroenterol Hepatol* 2021; **2021**: 3351352 [PMID: 34422710 DOI: 10.1155/2021/3351352]