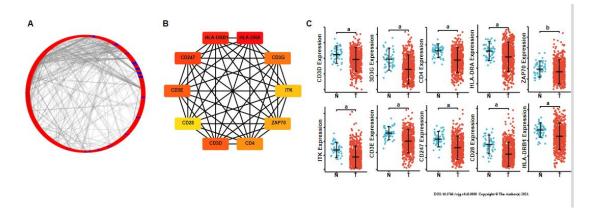
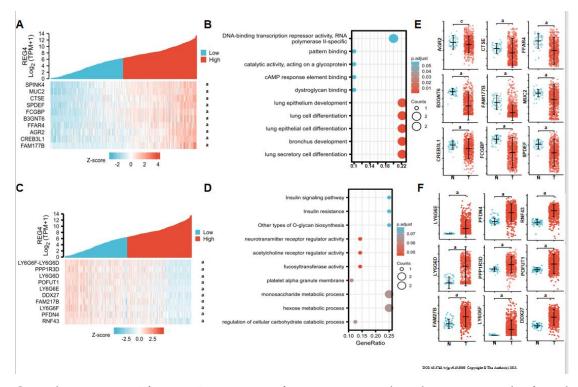
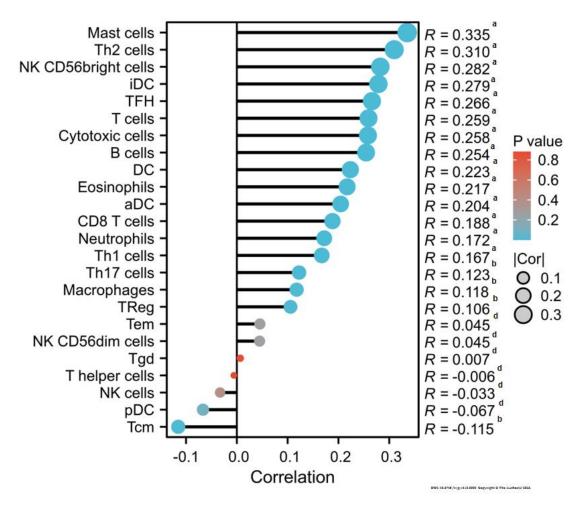
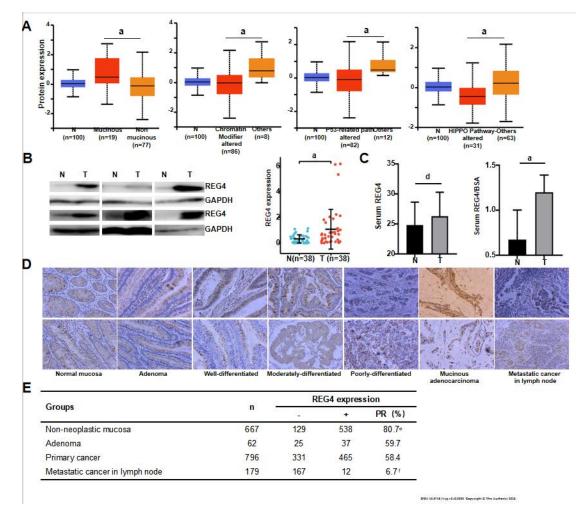


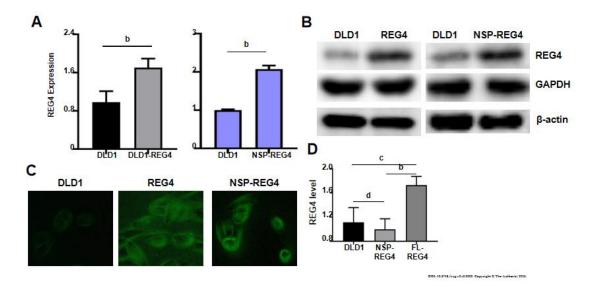
Supplementary Figure 1 Regenerating gene 4 mRNA expression in colorectal carcinogenesis and subsequent progression. A: Regenerating gene 4 (*REG4*) expression was higher in colorectal cancer (CRC) than normal mucosa by quantitative reverse transcription polymerase chain reaction; B: *REG4* expression was higher in CRC than normal mucosa by xiantao database (P < 0.05); C: Skyzypczak's, the cancer genome atlas (TCGA)'s and Sabates-Bellver's datasets were also used for bioinformatics analysis and higher *REG4* expression was detectable in colorectal adenoma and CRC than in normal mucosa (P < 0.05); D: TCGA database showed that *REG4* was more highly expressed in colonic than rectal cancers (P < 0.05). *REG4* expression was negatively correlated with lymph node metastasis, distant metastasis and tumor, node, and metastasis staging of CRC. *REG4* expression was positively correlated with microsatellite instability and B-raf proto-oncogene mutation (P < 0.05); E: *REG4* expression was lower in colorectal adenocarcinomas than mucinous adenocarcinomas by University of Alabama at Birmingham cancer


