OPINION REVIEW

7620 Whipple’s operation with a modified centralization concept: A model in low-volume Caribbean centers
Cawich SO, Pearce NW, Naraynsingh V, Shukla P, Deshpande RR

REVIEW

7631 Role of micronutrients in Alzheimer’s disease: Review of available evidence
Fei HX, Qian CF, Wu XM, Wei YH, Huang JY, Wei LH

MINIREVIEWS

7642 Application of imaging techniques in pancreaticobiliary maljunction
Wang JY, Mu PY, Xu YK, Bai YY, Shen DH

7653 Update on gut microbiota in gastrointestinal diseases
Nishida A, Nishino K, Ohno M, Sakai K, Owaki Y, Noda Y, Imaeda H

7665 Vascular complications of pancreatitis
Kalas MA, Leon M, Chavez LO, Canalizo E, Sarani S

ORIGINAL ARTICLE

Clinical and Translational Research

7674 Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis
Zheng L, Ji YY, Dai YC, Wen XL, Wu SC

Case Control Study

7686 Comprehensive proteomic signature and identification of CDKN2A as a promising prognostic biomarker and therapeutic target of colorectal cancer
Wang QQ, Zhou YC, Zhou Ge YJ, Qin G, Yin TF, Zhao DY, Tan C, Yao SK

Retrospective Cohort Study

7698 Is anoplasty superior to scar revision surgery for post-hemorrhoidectomy anal stenosis? Six years of experience
Weng YT, Chu KJ, Lin KH, Chang CK, Kang JC, Chen CY, Hu JM, Pu TW

Retrospective Study

7708 Short- (30-90 days) and mid-term (1-3 years) outcomes and prognostic factors of patients with esophageal cancer undergoing surgical treatments
Shi MK, Mei YQ, Shi JL
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 22 August 6, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7720</td>
<td>Effectiveness of pulsed radiofrequency on the medial cervical branches for cervical facet joint pain</td>
<td>Chang MC, Yang S</td>
</tr>
<tr>
<td>7738</td>
<td>Correlation between the warning symptoms and prognosis of cardiac arrest</td>
<td>Zheng K, Bai Y, Zhai QR, Du LF, Ge HX, Wang GX, Ma QB</td>
</tr>
<tr>
<td>7749</td>
<td>Serum ferritin levels in children with attention deficit hyperactivity disorder and tic disorder</td>
<td>Tang CY, Wen F</td>
</tr>
<tr>
<td>7760</td>
<td>Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases of the central nervous system after empirical treatment</td>
<td>Chen YY, Guo Y, Xue XH, Pang F</td>
</tr>
<tr>
<td>7785</td>
<td>Prospective single-center feasible study of innovative autorelease bile duct supporter to delay adverse events after endoscopic papillectomy</td>
<td>Liu SZ, Chai NL, Li HK, Feng XX, Zhai YQ, Wang NJ, Gao Y, Gao F, Wang SS, Linghu EQ</td>
</tr>
</tbody>
</table>

Clinical Trials Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7794</td>
<td>Performance of Dexcom G5 and FreeStyle Libre sensors tested simultaneously in people with type 1 or 2 diabetes and advanced chronic kidney disease</td>
<td>Ölafsdóttir AF, Andelin M, Saeed A, Sofizadeh S, Hamoodi H, Jansson PA, Lind M</td>
</tr>
</tbody>
</table>

Observational Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7808</td>
<td>Complications of chronic pancreatitis prior to and following surgical treatment: A proposal for classification</td>
<td>Murruste M, Kirsimägi Ü, Kase K, Veršinina T, Talving P, Lepner U</td>
</tr>
<tr>
<td>7825</td>
<td>Effects of comprehensive nursing on postoperative complications, mental status and quality of life in patients with glioma</td>
<td>Dong H, Zhang XL, Deng CX, Luo B</td>
</tr>
</tbody>
</table>

Prospective Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>7832</td>
<td>Predictors of long-term anxiety and depression in discharged COVID-19 patients: A follow-up study</td>
<td>Boyraz RK, Şahan E, Boylu ME, Korporar İ</td>
</tr>
</tbody>
</table>

META-ANALYSIS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Contents

Thrice Monthly Volume 10 Number 22 August 6, 2022

7859 Rectal nonsteroidal anti-inflammatory drugs, glyceryl trinitrate, or combinations for prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis: A network meta-analysis
Shi QQ, Huang GX, Li W, Yang JR, Ning XY

