Supplementar	v Table 1 R	ROS check	points, items	and poin	nts for each item
		~	· · · · · · · ·		

RQS Checkpoint	RQS Item	RQS points
Checkpoint 1	Image protocol quality - well-documented image	+1 (if protocols are well-documented)
	protocols (for example, contrast, slice thickness, energy,	+1 (if public protocol is used)
	etc.) and/or usage of public image protocols allow	
	reproducibility/replicability.	
Checkpoint 2	Multiple segmentations - possible actions are:	+1
	segmentation by different	
	physicians/algorithms/software, perturbing	
	segmentations by (random) noise, segmentation at	
	different breathing cycles. Analyse feature robustness to	
	segmentation variabilities.	
	Phantom study on all scanners - detect inter-scanner	+1
	differences and vendor-dependent features. Analyse	
	feature robustness to these sources of variability.	
	Imaging at multiple time points - collect images of	+1
	individuals at additional time points. Analyse feature	
	robustness to temporal variabilities (for example, organ	
	movement, organ expansion/ shrinkage).	
Checkpoint 3	Feature reduction or adjustment for multiple testing -	-3 (if neither measure is implemented)
	decreases the risk of overfitting. Overfitting is inevitable if	+3 (if either measure is implemented)

the number of features exceeds the number of samples.	
Consider feature robustness when selecting features.	
Multivariable analysis with non radiomics features (for	+1
example, EGFR mutation) - is expected to provide a more	
holistic model. Permits correlating/inferencing between	
radiomics and non radiomics features.	
Detect and discuss biological correlates - demonstration	+1
of phenotypic differences (possibly associated with	
underlying gene-protein expression patterns) deepens	
understanding of radiomics and biology.	
Cut-off analyses - determine risk groups by either the	+1
median, a previously published cut-off or report a	
continuous risk variable. Reduces the risk of reporting	
overly optimistic results.	
Discrimination statistics - report discrimination statistics	+1 (if a discrimination statistic and its
(for example, C-statistic, ROC curve, AUC) and their	statistical significance are reported)
statistical significance (for example, p-values, confidence	+1 (if a resampling method technique is
intervals). One can also apply resampling method (for	also applied)
example, bootstrapping, cross-validation).	
Calibration statistics - report calibration statistics (for	+1 (if a calibration statistic and its
example, Calibration-in-the-large/slope, calibration plots)	statistical significance are reported)

and their statistical significance (for example, P-values,	+1 (if a resampling method technique is
confidence intervals). One can also apply resampling	also applied)
method (for example, bootstrapping, cross-validation).	
Prospective study registered in a trial database - provides	+7 (for prospective validation of a
the highest level of evidence supporting the clinical validity	radiomics signature in an appropriate
and usefulness of the radiomics biomarker.	trial)
Validation - the validation is performed without retraining	-5 (if validation is missing)
and without adaptation of the cut-off value, provides	+2 (if validation is based on a dataset
crucial information with regard to credible clinical	from the same institute)
performance.	+3 (if validation is based on a dataset
	from another institute)
	+4 (if validation is based on two datasets
	from two distinct institutes)
	+4 (if the study validates a previously
	published signature)
	+5 (if validation is based on three or
	more datasets from distinct institutes)
	*Datasets should be of comparable size
	and should have at least 10 events per
	model feature.

Comparison to 'gold standard' - assess the extent to which	+2
the model agrees with/is superior to the current 'gold	
standard' method (for example, TNM-staging for survival	
prediction). This comparison shows the added value of	
radiomics.	
Potential clinical utility - report on the current and	+2
potential application of the model in a clinical setting (for	
example, decision curve analysis).	
Cost-effectiveness analysis - report on the cost-	+1
effectiveness of the clinical application (for example,	
QALYs generated).	
Open science and data - make code and data publicly	+1 (if scans are open source)
available. Open science facilitates knowledge transfer and	+1 (if region of interest segmentations
reproducibility of the study.	are open source)
	+1 (if code is open source)
	+1 (if radiomics features are calculated
	on a set of representative ROIs and the
	calculated features and representative
	ROIs are open source

Journal Metrics

Supplementary Table 2 Journal metrics of the included studies

Authors,	Months	Journal	IF of the	5 Year IF	CiteScore	H-index	H-index	H-index
Year	from		year of				first	first
	literature		publication				author	author
	research							no self
								citations
Liu J. Et al.	1	Quantitative	3.9	2.956	4	21	23	0
		imaging in						
		medicine and						
		surgery						
Wang Y et	1	BMC Medical	2.79	2.11	2.6	37	0	0
al.		Imaging						
Gong X.	1	Scientific Reports	4.997	4.409	7.1	213	6	6
Et al.								
Zhang L.	1	Frontiers in	5.738	5.729	3.9	83	1	1
et al.		Oncology						
Zhang Y.	1	World Journal of	5.374	5.008	6.9	155	4	4
et al.		Gastroenterology						

Dong X, et	1	Journal Of	5.119	4.475	7.8	160	6	6
al		Magnetic						
		Resonance						
		Imaging						
Tabari A,	1	Cancers MDPI	6.575	6.275	4.4	76	14	13
et al								
Cao X, et	1	Journal Of	5.119	4.475	7.8	160	3	3
al.		Magnetic						
		Resonance						
		Imaging						
Ince O. et	1	Journal Of	3.682	1.912	4.1	133	2	2
al		Vascular and						
		Interventional						
		Radiology						
Chen M.	1	Insights into	5.036	5.498	5.8	39	3	3
et al.		Imaging						
Jang T. et	1	Acta Radiologica	3.5	1.76	3.0	72	3	3
al.								

