Editorial

Fentanyl and xylazine crisis: Crafting coherent strategies for opioid overdose prevention

Review

Metabolic complications of psychotropic medications in psychiatric disorders: Emerging role of de novo lipogenesis and therapeutic consideration

Khan MM, Khan ZA, Khan MA

Original Article

Case Control Study

Cognitive dysfunction in schizophrenia patients caused by down-regulation of γ-aminobutyric acid receptor subunits

Chen X, Zhou YN, Lu XZ, Li BJ, