EDITORIAL

5835 Understanding the immunopathogenesis of COVID-19: Its implication for therapeutic strategy
Shimizu Y

OPINION REVIEW

5844 What is the gut feeling telling us about physical activity in colorectal carcinogenesis?
Cigrovski Berkovic M, Cigrovski V, Bilic-Curcic I, Mrzljak A

REVIEW

5852 Latest developments in chronic intestinal pseudo-obstruction
Zhu CZ, Zhao HW, Lin HW, Wang F, Li YX

ORIGINAL ARTICLE

Case Control Study

5866 Correlation between ductus venosus spectrum and right ventricular diastolic function in isolated single-umbilical-artery foetus and normal foetus in third trimester
Li TG, Nie F, Xu XY

Retrospective Cohort Study

5876 Clinical efficacy of integral theory–guided laparoscopic integral pelvic floor/ligament repair in the treatment of internal rectal prolapse in females
Yang Y, Cao YL, Zhang YY, Shi SS, Yang WW, Zhao N, Lyu BB, Zhang WL, Wei D

Retrospective Study

5887 Treatment of Kümmell’s disease with sequential infusion of bone cement: A retrospective study
Zhang X, Li YC, Liu HP, Zhou B, Yang HL
5894 Application value analysis of magnetic resonance imaging and computed tomography in the diagnosis of intracranial infection after craniocerebral surgery
Gu L, Yang XL, Yin HK, Lu ZH, Geng CJ
5902 Focal intrahepatic strictures: A proposal classification based on diagnosis-treatment experience and systemic review
Zhou D, Zhang B, Zhang XY, Guan WB, Wang JD, Ma F
5918 Preliminary analysis of the effect of vagus nerve stimulation in the treatment of children with intractable epilepsy
Fang T, Xie ZH, Liu TH, Deng J, Chen S, Chen F, Zheng LL
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5926</td>
<td>Scoring system for poor limb perfusion after limb fracture in children</td>
<td>Zhu T, Shi Y, Yu Q, Zhao YJ, Dai W, Chen Y, Zhang SS</td>
</tr>
<tr>
<td>5935</td>
<td>Overexpression of CD155 is associated with PD-1 and PD-L1 expression on immune cells, rather than tumor cells in the breast cancer microenvironment</td>
<td>Wang RB, Li YC, Zhou Q, Lv SZ, Yuan KY, Wu JP, Zhao YJ, Song QK, Zhu B</td>
</tr>
<tr>
<td>5944</td>
<td>Application of computer tomography-based 3D reconstruction technique in hernia repair surgery</td>
<td>Wang F, Yang XF</td>
</tr>
<tr>
<td>5962</td>
<td>Genetic diagnosis history and osteoarticular phenotype of a non-transfusion secondary hemochromatosis</td>
<td>Ruan DD, Gan YM, Lu T, Yang X, Zha YB, Yu QH, Liao LS, Lin N, Qian X, Luo JW, Tang FQ</td>
</tr>
<tr>
<td>5976</td>
<td>Abdominal ventral rectopexy with colectomy for obstructed defecation syndrome: An alternative option for selected patients</td>
<td>Wang L, Li CX, Tian Y, Ye JW, Li F, Tong WD</td>
</tr>
<tr>
<td>5999</td>
<td>Efficacy and economic benefits of a modified Valsalva maneuver in patients with paroxysmal supraventricular tachycardia</td>
<td>Wang W, Jiang TF, Han WZ, Jin L, Zhao XJ, Guo Y</td>
</tr>
<tr>
<td>6009</td>
<td>Duodenal giant stromal tumor combined with ectopic varicose hemorrhage: A case report</td>
<td>Li DH, Liu XY, Xu LB</td>
</tr>
<tr>
<td>6026</td>
<td>Pleomorphic adenoma of the trachea: A case report and review of the literature</td>
<td>Liao QN, Fang ZK, Chen SB, Fan HZ, Chen LC, Wu XP, He X, Yu HP</td>
</tr>
<tr>
<td>6036</td>
<td>Neoadjuvant targeted therapy for apocrine carcinoma of the breast: A case report</td>
<td>Yang P, Peng SJ, Dong YM, Yang L, Yang ZY, Hu XE, Bao GQ</td>
</tr>
<tr>
<td>6043</td>
<td>Huge encrusted ureteral stent forgotten for over 25 years: A case report</td>
<td>Kim DS, Lee SH</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6048</td>
<td>Roxadustat for treatment of erythropoietin-hyporesponsive anemia in a hemodialysis patient: A case report</td>
<td>Yu WH, Li XJ, Yuan F</td>
</tr>
<tr>
<td>6056</td>
<td>Suspected SARS-CoV-2 infection with fever and coronary heart disease: A case report</td>