Hu X. Et	1	Comput Math	2.809	2.671	3.5	48	1	1
al.		Methods Med						
Chong H.	1	Academic	5.482	2.582	4.7	96	3	3
etal		Radiology						
ct al.		Ruchology						
	4		2.002	2.24		10	4	4
Hu X. Et	1	Diagnostics	3.992	3.24	1.4	19	1	1
al.		(Basel)						
Tao Y. Et	1	Cancers (Basel)	6.575	6.275	4.4	76	6	6
al.								
Yang X. Et	1	Medicine	1.817	0.063	0.1	5.0	4	4
al	-	(Baltimore)	101				-	-
ai.		(Datumore)						
								_
Liu H. et	1	Translational	4.803	4.056	6	52	6	5
al.		Oncology						
Zhang S.	1	Frontiers In	5.738	5.729	3.9	83	2	2
et al.		Oncology						

Sim J. Et	1	World Journal of	2.8	3	2	45	4	4
al.		Clinical						
		Oncology						
Zhang X.	1	Frontiers In	5.738	5.729	3.9	83	1	1
Et al.		Oncology						
	4		4.000	4.404	- -	0.4	4	1
Zhao Y. Et	1	Journal of Cancer	4.322	4.104	6.5	94	1	1
al.		Research and						
		Clinical						
		Oncology						
Lu X. Et al.	1	BMC Medical	2.795	2.111	2.6	37	1	1
		Imaging						
Yang W.	1	European Journal	4.531	3.279	4.6	115	2	2
Et al.		of Radiology						
Ameli S.	1	Diagnostics	3.992	3.24	1.4	76	8	7
et al.		(Basel)						

Li W. Et al.	1	Journal Of Oncology	4.501	3.925	3.1	54	3	3
Zeng F. et al.	1	Frontiers In Oncology	5.738	5.729	3.9	83	2	2
Aujay J. Et al.	1	Diagnostic And Interventional Imaging	7.242	2.571	4.1	36	2	2
Chen Y. et al.	1	World Journal of Gastroenterology	5.374	5.008	6.9	155	5	5
Wu Q, et al	1	JMRI	5.119	4.475	7.8	160	1	1
Li Y et al.	1	World Journal of Gastroenterology	5.374	5.008	6.9	155	9	9
Wang L. et al.	1	FRONTIERS IN ONCOLOGY	5.738	3.925	3.1	83	1	1

Zhang D,	1	Journal c	f 0	0	0	0	0	0
et al.		Clinical and	1					
		Translational						
		Hepatology						
Brancato	1	Diagnostics	3.992	3.24	1.4	76	8	7
V .et al.		(Basel)						
Fan T. et	1	FRONTIERS IN	5.738	3.925	3.1	83	2	2
al.		ONCOLOGY						
Gao L. et	1	FRONTIERS IN	J 5.738	3.925	3.1	83	4	4
al.		ONCOLOGY						
Hu F. et al.	1	FRONTIERS IN	J 5.738	3.925	3.1	83	1	1
		ONCOLOGY						
He. Y. et	1	FRONTIERS IN	5.738	3.925	3.1	83	2	2
al.		ONCOLOGY						

Ren Y. Et	1	Medical Physics	4.506	4.232	6.1	180	3	3
al								
Luo J et al	1	BMC	2.849	2.843	3.2	75	2	2
		Gatroenterology						
Wang X.	1	QUANTITATIVE	4.63	2.956	4.0	21	4	4
et al.		IMAGING IN						
		MEDICINE AND						
		SURGERY						
Mao Y. Et	1	Hepatobiliary	8.256	0	0	0	5	5
al.		Surgery and						
		Nutrition						
Anderson	1	Acta Radiologica	1.99	1.76	3.0	72	23	23
M. et al.								
Li H et al.	1	British Journal of	3.039	2.687	4.1	106	2	2
		Radiology						

Li l. et al.	1	CLINICAL	2.35	2.247	3.9	90	1	1
		RADIOLOGY						
Wang et	1	COMPUTERS IN	4.589	3.9	7.3	94.0	7	7
al., 2021		BIOLOGY AND						
		MEDICINE						
Yang Y. et	2	FRONTIERS IN	6.244	6.264	3.9	83.0	0	0
al., 2021		ONCOLOGY						
Lv X. et	3	EUROPEAN	3.528	3.539	4.6	115.0	6	6
al., 2021		JOURNAL OF						
		RADIOLOGY						
Yu Y. et	3	EUROPEAN	5.315	4.87	7.7	149	4	4
al., 2021		RADIOLOGY						
Fang S. et	4	Frontiers in	4.615	5.389	4.1	37.0	8	8
al., 2021		Molecular						
		Biosciences						
Yang F. et	4	FRONTIERS IN	6.244	6.264	3.9	83.0	4	4
al., 2021		ONCOLOGY						
Chen Y. et	5	Journal of	5.828	6.783	0	0	2	2
al., 2021		Hepatocellular						
		Carcinoma						

Horvart	5	Clinics	2.365	2.323	2.6	61.0	14	13
N. et al.,								
2021								
Alksas A.	6	Scientific Reports	4.38	5.134	7.1	213.0	1	0
et al., 2021								
Chong H.	6	Journal of	5.828	6.783	0	0	2	2
et al., 2021		Hepatocellular						
		Carcinoma						
Ding Z. et	6	World Journal of	2.754	2.777	3.2	57.0	1	1
al., 2021		Surgical						
		Oncology						
Fan Y. et	6	BMC MEDICAL	1.85	2.683	2.6	37.0	1	1
al., 2021		IMAGING						
Gao F. et	6	MAGNETIC	2.546	2.608	3.8	111	3	3
al., 2021		RESONANCE						
		IMAGING						
Li X. et al.,	6	Journal of	4.108	4.608	6.7	29	4	4
2021		Clinical and						
		Translational						
		Hepatology						