data analysis portal; F: *REG4* mRNA expression was positively related to overall survival rate of the patients with CRC according to TCGA database; G: *REG4* mRNA expression was positively related to overall survival rate of patients with CRC according to Kaplan-Meier plotter. ^a*P* < 0.001. *REG4*: Regenerating gene 4; Ad: Adenocarcinoma; BRAF: B-Raf proto-oncogene; COAD: Colon adenocarcinoma; DM: Distal metastasis; HR: Hazard ratio; LN: Lymph node metastasis; MSI: Microsatellite instability; N: Normal; READ: Rectal adenocarcinoma; TCGA: The cancer genome atlas.


Supplementary Figure 2 Clinicopathological significances of regenerating gene 4 methylation in colorectal cancer. A: We established the linear regression between methylation and mRNA expression of regenerating gene 4 (*REG4*) in colorectal cancer (CRC) using xiantao database; B: Comparison of the methylation level of *REG4* between colon cancer and normal tissues; C: Comparison of *REG4* methylation level with different clinical characteristics of CRC patients based on University of Alabama at Birmingham cancer data analysis portal. ^a*P* < 0.001. *REG4*: Regenerating gene 4; COAD: Colon adenocarcinoma; READ: Rectal adenocarcinoma; N: Normal; T: Tumor; S: stage; TP53: Tumor protein p53; TSS: Transcription start site.


Supplementary Figure 3 Differential genes and related signal pathways about regenerating gene 4 expression in colorectal cancer. A: The volcano map of the differential genes about regenerating gene 4 was shown in colorectal cancer (CRC); B: Differential genes were subjected to signal pathway analysis using kyoto encyclopedia of genes and genomes; C: Differential genes were subjected to signal pathway analysis using gene set enrichment analysis; D: The expression of differential genes was compared between CRC and normal tissues. ^a*P* < 0.001; ^b*P* < 0.01. KEGG: Kyoto encyclopedia of genes and genomes; N: Normal; T: Tumor.


Supplementary Figure 4 Protein-protein interaction network and module analysis about differential genes of regenerating gene 4 in colorectal cancer. A: String was used to identify the protein-protein interaction network of differential genes about regenerating gene 4 in colorectal cancer (CRC); B: Cytoscape was used to find out the top 10 hub nodes ranked by degree; C: The hub genes were compared between CRC and normal tissues. ^a*P* < 0.001; ^b*P* < 0.01.


Supplementary Figure 5 regenerating gene 4-related genes and signal pathways in colorectal cancer. A: The top positively related genes of regenerating gene 4 (*REG4*) were screened according to the hot map; B: Positively related genes were subjected to the signal pathway analysis using kyoto encyclopedia of genes and genomes (KEGG); C: The top negatively related genes of *REG4* were screened according to the hot map; D: Negatively related genes were subjected to the signal pathway analysis using KEGG; E: The positively related genes were compared between colorectal cancer (CRC) and normal tissues using Xiantao platform; F: The negatively related genes were compared between CRC and normal tissues using Xiantao platform. *REG4*: Regenerating gene 4.