7872 Effect of celecoxib on improving depression: A systematic review and meta-analysis
Wang Z, Wu Q, Wang Q

CASE REPORT

7883 Rectal mature teratoma: A case report
Liu JL, Sun PL

7890 Antibiotic and glucocorticoid-induced recapitulated hematological remission in acute myeloid leukemia: A case report and review of literature
Sun XY, Yang XD, Yang XQ, Ju B, Xiu NN, Xu J, Zhao XC

7899 Non-secretory multiple myeloma expressed as multiple extramedullary plasmacytoma with an endobronchial lesion mimicking metastatic cancer: A case report
Lee SB, Park CY, Lee HJ, Hong R, Kim WS, Park SG

7906 Latamoxef-induced severe thrombocytopenia during the treatment of pulmonary infection: A case report
Zhang RY, Zhang JJ, Li JM, Xu YY, Xu YH, Cai XJ

7913 Multicentric reticulohistiocytosis with prominent skin lesions and arthritis: A case report
Xu XL, Liang XH, Liu J, Deng X, Zhang L, Wang ZG

7924 Brainstem abscesses caused by Listeria monocytogenes: A case report
Wang J, Li YC, Yang KY, Wang J, Dong Z.

7931 Primary hypertension in a postoperative paraganglioma patient: A case report
Wei JH, Yan HL

7936 Long-term survival of gastric mixed neuroendocrine-non-neuroendocrine neoplasm: Two case reports
Woo LT, Ding YF, Mao CY, Qian J, Zhang XM, Xu N

7944 Percutaneous transforaminal endoscopic decompression combined with percutaneous vertebroplasty in treatment of lumbar vertebral body metastases: A case report
Ran Q, Li T, Kuang ZP, Guo XH

7950 Atypical imaging features of the primary spinal cord glioblastoma: A case report
Liang XY, Chen YP, Li Q, Zhou ZW

7960 Resection with limb salvage in an Asian male adolescent with Ewing’s sarcoma: A case report
Lai CY, Chen KJ, Ho TY, Li LY, Kuo CC, Chen HT, Fong YC

7968 Early detection of circulating tumor DNA and successful treatment with osimertinib in thr790met-positive leptomeningeal metastatic lung cancer: A case report
Xu LQ, Wang YJ, Shen SL, Wu Y, Duan HZ
Contents

World Journal of Clinical Cases
Thrice Monthly Volume 10 Number 22 August 6, 2022

7973 Delayed arterial symptomatic epidural hematoma on the 14th day after posterior lumbar interbody fusion: A case report
 Hao SS, Gao ZF, Li HK, Liu S, Dong SL, Chen HL, Zhang ZF

7982 Clinical and genetic analysis of nonketotic hyperglycinemia: A case report
 Ning JJ, Li F, Li SQ

7989 Ectopic Cushing’s syndrome in a patient with metastatic Merkel cell carcinoma: A case report
 Ishay A, Touma E, Vornicova O, Dodik-Gad R, Goldman T, Bisharat N

7994 Occurrence of MYD88L265P and CD79B mutations in diffuse large b cell lymphoma with bone marrow infiltration: A case report
 Huang WY, Weng ZY

8003 Rare case of compartment syndrome provoked by inhalation of polyurethane agent: A case report
 Choi JH, Oh HM, Hwang JH, Kim KS, Lee SY

8009 Acute ischemic Stroke combined with Stanford type A aortic dissection: A case report and literature review
 He ZY, Yao LP, Wang XK, Chen NY, Zhao JJ, Zhou Q, Yang XF

8018 Compound-honeysuckle-induced drug eruption with special manifestations: A case report
 Zhou LF, Lu R

8025 Spontaneous internal carotid artery pseudoaneurysm complicated with ischemic stroke in a young man: A case report and review of literature
 Zhong YL, Feng JP, Luo H, Gong XH, Wei ZH

8034 Microcystic adnexal carcinoma misdiagnosed as a “recurrent epidermal cyst”: A case report
 Yang SX, Mou Y, Wang S, Hu X, Li FQ

8040 Accidental discovery of appendiceal carcinoma during gynecological surgery: A case report
 Wang L, Dong Y, Chen YH, Wang YN, Sun L

8045 Intra-ampullary papillary-tubular neoplasm combined with ampullary neuroendocrine carcinoma: A case report
 Zavrtanik H, Lucar B, Tomazic A