6	Academic	3.173	2.751	4.7	96.0	3	3
	Radiology						
7	QUANTITATIVE	3.837	3.507	4.0	21.0	2	2
	IMAGING IN						
	MEDICINE AND						
	SURGERY						
7	Journal of	5.828	6.783	0	0	1	1
	Hepatocellular						
	Carcinoma						
7	Medicine	1.889	2.351	2.4	148.0	2	2
8	American Journal	3.959	4.073	6.4	196.0	3	3
	of Roentgenology						
8	EUROPEAN	5.315	4.87	7.7	149	3	3
	RADIOLOGY						
8	European Journal	3.528	3.279	4.6	115	1	1
	of Radiology						
8	Journal of Cancer	4.553	4.201	6.5	94.0	6	6
	Research and						
	Clinical						
	Oncology						
	6 7 7 8 8 8 8 8 8	6AcademicRadiology7QUANTITATIVEIMAGING INIMAGING INMEDICINE ANDSURGERY7Journal ofHepatocellularCarcinoma7Medicine8American Journalof Roentgenology8EUROPEAN8European Journalof Radiology8Journal of Cancer8Carcin And01 Radiology8Oncology	6Academic3.173RadiologyRadiology7QUANTITATIVE3.837IMAGINGINMEDICINE ANDSURGERY7Journalof5.828HepatocellularCarcinoma	6Academic3.1732.751Radiology2227QUANTITATIVE3.8373.507IMAGING IN MEDICINE AND SURGERY117Journal of Carcinoma5.8286.7837Journal of Carcinoma5.8286.7837Medicine1.8892.3518American Journal of Roentgenology3.9594.0738EUROPEAN RADIOLOGY5.3154.878European Journal of Radiology3.5283.2798Journal of Cancer Clinical Oncology4.001	6Academic Radiology3.1732.7514.7Radiology3.8373.5074.07QUANTITATIVE IMAGING IN SURGERY3.8373.5074.07Journal of Carcinoma5.8286.78307Journal of Carcinoma5.8286.78307Medicine Carcinoma1.8892.3512.48EUROPEAN of Roentgenology3.9594.0736.48EUROPEAN of Radiology5.3154.877.78Journal of Cancer (Clinical Oncology4.2016.5	6Academic Radiology3.1732.7514.796.0Radiology	6Academic Radiology3.1732.7514.796.037QUANTITATIVE IMAGING IN MEDICINE AND SURGERY3.8373.5074.021.027Journal of Hepatocellular Carcinoma5.8286.7830017Medicine1.8892.3512.4148.028American Journal of Roentgenology3.9594.0736.4196.038EUROPEAN of Radiology5.3154.877.714938European Journal of Radiology3.5283.2794.611518Journal of Cancer (Inical Oncology4.5334.2016.594.06

Zhong X.	8	BMC	3.067	2.843	3.2	75.0	5	5
et al., 2021		Gatroenterology						
Zhao et	8	European Journal	3.528	3.539	4.6	115.0	1	1
al., 2021		of Radiology						
Chen Y. et	9	FRONTIERS IN	6.244	6.264	3.9	83.0	1	1
al., 2021		ONCOLOGY						
Liang H.	9	Journal of	1.671	1.805	1.4	57.0	1	1
et al., 2021		International						
		Medical Research						
Zhang L.	9	Abdominal	3.039	2.965	3.8	74.0	3	3
et al., 2021		Radiology						
Zhang L.	9	Cancer	3.989	3.947	3.3	40.0	3	3
et al., 2021		Management and						
		Research						
Zhang Y.	9	FRONTIERS IN	6.244	6.264	3.9	83.0	2	2
et al., 2021		ONCOLOGY						
Zhao Y. et	9	FRONTIERS IN	6.244	6.264	3.9	83.0	3	3
al., 2021		ONCOLOGY						
Kuang Y.	9	Abdominal	3.039	2.965	3.8	74.0	1	1
et al., 2021		Radiology						

Meng X.	10	Journal of	4.813	4.475	7.8	160	5	5
Et al.		Magnetic						
		Resonance						
		Imaging						
Zhu Y. et	10	Abdominal	3.039	2.965	3.8	74.0	2	1
al., 2021		Radiology						
Liu J. Et al	11	Abdominal	3.039	2.308	3.8	74	1	1
		Radiology						
Chong H.	11	EUROPEAN	5.315	4.87	7.7	149.0	2	2
et al., 2021		RADIOLOGY						
Gu D. et	12	Journal of	4.813	4.475	7.8	160.0	14	14
al., 2020		Magnetic						
		Resonance						
		Imaging						
Zhao Y. et	13	Journal of	4.813	4.475	7.8	160.0	2	2
al., 2020		Magnetic						
		Resonance						
		Imaging						
Ai et al.,	15	Annals of	3.932	4.629	0	0	2	2
2020		Translational						
		Medicine						

Shaghaghi	15	European	5.315	4.87	7.7	149	11	11
et al., 2020		Radiology						
Li J. et al.,	16	Experimental	2.447	-	1.5	33	0	0
2020		and Therapeutic						
		Medicine						
Geng et	16	Magnetic	2.471	1.917	3.4	40.0	1	1
al., 2020		Resonance in						
		Medical Sciences						
Zhang J. et	17	Annals of	3.932	4.629	0	0	1	1
al., 2020		Translational						
		Medicine						
Zhang Z.	17	Annals of	3.932	4.629	0	0	4	4
et al., 2020		Translational						
		Medicine						
Hectors et	17	Radiology:	11.105	10.389	17.7	295.0	14	14
al., 2020		Imaging Cancer						
Shi et al.,	17	Cancer	3.989	3.947	3.3	40.0	12	12
2020		Management and						
		Research						
Feng. et al.	18	BMC Cancer	3.118	3.054	5.4	129	1	1

Nebbia G.	18	Journal of Digital	4.056	3.977	6.8	58.0	2	2
et al., 2020		Imaging						
Schobert	19	European	5.315	4.87	7.7	149	5	5
I.T. et al.,		Radiology						
2020								
Sun Y. et	21	Journal of	4.813	4.475	7.8	160.0	1	1
al., 2020		Magnetic						
		Resonance						
		Imaging						
Wilson	21	HPB	3.647	4.482	4.8	74.0	20	20
G.C. et al.,								
2020								
Hectors	22	European	5.315	4.87	7.7	149	14	14
S.J. et al.,		Radiology						
2020								
Wang W.	23	EUROPEAN	5.315	4.87	7.7	149	6	6
et al., 2020		RADIOLOGY						
Wang	23	British Journal of	7.64	5.57	10.7	236.0	1	1
X.H. et al.,		Cancer						
2020								

Song W. et	25	Journal of	4.813	4.475	7.8	160.0	1	1
al., 2019		Magnetic						
		Resonance						
		Imaging						
Zhang J. et	25	Academic	2.488	2.751	4.7	96.0	1	1
al., 2019		Radiology						
Huang X.	26	Journal of Cancer	3.656	4.201	6.5	94.0	2	2
et al., 2019		Research and						
		Clinical						
		Oncology						
Ye Z. et	26	Chinese Journal	4.135	4.451	0	34.0	5	5
al., 2019		of Cancer						
		Research						
Zhang R.	27	Quantitative	3.226	3.507	4.0	21.0	3	3
et al., 2019		Imaging in						
		Medicine and						
		Surgery						
Chen et	27	European	4.101	4.87	7.7	149	12	12
al., 2019		Radiology						
Xu et al.,	27	Abdominal	2.429	2.965	3.8	74.0	2	2
2019		Radiology						

Li Y. et al.,	29	Clinical	2.118	2.597	3.9	90.0	6	6
2019		Radiology						
Oyama A.	30	Scientific Reports	3.998	5.134	7.1	213.0	2	2
et al., 2019								
Wang	30	European Journal	2.687	3.539	4.6	115.0	9	9
H.Q et al.,		of Radiology						
2019								
Zhu Y.J. et	32	Oncology Letters	2.311	2.575	4.5	54.0	2	2
al., 2019								
Zhang Z.	32	Cancer Imaging	2.193	3.849	3.5	48.0	2	2
et al., 2019								
Gordic et	32	Cancer Imaging	2.193	3.849	3.5	48.0	18	18
al., 2019								
Jansen et	32	PLOS ONE	2.74	3.788	5.3	332.0	3	3
al., 2019								
Ma et al.,	33	Chinese Journal	4.135	4.451	0	34.0	8	7
2019		of Cancer						
		Research						
Wu J. et	34	BMC Medical	1.792	2.683	2.6	37.0	5	5
al., 2019		Imaging						

Kim S. et	34	Clinical Cancer	10.107	12.836	18.2	324.0	7	7
al., 2019		Research						
Lewis S. et	34	Abdominal	2.429	2.965	3.8	74.0	15	15
al., 2019		Radiology						
Chen S. et	36	European	4.101	4.87	7.7	149	17	17
al., 2019		Radiology						
Feng S.T.	36	European	4.101	4.87	7.7	149	20	19
et al., 2019		Radiology						
Wu M. et	38	European	3.962	4.87	6.9	143.0	2	2
al., 2018		Radiology						
Yang L. et	38	Liver Cancer	5.944	9.024	10.0	30.0	11	11
al., 2018								
Stocker O.	38	Heliyon	1.648	2.845	1.2	18.0	5	5
et al., 2018								
Ahn S.J. et	40	Abdominal	2.429	2.965	3.1	70.0	11	11
al., 2018		Radiology						
Hui	40	Clinical	2.082	2.597	3.5	87.0	3	3
T.C.H. et		Radiology						
al., 2018								
Zou et al.,	40	Journal of	3.732	4.475	6.6	152.0	2	2
2018		Magnetic						

		Resonance						
		Imaging						
Li et al.,	43	European Journal	2.948	3.539	4.8	109.0	1	1
2018		of Radiology						
Wu et al.,	43	European	3.962	4.87	6.9	143.0	2	2
2018		Radiology						
Li Z. et al.,	54	BMC Medical	1.635	2.683	2.37	31.0	5	5
2017		Imaging						
Moriya et	54	Cancer Imaging	1.779	1.94	3.58	40	2	2
al								