<td>Gong JR, Yang JS, He YW, Yu KH, Liu J, Sun RL</td>
</tr>
<tr>
<td>6080</td>
<td>Fourty-nine years old woman co-infected with SARS-CoV-2 and Mycoplasma: A case report</td>
<td>Gao ZA, Gao LB, Chen XJ, Xu Y</td>
</tr>
<tr>
<td>6095</td>
<td>Small-cell neuroendocrine carcinoma of the rectum — a rare tumor type with poor prognosis: A case report and review of literature</td>
<td>Chen ZZ, Huang W, Wei ZQ</td>
</tr>
<tr>
<td>6103</td>
<td>Laparoscopic left lateral sectionectomy in pediatric living donor liver transplantation by single-port approach: A case report</td>
<td>Li H, Wei L, Zeng Z, Qu W, Zhu ZJ</td>
</tr>
<tr>
<td>6110</td>
<td>Malignant meningioma with jugular vein invasion and carotid artery extension: A case report and review of the literature</td>
<td>Chen HY, Zhao F, Qin JY, Lin HM, Su JP</td>
</tr>
<tr>
<td>6130</td>
<td>Hemophagocytic lymphohistiocytosis caused by STAT1 gain-of-function mutation is not driven by interferon-γ: A case report</td>
<td>Liu N, Zhao FY, Xu XJ</td>
</tr>
<tr>
<td>6136</td>
<td>Single door laminoplasty plus posterior fusion for posterior atlantoaxial dislocation with congenital malformation: A case report and review of literature</td>
<td>Zhu Y, Wu XX, Jiang AQ, Li XF, Yang HL, Jiang WM</td>
</tr>
<tr>
<td>6144</td>
<td>Occipital nodular fasciitis easily misdiagnosed as neoplastic lesions: A rare case report</td>
<td>Wang T, Tung GC, Yang H, Fan JK</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>6150</td>
<td>Postoperative secondary aggravation of obstructive sleep apnea-hypopnea syndrome and hypoxemia with bilateral carotid body tumor: A case report</td>
<td>Yang X, He XG, Jiang DH, Feng C, Nie R</td>
</tr>
<tr>
<td>6158</td>
<td>Uncontrolled central hyperthermia by standard dose of bromocriptine: A case report</td>
<td>Ge X, Luan X</td>
</tr>
<tr>
<td>6164</td>
<td>Acute celiac artery occlusion secondary to blunt trauma: Two case reports</td>
<td>Li H, Zhao Y, Xu YA, Li T, Yang J, Hu P, Ai T</td>
</tr>
<tr>
<td>6172</td>
<td>Multiple ectopic goiter in the retroperitoneum, abdominal wall, liver, and diaphragm: A case report and review of literature</td>
<td>Qin LH, He FY, Liao JY</td>
</tr>
<tr>
<td>6181</td>
<td>Symptomatic and optimal supportive care of critical COVID-19: A case report and literature review</td>
<td>Pang QL, He WC, Li JX, Huang L</td>
</tr>
<tr>
<td>6190</td>
<td>Primary breast cancer patient with poliomyelitis: A case report</td>
<td>Wang XM, Cong YZ, Qiao GD, Zhang S, Wang LJ</td>
</tr>
<tr>
<td>6206</td>
<td>Novel triple therapy for hemorrhagic ascites caused by endometriosis: A case report</td>
<td>Han X, Zhang ST</td>
</tr>
</tbody>
</table>
ABOUT COVER

Peer-reviewer of *World Journal of Clinical Cases*, Dr. Mohamad Adam Bujang is a Research Officer at the Institute for Clinical Research, Ministry of Health, Malaysia. After receiving his Bachelor’s degree in Statistics from MARA University of Technology in 2004, Dr. Adam undertook his postgraduate study at the same university, receiving his Master’s degree (MBA) in 2008 and his PhD in Information Technology and Quantitative Sciences in 2017. Currently, he works as a biostatistician and researcher in the Clinical Research Centre, Sarawak General Hospital. His ongoing research interests involve such research methodologies as sampling techniques, sample size planning, and statistical analyses. Since 2016, he has served as an active member of the Malaysia Institute of Statistics and the Association of Clinical Registries Malaysia. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (*WJCC, World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The *WJCC* is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for *WJCC* as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Semimonthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-gan Peng