LETTER TO THE EDITOR

8054 Commentary on "Primary orbital monophasic synovial sarcoma with calcification: A case report"
 Tokar O, Aydin S, Karavas E
ABOUT COVER
Editorial Board Member of *World Journal of Clinical Cases*, Bennete Aloysius Fernandes, MDS, Professor, Faculty of Dentistry, SEGi University, Kota Damansara 47810, Selangor, Malaysia. drben17@yahoo.com

AIMS AND SCOPE
The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang La; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
August 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Clinical and genetic analysis of nonketotic hyperglycinemia: A case report

Jun-Jie Ning, Feng Li, Sheng-Qiu Li

Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): D
Grade E (Poor): 0

P-Reviewer: El-Karaksy H, Egypt; Portius D, Germany

Received: January 12, 2022
Peer-review started: January 12, 2022
First decision: May 11, 2022
Revised: May 19, 2022
Accepted: July 5, 2022
Article in press: July 5, 2022
Published online: August 6, 2022

Abstract

BACKGROUND
Nonketotic hyperglycinemia (NKH) is a rare autosomal recessive genetic disorder of abnormal glycine metabolism caused by insufficient activity of the glycine cleavage enzyme system. Glycine is believed to function mainly as an inhibitory neurotransmitter, but it can also act as a co-agonist of the N-methyl-D-aspartate (NMDA) receptor. The accumulation of a large amount of glycine in the brain leads to neuronal and axonal injury via overactivation of NMDA receptors located in the hippocampus, cerebral cortex, olfactory bulb, and cerebellum and to stimulation of the inhibitory function of glycine receptors located in the spinal cord and brain stem, resulting in central apnea, hiccups, and hypotonia in the early stage of the disease.

CASE SUMMARY
The child described in this report had typical clinical manifestations of NKH, such as hiccups, disturbance of consciousness, hypotonia, and convulsions, within the first week after birth. Whole-exome genetic testing revealed that the child had a compound heterozygous mutation, namely, c.395C>A (p.S132X) and c.2182G>A (p.G728R), in the GLDC gene, and he was diagnosed with NKH. For treatment, we administered an oral levetiracetam solution and added topiramate and prednisone for epilepsy control, but the epilepsy remained uncontrollable. Ketogenic diet therapy was started at 6 mo of age, his seizures were significantly reduced, and there were no obvious adverse reactions during ketogenic treatment. Furthermore, we found that with the development of the disease, high levels of serum glycine decreased or even disappeared without intervention, and as the disease progressed, the corpus callosum became dysplastic.

CONCLUSION
This case shows that plasma glycine levels cannot be used to evaluate the prognosis of NKH, that the development of the corpus callosum can be affected by NKH, and that a ketogenic diet may be effective for seizure control in NKH.
patients.

Key Words: Nonketotic hyperglycinemia; Compound heterozygosity; GLDC gene; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Herein, we present the case of a child who had typical clinical manifestations of nonketotic hyperglycinemia (NKH), such as hiccups, disturbance of consciousness, hypotonia, and convulsions within the first week after birth. These symptoms combined with the results of gene testing led to a diagnosis of classical nonketotic hyperglycinemia caused by compound heterozygous variants in the GLDC gene. Plasma glycine levels cannot be used to evaluate the prognosis of NKH, and the corpus callosum can be affected by NKH. A ketogenic diet may be effective for seizure control in NKH patients.

Citation: Ning JJ, Li F, Li SQ. Clinical and genetic analysis of nonketotic hyperglycinemia: A case report. World J Clin Cases 2022; 10(22): 7982-7988

URL: https://www.wjgnet.com/2307-8960/full/v10/i22/7982.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i22.7982

INTRODUCTION

Nonketotic hyperglycinemia (NKH), also known as glycine encephalopathy, is an autosomal recessive genetic disease with abnormal glycine metabolism caused by insufficient activity of the glycine cleavage enzyme system (GCS), and NKH is clinically characterized by the abnormal accumulation of glycine in all tissues of the human body, especially in the serum and cerebrospinal fluid[1]. According to an epidemiological survey of 55000 newborns, the incidence of NKH is approximately 1/63000[2]. The GCS is composed of glycine decarboxylase (P protein), aminomethyl transferase (T protein), hydrogen carrier protein (H protein), and dihydroamide dehydrogenase (L protein). The P, T, and H proteins are encoded by the GLDC (OMIM 238300), AMT (OMIM 238310), and GCSH (OMIM 238330) genes, respectively. Variations in these genes can cause a decrease in GCS activity and lead to glycine accumulation, and 70%-75% of NKH patients carry GLDC variations[3]. Here, we present the case of a young boy who presented with clinical features of NKH and was ultimately diagnosed by whole-exome genetic testing.

CASE PRESENTATION

Chief complaints

A 7-day-old male child was admitted to the neonatology department of our hospital on December 30, 2020 due to "eating less, crying less, and moving less for 7 d".

History of present illness

The patient was the firstborn child and was delivered vaginally at full term, with a birth weight of 3.75 kg. The Apgar scores at 1, 5, and 10 min after birth were all 10 points. He was provided a reasonable amount of food after birth but had low sucking power, hiccups, and occasional apnea. The mother denied a history of exposure to poisons, chemicals, or radiation and had regular prenatal examinations during pregnancy; no abnormality was found. The parents did not have blood relations.

History of past illness

No history of past illness.

Personal and family history

There was no history of family hereditary diseases.

Physical examination

Upon admission examination, the following was observed: Body temperature, 36.8 °C; heart rate, 128 beats/min; respiratory rate, 34 times/min; arterial blood pressure, 83/46 mmHg; SpO₂, 95%; slightly dry skin; poor elasticity; no rash or ecchymosis on the skin; irregular breathing; no obvious dyspnea; trachea in the middle; no abnormal breath sounds heard in both lungs. Examination of the heart and
abdomen did not reveal any abnormalities. Neurological examination showed the following: No response after stimulation; the anterior fontanelle measuring 1.0 cm × 1.0 cm that was flat and soft; hypotonia; and an inability to elicit primitive reflexes. A few hours after admission, the child was observed to have frequent apnea neonatorum.

Laboratory examinations

Arterial blood gas analysis showed the following: pH, 7.16 (reference range: 7.35–7.45); PCO$_2$, 96 mmHg (reference range: 35–45 mmHg); PO$_2$, 276 mmHg (reference range: 80–100 mmHg); HCO$_3^-$, 34.2 mmol/L (reference range: 21.4–27.3 mmol/L); extracellular fluid base excess, 5.5 mmol/L (reference range: -3–3 mmol/L); lactic acid, 0.9 mmol/L (reference range: 0.5–2.2 mmol/L); and blood ammonia, 100 μmol/L (reference range: 18–65 μmol/L). An electroencephalogram (EEG) showed that diffuse low-amplitude irregular 1–6 Hz δ and θ waves and low-amplitude β waves were mixed in the quiet state, and the external stimulation background did not change. The EEG activity voltage was low, which represented a moderately abnormal neonatal EEG. Serum tandem mass spectrometry showed that the glycine concentration was 850.05 μmol/L (reference range: 130–650 μmol/L), and urine organic acid analysis showed no obvious abnormality. CSF glycine levels were not measured. Routine blood test, routine blood coagulation test, myocardial enzyme, C-reactive protein, procalcitonin, liver and kidney function tests, electrolyte assessment, and cerebrospinal fluid and biochemistry tests did not show obvious abnormalities.

Imaging examinations

Head magnetic resonance imaging (MRI) in the neonatal period (aged 7 d old) showed that a myelinated T1 hypersignal was not found in the hind limbs of the bilateral internal capsules or cerebellar dentate nucleus, and no abnormal corpus callosum was found. When the child was 2 mo old, re-examination of head MRI showed that the corpus callosum was smaller than it was on earlier imaging; the bilateral ventricles were full and irregular (more pronounced on the left side); the corticospinal tract, the white matter of bilateral ventricles, and the parietal lobe showed symmetrical high signal intensity on diffusion-weighted imaging; and the apparent diffusion coefficient map showed slightly low signal intensity (Figure 1).

Whole-exome sequencing

The proband has a variant on exon 8, position chr9:6620259G>T, NM_000170.3:c.395C>A, p.(Ser132*) and a variant on exon 18, position chr9:6556173C>T, NM_000170.3:c.2182G>A, p.(Gly728Arg). The p.(Ser132*) variant has been described in one individual in the gnomAD database v3.1.1 (entry: 9-6620259-G-T). Its allele frequency is 0.000006573. It is reported in dbSNP (rs386833576). According to the American College of Medical Genetics and Genomics (ACMG) guidelines, this variation was judged to be a pathogenic variation based on the supporting evidence (PVS1 + PM2 + PM3). In the pedigree analysis, the father of the proband has no mutation at this site, while the mother of the proband has a heterozygous mutation at this site. The variant p.(Gly728Arg) has been reported on ClinVar as likely pathogenic (accession number VCV000580932.2), and it has been described in dbSNP (rs386833542). Its allele frequency in gnomAD database v2.1.1 is 0.000003977. According to the ACMG guidelines, this variation was judged to be a pathogenic variation based on the supporting evidence (PS1 + PM1 + PM2 + PM5 + PP3). By pedigree analysis, the father of the proband has heterozygous variation at this site, while the mother has no variation at this site. The parents of the child are heterozygous, with a normal phenotype, which is consistent with the pathogenesis of autosomal recessive compound heterozygous genetic diseases.

FINAL DIAGNOSIS

The final diagnosis was classical NKH and epilepsy syndrome.

TREATMENT

After admission, invasive ventilation, aggressive anti-infective therapy, and symptomatic treatments were given. After 1 wk, the child could obviously breathe spontaneously, the arterial blood gas analysis was basically normal after re-examination, and the ventilator was successfully withdrawn. However, during hospitalization, the child developed convulsions, characterized by loss of consciousness, staring in both eyes, clenching of fists with both hands, and chewing movements of the lips. After demonstrating rigidity of the limbs, the child quickly developed atonic seizures that lasted 15–220 s each time and occurred 3–5 times a day (Video). Re-examination by EEG still showed abnormalities. During the attack, persistent multifocal or extensive irregular sharp waves or sharp slow waves were observed, most of which were in a burst-suppression state, and the inhibition segment lasted 2–66 s (Figure 2).
Figure 1 Head magnetic resonance imaging of the nonketotic hyperglycinemia child at the age of 2 mo. A: The corpus callosum was small (arrow); B: On diffusion-weighted imaging, the upper corticospinal tract and bilateral paraventricular and parietal white matter showed a symmetrical high signal intensity (arrow); C: Apparent diffusion coefficient diagram showed a slightly lower signal (arrow).

Figure 2 In the abnormal electroencephalogram, persistent multifocal or extensive irregular sharp waves or sharp slow waves could be seen during the interattack, most of which were in a burst-inhibition state, and the inhibition period lasted 2–66 s.

Levetiracetam was added to relieve convulsive treatment.

OUTCOME AND FOLLOW-UP

When the child was 2 months old, he had good suckling and swallowing but still had repeated convulsions, with hypotonia in the extremities. Re-examination by EEG showed a burst-inhibition state. The blood glycine level became normal. For treatment, we continued to administer an oral levetiracetam solution (60 mg/kg/d) and added topiramate (5 mg/kg/d) and prednisone (2 mg/kg/d) for epilepsy control. Unfortunately, the epilepsy of the child remained uncontrollable. Ketogenic diet therapy with a 4:1 (lipid:nonlipid) ketogenic milk formula was started at 6 mo of age. e daily calorie and protein requirements were ensured, and the child’s urinary ketones were monitored daily. The number of attacks and adverse reactions were recorded during ketogenic diet treatment. On the 25th day after ketogenic treatment, the child’s seizures were completely controlled, and the EEG improved after review. No serious adverse reactions occurred during the ketogenic treatment (Figure 3).
Figure 3 Time frame of main clinical information. EEG: Electroencephalogram.

DISCUSSION

NKH is a rare inherited genetic metabolic disease with variable clinical manifestations. Three types of glycine encephalopathy have been identified according to the clinical phenotype and the presence or absence of genetic variation: Classic, atypical, and transient. Most neonatal NKH cases are classified into the classic type, showing a normal phenotype at birth. In most cases, drowsiness, coma, hiccups, hypotension, and myoclonic seizures gradually appear in the first week after birth and develop into central apnea requiring ventilator-assisted breathing, with a mortality rate as high as 50% at this time [4]. These symptoms subside on their own after 1 to 3 wk, but surviving infants experience serious nervous system sequelae within 6 mo, such as epileptic encephalopathy, developmental delay, and growth retardation [5,6]. Atypical NKH is rare and has heterogeneous and nonspecific disease courses, which make the diagnosis more difficult. If hypotonia, developmental delay, and epilepsy occur in infancy and the symptoms are milder than those of classic NKH, it is necessary to pay attention to this type of possibility. Transient NKH is even rarer; although it develops after birth, as the activity of glycine lyase increases, it may heal itself within a few months.

In NKH, serum and cerebrospinal fluid glycine levels are elevated, and the ratio of cerebrospinal fluid to plasma glycine is greater than 0.08. Absence of ketoacidosis and urine organic acid abnormalities indicate the diagnosis of NKH. However, perinatal medication (especially the use of sodium valproate), congenital intrauterine infection, and neonatal asphyxia can cause the level of neonatal glycine to rise; thus, the diagnosis ultimately depends on the pathogenic variant of the GCS genes. Notably, transient NKH has a good prognosis, but its onset is similar to that of the classic type; therefore, it is necessary to distinguish between the two. Our case showed that if the child’s symptoms gradually improve, the serum fluid glycine levels have been repeatedly tested and decrease or become normal, and the genetic test does not show any genetic mutations related to the disease, it may be a temporary type of NKH, but additional data from more cases are needed for further verification.

The child described in this report had typical clinical manifestations of NKH, such as hiccups, disturbance of consciousness, hypotonia, and convulsions, within the first week after birth. Although cerebrospinal fluid glycine was not measured, no organic acid abnormality was found by blood and urine tandem mass spectrometry and gas chromatography. Combined with the gene detection results for the child, a diagnosis of classic NKH caused by compound heterozygous variations in the GLDC gene was made. To date, only four NKH patients with compound heterozygote variations in the GLDC gene have been reported in China [7-9]. In this study, a nonsense mutation (c.395C>A) was found in the GLDC gene, which led to the replacement of serine at position 132 of the coding region by a termination codon (p.S132X), which may lead to the loss of gene function. This is the first time that this mutation has been found in the Chinese population. Compound heterozygosity with another pathogenic mutation may be the basis for the pathogenesis of NKH in this child, which enriches the variation spectrum of the GLDC gene.
A retrospective cross-sectional study showed that a small corpus callosum is the most common structural abnormality of NKH and that this structural abnormality is directly related to the severity of the clinical phenotype[10]. In this case, no abnormal corpus callosum was found on neonatal MRI, but with the development of the disease, the corpus callosum became dysplastic, suggesting that the corpus callosum could be affected by glycine metabolism. Other studies have found that EEG can evaluate the therapeutic effect at each stage and provide a clinical basis for adjusting the administration scheme and its dosage. Plasma glycine levels cannot be used to evaluate the prognosis of NKH, as this study found that a high serum glycine level can decrease or even disappear by itself, but the EEG will still show a burst-inhibition state, which further indicates that NKH is an irreversible brain injury. At present, there is no effective treatment for this rare disease, and the focus of treatment is to rationally use antiepileptic drugs to control epileptic seizures, reduce the plasma concentration of glycine by injecting sodium benzoate, and antagonize N-methyl-D-aspartate receptors by injecting ketamine or oral dextromethorphan. The ketogenic diet is a high-fat, low-carbohydrate, and moderate protein diet that is used mainly for the adjuvant treatment of drug-resistant epilepsy and epileptic encephalopathy[11]. It has been reported that a ketogenic diet has a good effect on infantile spasm, Dravet syndrome, Lennox–Gastaut syndrome, and epileptic encephalopathy caused by gene mutations such as SCN1A, KCNQ2, STXBP1, and SCN2A[12]. This case showed that a ketogenic diet may be a valuable treatment modality for refractory seizure control in classical NKH.

CONCLUSION

This study found that a high serum glycine level can decrease or even disappear on its own, indicating that plasma glycine levels cannot be used to evaluate the prognosis of NKH. With the development of the disease, the corpus callosum can be affected by glycine metabolism. A ketogenic diet may be effective for seizure control in classical NKH patients.

FOOTNOTES

Author contributions: Ning JJ and Li F were the patient's doctors; Ning JJ reviewed the literature, contributed to drafting the manuscript, and provided plans for the treatment; Li SQ was the nurse in charge of the child.

Informed consent statement: The patient’s parents provided informed written consent for the publication of this case report.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Jun-Jie Ning 0000-0002-8555-5480; Feng Li 0000-0002-7611-3322; Sheng-Qiu Li 0000-0001-5333-9276.

REFERENCES