DD = differential diagnosis; cCC-HCC = combined hepatocellular cholangiocarcinoma; HCC = hepatocellular carcinoma; CC = cholangiocarcinoma; MVI = microvascular invasion; AIR = aggressive intrasegmental recurrence; RFA = radiofrequency ablation; VECT = vessels encapsulating tumor clusters; PFS = progression-free survival; TACE = transcatheter arterial chemoembolization; CK19= Cytokeratin19; RFS = recurrence-free survival; FNH = focal nodular hyperplasia; GOLM1 = Golgi membrane protein 1; SETD7 = SET domain containing 7; RND1 = Rho family GTPase 1; GPC3 = Glypican-3; MVD = microvessel density; MTM-HCC = macrotrabecular-massive HCC; ER = early recurrence; HH = hepatic hemangioma; HC = hepatic cysts; OS = overall survival; TFS = transplant-free survival; DPHCC = Dual-phenotype HCC; EpCAM = Epithelial Cell Adhesion Molecule; MT = metastatic tumor; CR = complete response; PR = partial response; SD = stable disease; LR = Logistic regression; LRec= Late Recurrence; ICC = intrahepatic cholangiocarcinoma; HA = hepatic adenoma; LNR = late regional recurrence; IMCC = mass-forming cholangiocarcinoma; TTP = time to progression; HM = hepatic metastase; DCE = dynamic contrast-enhanced; ART = arterial phase; PVP = portal venous phase; DP = delayed phase; T1WI = T1-weighted imaging; AP = arterial phase; HBP =

hepatobiliary phase; HAP = hepatic arterial phase; SPP = substantial period phase; T2WI = T2-weighted imaging; DWI = diffusion-weighted imaging; EP = equilibrium phase; LAP = late arterial phase; TP = transitional phase; PP = portal phase; FS = fat saturation; ADC = apparent diffusion coefficient; DCE-MRI = DCE-Magnetic Resonance Imaging; IVIM = intravoxel incoherent motion; SWI = susceptibility weighted imaging; LVP = late venous phase; SPAIR T2WI = spectral attenuated inversion-recovery T2WI; M = manually; S = semi-automatic; A = automatic; GLCM = gray-level co-occurrence matrix; GLSZM = Grey Level Size Zone Matrix; GLRLM = gray-level run-length; GLDM = gray level dependence matrix; NGTDM = neighboring gray tone difference matrix; CNN = convolutional neural network; LBP = local binary patterns; FOS = first-order statistics; NGLDS = neighborhood gray-level difference statistics; RLM = run-length matrix; GWTF = Gabor wavelet transform; ISZM = intensity-size-zone matrix; MI = mutual information; LASSO = least absolute shrinkage and selection operator; mRMR = minimum redundancy maximum relevance; RF = random forests; SVM-RFE = support vector machine-recursive feature elimination; ICC = intra-class correlation coefficient; PCA = principal component analysis; RandomForestSRC = Random Forests for Survival, Regression, and Classification; LR = logistic regression; POE + ACC = classification error probability combined with average correlation coefficients; ROC = receiver operating characteristic; LDA (AUC) = linear discriminant analysis (area under the curve); AIC = Akaike information criteria; CCC = concordance correlation coefficient; DR = dynamic range; ANN = artificial neural network; GBDT = Gradient Boosting Tree; KNN = K-nearest Neighbours; XGBoost = extreme gradient boosting; DT = decision trees; DL = deep learning; FDA = Fisher discriminant analysis; AUROC = area under the receiver operating characteristic; BP-ANN = back propagation artificial neural network; TS = training sets; VS = validation sets; ICG = indocyanine green retention rate; NLR = Neutrophil-to-lymphocyte ratio; PLR = platelet-to-lymphocyte ratio; CAD = computer-aided diagnostic; TR = TACE response; SITET = single-input two-compartment extended Tofts; DITET = dual-input two-compartment extended Tofts; c-TACE = conventional-TACE; TA = texture analysis; RE = radioembolization.

Supplementary Table 3 Details of methodological quality assessment by Radiomic quality score (RQS) tool

Author	Imag e proto col qualit y	Mul tiple seg men tatio ns	Pha nto m stud y on all scan ners	Ima ging at mult iple time poin ts	Featu re reduc tion or adjus tment for multi ple testin g	Multi varia ble analy sis with non radio mics featur es	Dete ct and disc uss biol ogic al corr elate s	Cut- off anal yses	Discri minat ion statist ics	Calib ration statist ics	Prospe ctive study registe red in a trial databa se	Val idat ion	Comp arison to gold stand ard	Pote ntia 1 clini cal utili ty	Cost- effecti venes s analy sis	Op en scie nce and dat a	Total
Liu J. Et al.	1	1	0	0	3	0	1	0	1	1	0	2	0	2	0	0	12 (33.33 %)
Wang Y et al.	1	1	0	0	3	1	0	0	1	1	0	2	0	2	0	0	12 (33.33 %)
Gong X. Et al.	1	1	0	0	3	1	1	0	1	0	0	2	0	0	0	0	10 (27.78 %)

Zhang L.	1	1	0	0	3	1	1	0	1	0	0	4	2	2	0	0	16
et al.																	(44.44
																	%)
Zhang	1	1	0	0	3	1	0	1	1	0	0	2	0	0	0	0	10
Y. et al.																	(27.78
																	%)
Dong X,	1	1	0	0	3	1	1	1	1	1	0	2	0	0	0	1	13
et al																	(36.11
																	%)
Tabari	0	1	0	0	3	1	0	0	1	0	0	2	0	0	0	0	8
A, et al																	(22.22
																	%)
Cao X, et	1	1	0	0	3	1	0	0	1	1	0	4	0	0	0	0	12
al.																	(33.33
																	%)
Ince O.	0	1	0	0	3	1	0	1	1	1	0	-5	0	0	0	1	4
et al																	(11.11
																	%)
Chen M.	1	1	0	0	3	1	0	0	1	1	0	4	2	2	0	0	16
et al.																	(44.44
																	%)

Jang. T.	1	1	0	0	3	1	1	0	1	1	0	2	2	2	0	0	15
Et al																	(41.67
																	%)
Hu X. Et	1	1	0	0	3	1	1	1	1	1	0	-5	0	0	0	0	5
al.																	(13.89
																	%)
Chong	1	1	0	0	3	1	1	1	1	1	0	2	0	2	0	0	14
H. et al.																	(38.89
																	%)
Hu X et	1	1	0	0	3	1	1	1	1	1	0	2	0	0	0	1	13
al.																	(36.11
																	%)
Tao Y. Et	1	0	0	0	3	1	1	0	1	1	0	2	0	0	0	0	10
al.																	(27.78
																	%)
Yang X.	1	1	0	0	3	1	0	1	1	1	0	2	0	0	0	0	11
et al.																	(30.56
																	%)
Liu H. Et	1	1	0	0	3	1	1	0	1	1	0	2	0	2	0	0	13
al.																	(36.11
																	%)

Zhang S.	1	1	0	0	3	1	0	0	1	1	0	2	0	2	0	0	12
et al.																	(33.33
																	%)
Sim J. Et	1	1	0	0	3	0	0	0	2	0	0	-5	2	0	0	0	4
al.																	(11.11
																	%)
Zhang	1	1	0	1	3	1	0	0	1	1	0	2	0	2	0	0	13
X. Et al.																	(36.11
																	%)
Zhao Y.	1	0	0	0	3	1	0	1	1	1	0	2	2	2	0	0	14
Et al.																	(38.89
																	%)
Lu X. Et	1	1	0	0	3	1	0	0	1	1	0	2	2	0	0	0	12
al.																	(33.33
																	%)
Yang W.	1	0	0	0	-3	0	1	1	1	0	0	-5	0	0	0	0	-4
Et al																	(0%)
Ameli. S.	1	0	0	0	3	0	1	0	2	1	0	-5	2	0	0	0	5
et al.																	(13.89
																	%)

Li W. Et	1	0	0	0	3	1	0	0	1	1	0	2	0	0	0	0	9
al.																	(25%)
Zeng F.	1	1	0	0	3	1	1	0	1	1	0	2	0	2	0	0	13
et al.																	(36.11
																	%)
Aujay J.	0	0	0	0	-3	1	0	1	1	0	0	-5	2	0	0	0	-3
Et al.																	(0%)
Chen Y.	1	1	0	0	3	1	0	1	2	1	0	5	2	2	0	0	19
et al.																	(52.78
																	%)
Wu Q, et	1	1	0	0	3	1	0	0	1	0	0	2	0	0	0	2	11
al.																	(30.56
																	%)
Li Y et	1	1	0	0	3	1	1	0	1	0	0	-5	0	0	0	0	3
al.																	(8.33
																	%)
Wang L.	0	1	0	0	3	1	0	0	2	1	0	2	0	2	0	0	12
et al.																	(33.33
																	%)

Zhang	0	1	0	0	3	1	0	0	1	0	7	4	0	0	0	0	17
D, et al.																	(47.22
																	%)
Brancato	1	0	0	0	3	0	0	0	1	0	0	-5	0	0	0	4	4
V .et al.																	(11.11
																	%)
Fan T. et	1	1	0	0	3	1	1	0	2	1	0	2	0	2	0	0	14
al.																	(38.89
																	%)
Gao L. et	1	1	0	0	3	1	0	1	1	1	0	2	0	2	0	0	13
al.																	(36.11
																	%)
Hu F. et	0	1	0	0	3	1	0	0	1	0	0	2	0	0	0	0	8
al.																	(22.22
																	%)
He. Y. et	1	1	0	0	3	1	0	1	1	1	0	2	0	0	0	0	11
al.																	(30.56
																	%)
Ren Y.	0	1	0	0	3	1	1	0	1	1	0	2	2	2	0	0	14
Et al																	(38.89
																	%)

Luo J et	1	1	0	0	3	1	1	0	1	1	0	2	0	0	0	0	11
al																	(30.56
																	%)
Wang X.	1	1	0	0	-3	0	0	1	1	0	0	-5	0	0	0	0	-4
et al.																	(0%)
Mao Y.	1	1	0	0	3	0	1	0	1	0	0	2	2	2	0	0	13
Et al.																	(36.11
																	%)
Anderso	1	0	0	0	-3	1	1	0	0	0	7	-5	2	0	0	0	4
n M. et																	(11.11
al.																	%)
Li H et	1	1	0	0	-3	0	0	1	1	0	0	-5	0	0	0	0	-4
al.																	(0%)
Wang et	0	1	0	0	3	0	0	0	1	0	0	5	0	0	0	0	0
al. 2021	0	T	0	0	5	0	0	0	T	0	0	-5	0	0	0	0	(0%)
Yang Y.																	15
et al.	1	1	0	0	3	1	0	1	1	1	0	2	2	2	0	0	(41.67
2021																	%)
Lv X. et																	12
al. 2021	1	1	0	0	3	1	0	0	1	1	0	2	0	2	0	0	(33.33
																	%)

Yu Y. et																	11
al. 2021	1	1	0	0	3	0	1	0	1	0	0	2	2	0	0	0	(30.56
																	%)
Fang S.																	13
et al.	1	1	0	0	3	1	0	1	1	1	0	2	0	2	0	0	(36.11
2021																	%)
Yang F.																	13
et al.	1	1	0	0	3	1	1	1	1	0	0	4	0	0	0	0	(36.11
2021																	%)
Chen Y.																	15
et al.	1	1	0	0	3	1	1	1	2	0	0	3	0	2	0	0	(41.67
2021																	%)
Horvart																	6
N. el al.	1	0	0	0	-3	0	0	0	1	0	0	-5	0	0	0	0	-0
2021																	(0 %)
Alksas																	6
A. et al.	1	1	0	0	3	0	0	0	2	0	0	-5	2	2	0	0	(16.67
2021																	%)
Chong																	15
H. et al.	1	1	0	0	3	1	0	0	2	1	0	2	2	2	0	0	(41.67
2021																	%)

Ding Z.																	11
et al.	1	1	0	0	3	1	0	0	1	0	0	2	2	0	0	0	(30.56
2021																	%)
Fan Y. et																	14
al. 2021	1	1	0	0	3	1	1	1	1	1	0	2	0	2	0	0	(38.89
																	%)
Gao F. et	1	1	0	0	2	1	0	0	1	0	0	2	0	0	0	0	9
al. 2021	1	1	0	0	3	1	0	0	1	0	0	2	0	0	0	0	(25%)
Li X. et																	12
al. 2021	1	1	0	0	3	0	1	0	2	0	0	2	0	2	0	0	(33.33
																	%)
Shi Z. et																	2
al. 2021	1	0	0	0	3	0	0	1	2	0	0	-5	0	0	0	0	(5.56
																	%)
Dai H. et																	2
al. 2021	1	1	0	0	3	0	0	0	2	0	0	-5	0	0	0	0	(5.56
																	%)
Fan Y. et																	4
al. 2021	1	1	0	0	3	1	1	1	1	0	0	-5	0	0	0	0	(11.11
																	%)

Yang	Х.																	11
et	al.	1	1	0	0	3	1	0	0	1	0	0	2	0	2	0	0	(30.56
2021																		%)
Chen	Y.																	8
et	al.	1	1	0	0	3	0	0	0	1	0	0	2	0	0	0	0	(22.22
2021																		%)
Kong	C.																	14
et	al.	1	1	0	0	3	1	0	0	1	1	0	2	2	2	0	0	(38.89
2021																		%)
Zhao	J.	1	1	0	0	-3	0	0	1	2	1	0	-5	0	2	0	0	0
Et al.																		(0%)
Song	D.																	11
et	al.	1	1	0	0	3	1	0	1	1	1	0	2	0	0	0	0	(30.56
2021																		%)
Zhong	3																	6
X. et	al.	1	1	0	0	3	1	0	1	1	1	0	-5	2	0	0	0	(16.67
2021																		%)
Zhao	et																	7
al. 202	21	1	1	0	0	3	1	1	1	1	1	0	-5	0	2	0	0	(19.44
																		%)

Chen	Y.																	13
et	al.	1	1	0	0	3	1	0	0	2	0	0	3	2	0	0	0	(36.11
2021																		%)
Liang	H.																	1
et	al.	1	0	0	0	3	0	0	0	2	0	0	-5	0	0	0	0	(2.78
2021																		%)
Zhang	g L.																	12
et	al.	1	1	0	0	3	1	0	0	1	1	0	2	0	2	0	0	(33.33
2021																		%)
Zhang	g L.																	13
et	al.	1	0	0	0	3	1	0	1	1	0	0	2	2	2	0	0	(36.11
2021																		%)
Zhang	5																	13
Y. et	al.	1	1	0	0	3	1	0	1	1	1	0	2	0	2	0	0	(36.11
2021																		%)
Zhao	Y.																	14
et	al.	1	1	0	0	3	1	0	0	1	1	0	2	2	2	0	0	(38.89
2021																		%)
Kuang	g																	16
Y. et	al.	1	1	0	0	3	1	0	1	1	1	0	3	2	2	0	0	(44.44
2021																		%)

Meng X.	0	1	0	0	3	1	0	0	1	1	0	2	2	0	0	0	11
Et al.																	(30.56
																	%)
Zhu Y.																	3
et al.	1	1	0	0	3	1	0	0	1	1	0	-5	0	0	0	0	(8.33
2021																	%)
Liu J. Et	1	1	0	0	3	1	0	1	1	0	0	-5	0	0	0	0	3
al																	(8.33
																	%)
Chong																	15
H. et al.	1	1	0	0	3	1	0	1	1	1	0	2	2	2	0	0	(41.67
2021																	%)
Gu D. et																	17
al. 2020	1	1	0	0	3	1	1	1	2	1	0	2	2	2	0	0	(47.22
																	%)
Zhao Y.																	15
et al.	1	1	0	0	3	1	0	1	1	1	0	2	2	2	0	0	(41.67
2020																	%)
Ai et al.																	2
2020	1	1	0	0	3	0	0	1	1	0	0	-5	0	0	0	0	(5.56
																	%)

Shaghag hi et al. 2020	1	0	0	0	-3	0	0	1	1	0	0	-5	0	0	0	0	-5 (0%)
Li J. et al. 2020	1	1	0	0	3	0	0	0	2	1	0	-5	0	0	0	0	3 (8.33 %)
Geng et al. 2020	1	1	0	0	3	0	1	1	1	0	0	-5	0	0	0	0	3 (8.33 %)
Zhang J. et al. 2020	1	0	0	0	3	1	0	0	1	0	0	-5	0	2	0	0	3 (8.33 %)
Zhang Z. et al. 2020	1	1	0	0	3	0	0	1	1	0	7	2	2	0	0	0	18 (50%)
Hectors et al. 2020	1	1	0	0	3	1	0	0	1	0	7	-5	0	0	0	0	9 (25%)
Shi et al. 2020	1	1	0	0	3	0	0	0	1	0	7	-5	0	0	0	0	8 (22.22 %)