Supplementary Figure 6 Relationship between regenerating gene 4 mRNA expression and immune infiltration in colorectal cancer. In line with Xiantao, mast, T helper (Th) 2, Natural killer CD56 bright, T, cytotoxic, B, CD8 T, Th1 and Th17 cells, interstitial dendritic cell (DC), T follicular helper, activated DC and T regulatory cell in colorectal cancer were positively correlated with regenerating gene 4 (*REG4*) mRNA expression (*P* < 0.05). Central memory T cells were negatively correlated with *REG4* mRNA expression (*P* < 0.05). ^a*P* < 0.001; ^b*P* < 0.01; ^dNo significance. NK: Natural killer; TReg: Regulatory T cell; Tcm: Central memory T cells; Tem: Effector memory T cell; TFH: Follicular helper T cell; Tgd: $\gamma\delta$ T cells; DC: interstitial dendritic cell; Th: T helper.

Supplementary Figure 7 Expression of regenerating gene 4 protein in colorectal carcinogenesis and subsequent progression. A: University of Alabama at Birmingham cancer data analysisportal database was used to compare regenerating gene 4 (*REG4*) protein with the clinicopathological features of colorectal cancer (CRC); B: We used western blotting to compare *REG4* protein expression between CRC and normal tissues; C: ELISA detection of serum *REG4* expression; D: Immunohistochemically, *REG4* protein was positively expressed in normal epithelial cells, adenoma, well-, moderately and poorly differentiated and mucinous adenocarcinoma, and lymph node metastatic cancer cells; E: *REG4* expression. ^a*P* < 0.001; ^dNo significance; ^e*P* < 0.001 *vs* adenoma and primary cancer; ^f*P* < 0.001 *vs* primary cancer. N: Normal; PR: Ppositive rate; *REG4*: Regenerating gene 4; T: Tumor.

Supplementary Figure 8 Expression of regenerating gene 4 protein in colorectal carcinogenesis and subsequent progression. A: Expression of regenerating gene 4 (*REG4*) mRNA was detected by quantitative polymerase chain reaction to verify whether full-length (FL)-*REG4* and nonsignal peptide (NSP)-*REG4* were successfully transfected in DLD-1 cells; B: Expression of *REG4* protein was detected by western blotting to verify whether FL-*REG4* and NSP-*REG4* were successfully transfected in DLD-1 cells; C: Expression of *REG4* protein was detected by immunofluorescence to verify whether FL-*REG4* and NSP-*REG4* were successfully transfected in DLD-1 cells; D: Expression of *REG4* protein was detected by immunofluorescence to verify whether FL-*REG4* and NSP-*REG4* were successfully transfected in DLD-1 cells; D: Expression of *REG4* protein was detected by ELISA to verify whether FL-*REG4* and NSP-*REG4* were successfully transfected in DLD-1 cells. ^b*P* < 0.01; ^c*P* < 0.05; ^dNo significance. FL: Full length; NSP: Nonsignal peptide; *REG4*: Regenerating gene 4.

Name	Dilution	Source	Company	Catalog no.
GAPDH	1: 2000 for WB	Mouse	Proteintech	60004-1-Ig
REG4	1: 1000 for WB, 1:	Goat	R and D	AF1379
	100 for IHC			
EGFR	1: 10000 for WB	Mouse	Proteintech	66455-1-Ig
EGFR Tyr992	1: 1000 for WB	Rabbit	CST	2235S
EGFR	1: 1000 for WB	Rabbit	CST	2234S
Tyr1068				
EGFR	1: 1000 for WB	Rabbit	CST	4404S
Tyr1148				
EGFR	1:1000 for WB	Rabbit	CST	4407S
Tyr1173				
P-PI3K	1: 1000 for WB	Rabbit	CST	4228S
P-AKT	1: 1000 for WB	Rabbit	Proteintech	4058S
NF-ĸB	1: 2000 for WB	Rabbit	Proteintech	10745-1-AP
P-NF-κB	1: 1000 for WB	Rabbit	CST	3033S
Bcl-2	1: 2000 for WB	Rabbit	Proteintech	12789-1-AP
BCL-X/L	1: 1000 for WB	Rabbit	Santa Cruz	sc-56021
ACLY	1: 2000 for WB	Rabbit	Proteintech	15421-1-AP
ACC1	1: 2000 for WB	Rabbit	Proteintech	21923-1-AP
P-ACC1	1: 1000 for WB	Rabbit	CST	11818S
AC-H3	1: 2000 for WB,	Rabbit	Proteintech	61637
	10 µg for ChIP, 5			
	µg for Co-IP			
AC-H4	1: 2000 for WB,	Rabbit	Proteintech	39925
	10 µg for ChIP, 5			
	µg for Co-IP			
ING5	1: 2000 for WB,	Rabbit	Proteintech	10665-1-AP
	10 µg for ChIP			