EDITORIAL BOARD MEMBERS

PUBLICATION DATE

December 6, 2020

COPYRIGHT

© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.f6publishing.com
Retrospective Study

Application of computer tomography-based 3D reconstruction technique in hernia repair surgery

Feng Wang, Xiao-Feng Yang

Abstract

BACKGROUND
Hernia is a common condition requiring abdominal surgery. The current standard treatment for hernia is tension-free repair using meshes. Globally, more than 200 new types of meshes are licensed each year. However, their clinical applications are associated with a series of complications, such as recurrence (10% - 24%) and infection (0.5% - 9.0%). In contrast, 3D-printed meshes have significantly reduced the postoperative complications in patients. They have also shortened operating time and minimized the loss of mesh materials. In this study, we used the myopectineal orifice (MPO) data obtained from preoperative computer tomography (CT)-based 3D reconstruction for the production of 3D-printed biologic meshes.

AIM
To investigate the application of multislice spiral CT-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery.

METHODS
We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019. This study included 30 males and 30 females, with a mean age of 40 ± 5.6 years. Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients. Anatomic points were set for the purpose of measurement based on the definition of MPO: A: The pubic tubercle; B: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis, C: Intersection of the horizontal line
fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License/s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Medicine, research and experimental

Country/Territory of origin: China

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Received: July 30, 2020
Peer-review started: July 30, 2020
First decision: August 22, 2020
Revised: September 5, 2020
Accepted: October 13, 2020
Article in press: October 13, 2020
Published online: December 6, 2020

P-Reviewer: Kassir R
S-Editor: Huang P
L-Editor: MedE-Ma JY
P-Editor: Ma YJ

extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament, D: Intersection of the iliopectineal muscle and the inguinal ligament, and E: Intersection of the iliopsoas muscle and the superior pubic ramus. The distance between the points was measured. All preoperative and intraoperative data were analyzed using the t test. Differences with P < 0.05 were considered significant in comparative analysis.

RESULTS
The distance between points AB, AC, BC, DE, and AE based on preoperative and intraoperative data was 7.576 ± 0.212 cm vs 7.573 ± 0.266 cm, 7.627 ± 0.212 cm vs 7.627 ± 0.212 cm, 7.677 ± 0.229 cm vs 7.567 ± 0.786 cm, 7.589 ± 0.204 cm vs 7.512 ± 0.21 cm, and 7.617 ± 0.231 cm vs 7.582 ± 0.189 cm, respectively. All differences were not statistically significant (P > 0.05).

CONCLUSION
The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region. This technique can provide precise data for the production of 3D-printed biologic meshes.

Key Words: Hernia; Inguinal; Myopectineal orifice; 3D-printed biologic meshes; Computer tomography-based 3D reconstruction; Inguinal hernia

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We investigated the application of multislice spiral computer tomography (CT)-based 3D reconstruction technique in 3D-printed biologic mesh for hernia repair surgery. We retrospectively analyzed 60 patients who underwent laparoscopic tension-free repair for inguinal hernia. Data on the myopectineal orifice (MPO) were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients. All preoperative and intraoperative data were analyzed using the t test. Their differences were not statistically significant. The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region. This technique can provide precise data for the production of 3D-printed biologic meshes.

INTRODUCTION
Hernia is a common condition requiring abdominal surgery. The current standard treatment for hernia is tension-free repair using meshes[1-2]. Globally, more than 200 new types of meshes are licensed each year. They are primarily divided into synthetic and biologic meshes, which are used to repair myopectineal orifice (MPO) defects with different mechanisms. However, their clinical applications are associated with a series of complications, such as recurrence and infection, leading to a bottleneck in the development of hernia repair techniques[3-9]. Statistics show that the recurrence rate after hernia repair surgery ranges from 10% to 24%[10], and postoperative mesh infection rate ranges from 0.5% to 9.0%[11]. This has led to the advent of 3D-printed meshes. Since their emergence, 3D-printed meshes have significantly reduced postoperative complications in patients. They have also shortened operating time and minimized the loss of mesh materials[12-13]. Physicians in Italy have conducted investigations with 3D-printed meshes and achieved considerable progress. However, there is no systematically formulated process of clinical application. When using 3D printing technology in hernia surgery, the first step is the generation of stereoscopic...
images of the MPO and defect sites for data analysis using computer tomography (CT)-based 3D reconstruction technique. Next, the stereoscopic 3D imaging data is input to a 3D printer. Using exclusive mesh materials and specific computational programs, the 3D printing device gradually stacks the materials layer-by-layer to complete the construction of a “3D mesh”. Currently, the application of CT imaging in hernia repair surgery is mostly focused on preoperative diagnosis and classification\(^{[11]}\), determination of mesh size\(^{[12]}\), and assessment of postoperative infection of the inguinal region for treatment plan formulation. Reports on the use of CT imaging for the precise assessment of the MPO and sites of hernia and its application to the production of 3D biologic meshes are absent. The purpose of the present study was to conduct statistical analysis of the MPO data obtained from preoperative CT-based 3D reconstruction and real-world intraoperative measurements so as to identify the differences between them and determine whether the multislice spiral CT-based 3D reconstruction technique can be an ideal method to obtain precise data for the production of 3D printed biologic meshes.

MATERIALS AND METHODS

Baseline characteristics

A total of 60 patients who underwent laparoscopic tension-free repair for inguinal hernia at the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019 were retrospectively analyzed. This study included 30 males and 30 females, with a mean age of 40 ± 5.6 years. All patients were confirmed to have no history of diseases that affected the anatomy of the inguinal region, such as disorders of collagen metabolism; history of inguinal hernia; history of lower abdominal surgery; and history of prostate, seminal vesicle, or uterus resection. The patients underwent preoperative thin-slice CT scanning of the inguinal region. Data of the MPO collected through CT-based 3D reconstruction and real-world intraoperative measurements were compared.

Methods

The following measurement points were set according to the definition of MPO: A: The pubic tubercle; B: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis; C: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and transversus abdominis and the inguinal ligament; D: Intersection of the iliopsoas muscle and inguinal ligament; and E: The intersection of the iliopsoas muscle and the superior pubic ramus. The distance between points AB, AC, BC, DE, and AE in the patients was measured using the state-of-the-art dual-source dual-energy CT scanner FORCE (Siemens, Berlin, Germany), purchased by our hospital. These line segments were not in the same plane and did not intersect with each other. The region enclosed by their projections was free of muscle and bone tissues, \textit{i.e.}, the stereoscopic 3D structure of the MPO. All intraoperative measurements were obtained during laparoscopic totally extraperitoneal (TEP) inguinal hernia repair: Under general anesthesia, a 10-mm infraumbilical incision was made and extended in layers to the posterior rectus sheath. A pneumoperitoneum was established after a trocar was inserted. A preliminary preperitoneal space was established by advancing the laparoscope with sweeping motions. Next, two trocars were placed at the superior 1/3 and inferior 1/3 of the midline, as instrument portals. The spaces of Retzius and Bogros were fully exposed, and the superior edge of the dissected space was 2 cm beyond the conjoint tendon. Spermatic cord peritoneal stripping must be performed in male patients, while the round ligament of the uterus in female patients could be dissected if necessary. Finally, the distance between points AB, AC, BC, DE, and AE in the operative field was measured using a sterile soft ruler and recorded.

Comparison of the measurement points marked in the CT-based 3D reconstruction images and during the surgery is shown in Figure 1.

Statistical analysis

The SPSS 20.0 statistical software was used to perform paired sample \(t\)-test analysis on the distance between the measurement points of the MPO predicted by the multislice spiral CT-based 3D reconstruction data and the real-world intraoperative measurement data. \(P > 0.05\) indicated that there was no statistical difference between the two sets of data. The distance between the measurement points of the MPO
predicted using the multislice spiral CT-based 3D reconstruction technique and that predicted using the real-world intraoperative measurement data was considered to be similar. Comparison of preoperative CT measurement data and intraoperative measurement data is shown in Table 1 and Figure 2.

RESULTS

The MPO data for all 60 patients were collected by preoperative CT-based 3D reconstruction as well as intraoperative measurements. All surgeries were completed successfully. The preoperative and intraoperative data showed that the distance between points AB, AC, BC, DE, and AE was 7.576 ± 0.212 cm vs 7.573 ± 0.266 cm, 7.627 ± 0.212 cm vs 7.627 ± 0.212 cm, 7.677 ± 0.229 cm vs 7.567 ± 0.786 cm, 7.589 ± 0.204 cm vs 7.512 ± 0.21 cm, and 7.617 ± 0.231 cm vs 7.582 ± 0.189 cm, respectively. The differences were not statistically significant (P > 0.05). These data fully supported that the distance between the measurement points of the MPO predicted using the multislice spiral CT-based 3D reconstruction technique and that predicted using real-world intraoperative measurement data was similar.

DISCUSSION

Three-dimensional printing technology has been playing an increasingly important role in numerous fields. In the medical field, 3D-printing technology has also been investigated in many disciplines, with some progresses achieved. Specifically in hernia repair surgery, the use of 3D-printed biologic meshes has drawn increasing attention.
Table 1 Comparison of preoperative computer tomography measurement data and intraoperative measurement data

<table>
<thead>
<tr>
<th>Connections between markers</th>
<th>mean ± SD</th>
<th>t value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB, preoperative</td>
<td>7.576 ± 0.212</td>
<td>0.014</td>
<td>0.990</td>
</tr>
<tr>
<td>AB, intraoperative</td>
<td>7.573 ± 0.266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC, preoperative</td>
<td>7.627 ± 0.212</td>
<td>0.147</td>
<td>0.891</td>
</tr>
<tr>
<td>AC, intraoperative</td>
<td>7.627 ± 0.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC, preoperative</td>
<td>7.677 ± 0.229</td>
<td>0.752</td>
<td>0.494</td>
</tr>
<tr>
<td>BC, intraoperative</td>
<td>7.567 ± 0.786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE, preoperative</td>
<td>7.589 ± 0.204</td>
<td>0.585</td>
<td>0.590</td>
</tr>
<tr>
<td>DE, intraoperative</td>
<td>7.512 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE, preoperative</td>
<td>7.617 ± 0.231</td>
<td>0.214</td>
<td>0.841</td>
</tr>
<tr>
<td>AE, intraoperative</td>
<td>7.582 ± 0.189</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: The pubic tubercle; B: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis; C: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament; D: Intersection of the iliopsoas muscle and the inguinal ligament; and E: Intersection of the iliopsoas muscle and the superior pubic ramus.

Figure 2 Comparison of preoperative computer tomography measurement data and intraoperative measurement data. A: The pubic tubercle, B: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the outer edge of the rectus abdominis, C: Intersection of the horizontal line extending from the summit of the inferior edge of the internal oblique and transversus abdominis and the inguinal ligament, D: Intersection of the iliopsoas muscle and the inguinal ligament, and E: Intersection of the iliopsoas muscle and the superior pubic ramus.

due to their advantages, such as low recurrence rate, infection rate, and frequency of adverse reactions and rapid integration with the body. The first step of 3D-printed biologic mesh production is based on CT-based 3D reconstruction, i.e., generation of stereoscopic images of the MPO and defect sites for data analysis. First, all patients underwent CT of the MPO and defect sites to obtain the tomographic images of the relevant sites. These images were saved and transferred to the computer. Analyses on the scans of the relevant sites were conducted by an experienced physician with the
aid of a software. Then, 3D images were constructed by the computer. After filling, 3D models were generated, and the anatomic measurement points were set on the model as mentioned above. The distance between the points was measured. The data obtained from the aforementioned model were compared with the data from the corresponding measurement points obtained from intraoperative measurements. The totally extraperitoneal repair was used for all the operations. The midline trocars layout was set intraoperatively, and trocars could be moved up moderately according to actual needs. It has been confirmed by studies that the final operation effect is not affected by differences in patients’ height, age and BMI\cite{13}. The results showed that the two sets of data were not significantly different. Further reduction in their differences may make the CT-based 3D reconstruction technique an ideal measurement method that can rapidly provide precise data to support the production of 3D-printed biologic meshes.

CONCLUSION

In summary, the increasing number of hernia operations has led to an increasing demand for meshes. In addition, the gradual improvement of living standards also raises the bar for the requirements on mesh materials and postoperative outcomes. However, existing meshes often lead to a series of complications, such as pain, infection, hematoma, edema, recurrence, and abdominal adhesions. The development of these conditions is mostly associated with inappropriate mesh sizes, postoperative mesh displacement, and inflammation. In addition, 3D-printed biologic meshes are individualized and their production is entirely based on the patient’s MPO and defects. They exhibit precise distribution in 3D space and can fit precisely in the surgical site, which greatly reduces mesh displacement and the risk of recurrence and other postoperative complications. Three-dimensional meshes can also be easily implanted during surgery, greatly reducing operative difficulty and significantly increasing their popularity. Patients’ quality of life can also be significantly improved, allowing them to better serve the community. Biologic meshes produced via 3D printing may benefit the majority of patients in the near future, which will in turn benefit the society.

ARTICLE HIGHLIGHTS

Research background

Hernia is a common condition requiring abdominal surgery. The current standard treatment for hernia is tension-free repair using meshes. Globally, more than 200 new types of meshes are licensed each year. However, their clinical applications are associated with a series of complications, such as recurrence and infection, leading to a bottleneck in the development of hernia repair surgery techniques. Statistics show that the recurrence rate after hernia repair surgery ranges from 10% to 24%, and postoperative mesh infection rate ranges from 0.5% to 9.0%.

Research motivation

The existing drawback has led to the advent of 3D-printed meshes. Since their emergence, 3D-printed meshes have significantly reduced postoperative complications in patients. They have also shortened operating time and minimized the loss of mesh materials. However, it is difficult to obtain accurate data of the pectineal foramen before surgery. This study aims to find a simple, effective, non-invasive and accurate method to provide data support for the production of 3D-printed mesh.

Research objectives

The purpose of the present study was to conduct statistical analysis of the myopectineal orifice (MPO) data obtained from preoperative computer tomography (CT)-based 3D reconstruction and real-world intraoperative measurements so as to identify the differences between them and determine whether the CT-based 3D reconstruction technique can be an ideal method to obtain precise data for the production of 3D-printed biologic meshes.
Research methods
This was a retrospective analysis of 60 patients who underwent laparoscopic tension-free repair for inguinal hernia in the Department of General Surgery of the First Hospital of Shanxi Medical University from September 2019 to December 2019. This study included 30 males and 30 females, with a mean age of 40 ± 5.6 years. Data on the MPO were obtained from preoperative CT-based 3D reconstruction as well as from real-world intraoperative measurements for all patients. All preoperative and intraoperative data were analyzed using the t test. Differences with $P < 0.05$ were considered significant in comparative analysis.

Research results
The distance between points AB, AC, BC, DE, and AE based on preoperative and intraoperative data was $7.576 ± 0.212$ cm vs $7.573 ± 0.266$ cm, $7.627 ± 0.212$ cm vs $7.627 ± 0.212$ cm, $7.677 ± 0.229$ cm vs $7.567 ± 0.786$ cm, $7.589 ± 0.204$ cm vs $7.512 ± 0.21$ cm, and $7.617 ± 0.231$ cm vs $7.582 ± 0.189$ cm, respectively. All differences were not statistically significant ($P > 0.05$).

Research conclusions
The use of multislice spiral CT-based 3D reconstruction technique before hernia repair surgery allows accurate measurement of data and relationships of different anatomic sites in the MPO region. This technique can provide precise data for the production of 3D-printed biologic meshes.

Research perspectives
Specifically in hernia repair surgery, the use of 3D-printed biologic meshes has drawn increasing attention due to their demonstrated advantages, such as low recurrence rate, infection rate, and frequency of adverse reactions and rapid integration with the body. The first step of 3D-printed biologic mesh production is based on CT-based 3D reconstruction, i.e., generation of stereoscopic images of the MPO and defect sites for data analysis, which allows the CT-based 3D reconstruction technique to become an ideal measurement method that can rapidly provide precise data to support the production of 3D-printed biologic meshes.

REFERENCES
10 Cybulka B. Inguinal pain syndrome. The influence of intraoperative local administration of 0.5% bupivacaine on postoperative pain control following Lichtenstein hernioplasty. A prospective case-control study. Pol Przegl Chir 2017; 89: 11-25 [PMID: 28537569 DOI: 10.5604/01.3001.0009.9162]