Feng. et	1	1	0	0	3	0	0	0	1	0	0	-5	0	0	0	0	1
al.																	(2.78
																	%)
Nebbia																	2
G. et al.	1	1	0	0	3	0	0	0	2	0	0	-5	0	0	0	0	(5.56
2020																	%)
Schobert																	5
I.T. et al.	1	1	0	0	3	1	1	0	1	0	0	-5	2	0	0	0	(13.89
2020																	%)
Sun Y. et	1	1	0	0	3	0	0	0	2	0	0	2	0	0	0	0	9
al. 2020	T		0	0	5	0	0	0	2	0	0	2	0	0	0	0	(25%)
Wilson																	6
G.C. et	1	0	0	0	-3	0	0	0	1	0	0	-5	0	0	0	0	-0
al. 2020																	(0 %)
Hectors																	
S.J. et al.	1	1	0	0	-3	0	1	0	1	0	0	-5	2	0	0	0	-2
2020																	(0%)
Wang																	14
W. et al.	1	1	0	0	3	1	1	1	2	0	0	2	2	0	0	0	(38.89
2020																	%)

Wang																	13
X.H. et	1	1	0	0	3	1	0	0	2	1	0	2	0	2	0	0	(36.11
al. 2020																	%)
Song W.																	13
et al.	1	1	0	0	3	1	0	1	1	1	0	2	2	0	0	0	(36.11
2019																	%)
Zhang J.																	_1
et al.	1	1	0	0	-3	1	0	0	1	0	0	-5	0	0	0	0	-4
2019																	(0 %)
Huang																	3
X. et al.	1	1	0	0	3	0	1	0	2	0	0	-5	0	0	0	0	(8.33
2019																	%)
Ye Z. et																	14
al. 2019	1	1	0	0	3	1	1	1	1	1	7	-5	0	2	0	0	(38.89
																	%)
Zhang																	12
R. et al.	1	1	0	0	3	1	0	0	1	1	0	2	0	2	0	0	(33.33
2019																	%)
Chen et																	3
al. 2019	1	1	0	0	3	1	0	1	1	0	0	-5	0	0	0	0	(8.33
																	%)

Xu et al.	1	1	0	0	_3	0	0	1	1	0	0	_5	0	0	0	0	-4
2019	T	1	0	0	-5	0	0	T	1	0	0	-5	0	0	0	0	(0%)
Li Y. et																	2
al. 2019	1	0	0	0	3	0	1	1	1	0	0	-5	0	0	0	0	(5.56
																	%)
Oyama																	2
A. et al.	1	0	0	0	3	1	0	0	2	0	0	-5	0	0	0	0	(5.56
2019																	%)
Wang																	7
H.Q et	1	1	0	0	3	1	1	1	2	0	0	-5	2	0	0	0	(19.44
al. 2019																	%)
Zhu Y.J.																	0
et al.	1	1	0	0	3	1	0	0	1	0	0	2	0	0	0	0	() () ()
2019																	(25%)
Zhang																	21
Z. et al.	1	1	0	0	3	1	0	0	1	1	7	2	2	2	0	0	(58.33
2019																	%)
Gordic																	4
et al.	1	1	1	0	3	1	0	1	1	0	0	-5	0	0	0	0	(11.11
2019																	%)

Jansen et																	3
al. 2019	1	1	0	0	3	1	0	0	2	0	0	-5	0	0	0	0	(8.33
																	%)
Ma et al.	1	0	0	0	2	0	1	1	1	0	0	Б	0	0	0	0	-4
2019	1	0	0	0	-3	0	1	1	1	0	0	-5	0	0	0	0	(0%)
Wu J. et																	13
al. 2019	1	1	0	0	3	0	0	0	1	1	0	2	2	2	0	0	(36.11
																	%)
Kim S. et																	11
al. 2019	1	1	0	0	3	1	0	1	0	0	0	2	2	0	0	0	(30.56
																	%)
Lewis S.																	5
et al.	1	1	0	0	3	1	0	1	1	0	0	-5	2	0	0	0	(13.89
2019																	%)
Chen S.																	13
et al.	1	1	0	0	3	0	1	1	1	1	0	2	0	2	0	0	(36.11
2019																	%)
Feng																	12
S.T. et al.	1	1	0	0	3	0	0	0	1	0	0	2	2	2	0	0	(33.33
2019																	%)

Wu M																	11
et al	. 1	0	0	0	3	1	0	0	2	0	0	2	2	0	0	0	(30.56
2018																	%)
Yang L																	15
et al	. 1	1	0	0	3	1	1	0	1	1	0	2	2	2	0	0	(41.67
2018																	%)
Stocker																	4
O. et al	. 1	1	0	0	3	0	0	0	1	1	0	-5	2	0	0	0	(11.11
2018																	%)
Ahn S.J.																	3
et al	. 1	1	0	0	3	1	0	0	0	0	0	-5	2	0	0	0	(8.33
2018																	%)
Hui																	3
T.C.H. et	t 1	1	0	0	3	0	0	0	2	1	0	-5	0	0	0	0	(8.33
al. 2018																	%)
Zou et	t																1
al. 2018	1	1	0	0	-3	0	1	0	1	0	0	0	0	0	0	0	(2.78
																	%)
Li et al																	14
2018	1	1	0	0	3	0	1	0	1	0	7	0	0	0	0	0	(38.89
																	%)

Wu et al.																	7
2018	1	0	0	0	-3	1	0	0	1	0	7	0	0	0	0	0	(19.44
																	%)
Li Z. et	1	1	0	0	3	0	0	0	2	0	0	2	0	0	0	0	9
al. 2017	1	T	0	0	5	0	0	0	2	0	0	2	0	0	0	0	(25%)
Moriya	1	1	0	0	-3	1	0	0	1	0	0	-5	0	0	0	0	-4 (-
et al																	11.11
																	%)