Supplementary Table 1 Primary antibodies used in this study

10 µg for ChIP, 5	
μg for Co-IP	
SREBP-1 1: 200 for WB, 10 Mouse Santa Cruz 66875-2	1-Ig
μ g for ChIP, 10	
μg per Co-IP	
ACAT 1: 2000 for WB Rabbit Proteintech 16215-3	1-AP
ADRP 1: 2000 for WB Rabbit Proteintech 15294-7	1-AP
CIDE A 1: 1000 for WB Rabbit Proteintech 13170-7	1-AP
CIDE B 1: 2000 for WB Rabbit Proteintech 27600-7	1-AP
CIDE C 1: 2000 for WB Rabbit Proteintech 12287-7	1-AP
Perilipin 51: 2000 for WBRabbitProteintech26951-3	1-AP
TIP471: 2000 for WBRabbitProteintech10694-7	1-AP
NEDD4 1: 200 for WB Mouse Santa Cruz sc-5181	60
NEDD4L 1: 200 for WB Mouse Santa Cruz sc-5149	954
CBL1: 200 for WBMouseSanta Cruzsc-1651	L
PSMC1 1: 200 for WB Mouse Santa Cruz sc-2934	184
COP11: 200 for WBMouseSanta Cruzsc-1667	799
PSMC1 1: 500 For WB Rabbit Proteintech 11196-2	1-AP
Ubiquitin1: 1000 for WBRabbitProteintech10201-2	2-AP

REG4: Regenerating gene 4; EGFR: Epidermal growth factor receptor; p-PI3K: Phosphorylated phosphoinositide 3-kinase; CST: Cell signaling technology; WB: Western blotting; IHC: Immunohistochemistry; Co-IP: Coimmunoprecipitation; ChIP: Chromosomal immunoprecipitation; ACLY: ATP-citrate lyase; ACC1: Acetyl-CoA carboxylase 1; HDAC: Histone deacetylase; SREBP-1: Sterol-regulatory element binding protein 1; CBL: Cbl proto-oncogene; ACAT: A-cholesterol acyltransferase; ADRP: Adipocyte differentiation-related protein; COP1: COP1 E3 ubiquitin ligase; NF-kB: Nuclear factor-kB; AC-H3: Acetyl-acetyl-histone 3; H4: Histone 4; ING5: Inhibitor of growth protein 5; CIDE: Cell-death-inducing DFF45-like effector; TIP: Tail-interacting protein; NEDD4L: NEDD4 like E3 ubiquitin protein ligase.

Ref.		Yr	Country	Ethnicity	AS	Cases	Contr	Risk	Outcome
							ol	to	
								cancer	
Oue	et	2005	Japan	Asian	Self-makin	36			
al ^[34]					g				
Oue	et	2007	Japan	Asian	R and D	80			Negative
al ^[15]									
Li	et	2010	Japan	Asian	R and D	320	169	Down	No
al ^[30]									
Zheng	g et	2010	Japan	Asian	Self-makin	318	330	Down	No
al ^[28]					g				
Li	et	2010	China	Asian	Self-makin	65	24	Down	
al ^[31]					g				
Sawad	da	2013	Japan	Asian	R and D	220			Negative
T et al	[35]								
He	et	2014	China	Asian	R and D	172			Negative
al ^[17]									
Kapri	0	2014	Finland	European	R and D	793			Positive
T et al	[37]								
Zhu	et	2015	China	Asian	R and D	186	186	Up	Negative
al ^[36]									
Zheng	g et	2010	China	Asian	R and D	60	60	Down	
al ^[29]									
Wang	; et	2015	China	Asian	R and D	92	92	Up	
al ^[32]									
Wang	et	2016	China	Asian	R and D	20	60	Up	
al ^[33]									

Supplementary Table 2 Main characteristics of eligible studies

AS: Antibody source; Self-making: Self-making antibody.

	Normal		Cancer			OR		OR
Ref.	Events	Tot	Events	То	Weigh	М-Н,	95% CI	M-H, random, 95%
		al		tal	t	random		CI
Li <i>et al</i> ^[31]	15	24	20	65	23.0%	3.75	1.41-9.99	
Li <i>et al</i> ^[30]	147	169	99	320	26.0%	14.92	8.98-24.76	-
Zheng et al ^[28]	234	330	184	318	26.7%	1.78	1.28-2.46	•
Zheng et al ^[29]	45	60	38	60	24.3%	1.74	0.79-3.81	-
Total (95% CI)		583		763	100%	3.64	1.11-11.95	
Total events	441		341					◆
Heterogeneity: τ^2	= 1.35; χ ² =	50.83,	df = 3 (P	< 0.0)0001); I ²	= 94%		
								0.01 0.1 1 10 100
Test for overall eff	ect: Z = 2.1	3(P = 0)	0.03)					Cancer Normal

Supplementary Table 3 Forest plot for relationship between regenerating gene 4 expression and colorectal cancer

CI: Confidence interval; df: Free degree; M-H: Metropolis-Hastings; OR: Odds ratio.

Supplementary Table 4 Forest plot for the relationship between regenerating gene 4 expression and lymph node metastasis of colorectal cancer

	LN-		LN+			OR		OR
Ref.	Event	Tot	Event	Tot	Weigh	М-Н,	95% CI	M-H, random, 95% CI
	S	al	s	al	t	random		
He <i>et al</i> ^[17]	56	125	30	47	11.6%	0.46	0.23-0.92	
Li et $al^{[31]}$	7	32	13	32	7.9%	0.41	0.14-1.22	_
Li <i>et al</i> ^[30]	67	190	32	130	13.7%	1.67	1.01-2.74	
Oue <i>et al</i> ^[34]	4	20	9	16	5.5%	0.19	0.04-0.85	- T
Oue <i>et al</i> ^[15]	12	44	11	36	8.9%	0.85	0.32-2.25	
Wang et al ^[33]	7	18	28	42	7.5%	0.32	0.10-1.00	-
Wang et al ^[32]	17	43	32	49	10.0%	0.35	0.15-0.81	
Zheng et al ^[38]	110	188	72	126	14.2%	1.06	0.67-1.67	
Zheng et al ^[29]	21	34	17	26	8.1%	0.86	0.30-2.48	
Zhu <i>et al</i> ^[36]	30	96	43	90	12.6%	0.50	0.27-0.90	-
Total (95%CI)		790		594	100%	0.62	0.41-0.94	
Total events	331		287					-
Heterogeneity:	$\tau^2 = 0.27;$	$\chi^2 = 2$	5.66, df =	= 9 (P =	= 0.002); I ²	$^{2} = 65\%$		
								-+
								0.01 0.1 1 10 10

LN+

LN-

Test for overall effect: Z = 2.24 (P = 0.03)

CI: Confidence interval; df: Free degree; M-H: Metropolis-Hastings; OR: odds ratio.

Supplementary Table 5 Forest plot for the relationship between regenerating gene 4 expression and tumor, node, and metastasis staging of colorectal cancer

	Stage I-II		Stage			OR		OR
			III-IV					
Ref.	Events	Tot	Events	Tot	Weigh	М-Н,	95%	M-H, random, 95% CI
		al		al	t	random	CI	
Oue <i>et al</i> ^[34]	4	20	9	16	10.6%	0.19	0.04-0	
							.85	
Oue <i>et al</i> ^[15]	11	43	12	37	17.6%	0.72	0.27-1	
							.89	-
Wang et	39	64	109	192	26.1%	1.19	0.67-2	
al ^[32]							.12	
Zheng et	29	95	44	91	25.6%	0.47	0.26-0	T I
al ^[28]							.86	
Zhu et al ^[36]	17	43	32	49	20.0%	0.35	0.15-0	•
							.81	
								_
Total		265		385	100%	0.55	0.31-0	-
(95%CI)							.98	
Total events	100		206					
Heterogeneity	y: $\tau^2 = 0.24$; χ^2	= 9.94	, $df = 4 (P = 0$.04); I ²	= 60%			•
								0.01 0.1 1 10 100
Test for overa	all effect: Z = Z	2.02 (P	= 0.04)					Stage Stage I-II
								III-IV

CI: Confidence interval; df: Free degree; M-H: Metropolis-Hastings; OR: Odds ratio.

Supplementary Table 6 Forest plot for the relationship between regenerating gene 4 expression and degree of differentiation of colorectal cancer

	Well/m		Poor/mucin			OR		OR
Ref.	oderate Events	То	ous/undiff Events	Tot	Weigh	М-Н,	95% CI	M-H, Fixed, 95% CI
Kei.	Lvents	tal	Evenus	al	t	Fixed	9570 CI	WI-11, FIXCU, 33 /0 CI
Kaprio <i>et</i>	173	71	39	80	37.3%	0.34	0.21-0.54	-
al ^[37]		2						T
Li <i>et al</i> ^[31]	13	53	7	11	6.1%	0.19	0.05-0.74	
Li <i>et al</i> ^[30]	87	29	12	23	11.1%	0.38	0.16-0.89	
		7						
Oue <i>et al</i> ^[34]	2	9	5	6	3.3%	0.06	0.00-0.82	
Oue <i>et al</i> ^[15]	17	71	6	9	5.7%	0.16	0.04-0.70	— —
Wang et al ^[32]	35	71	14	21	7.7%	0.49	0.18-1.35	
Zheng et al ^[28]	160	28	23	29	12.9%	0.33	0.13-0.84	
		6						-
Zhu et al ^[36]	53	15	20	28	15.9%	0.20	0.08-0.49	
		8						
Total		16		207	100%	0.30	0.22-0.41	
(95%CI)		57						
Total events	540		126					
Heterogeneity	: $\tau^2 = 4.88;$	df = 7	$V(P = 0.67); I^2 =$	• 0%				
								0.01 0.1 1 10
Test for overal	l effect: Z	= 7.58	(P < 0.00001)				Poor/mucin Well/

CI: Confidence interval; df: Free degree; M-H: Metropolis-Hastings; OR: Odds ratio; undiff: Undifferentiated.

Supplementary Table 7 Forest plot for the relationship between regenerating gene 4 expression and overall survival rate of colorectal cancer patients

				Peto OR		Peto OR
Ref.	О-Е	Varianc	Weigh	Exp [(O-E) /V],	95% CI	Exp [(O-E) /V],
		e	t	Fixed		Fixed, 95% CI
He <i>et al</i> ^[17]	-6	5.46	11.6%	0.33	0.14-0.77	
Li <i>et al</i> ^[30]	-3.84	19.36	41.1%	0.82	0.53-1.28	4
Oue <i>et al</i> ^[15]	-0.03	0.62	1.3%	0.95	0.08-11.48	
Sawada <i>et al</i> ^[35]	-7.23	12.88	27.3%	0.57	0.33-0.98	
Zhu <i>et al</i> ^[36]	- 11.6	8.83	18.7%	0.27	0.14-0.52	
	3					-
Total (95% CI)			100%	0.54	0.41-0.72	•
Heterogeneity: χ ²		0.01 0.1 1 10 100				
Test for overall e		REG4- REG4+				

CI: Confidence interval; df: Free degree; M-H: Metropolis-Hastings; OR: Odds ratio; *REG4*: Regenerating gene 4.

WHO classification		n	REG4 ex	REG4 expression			
			-	+	PR		
					(%)		
Well-differentiated adeno	307	117	190	61.9			
Moderately	differentiated	287	128	159	55.4		
adenocarcinoma							
Poorly differentiated carc	172	81	91	52.9			
Mucinous adenocarcinom	ia	27	4	23	85.2 ^a		

Supplementary Table 8 Relationship between regenerating gene 4 expression and histological subtyping of colorectal cancer

 ^{a}P < 0.05 *vs* well-, moderately and poorly differentiated adenocarcinoma. WHO: World health organization; *REG4*: Regenerating gene 4.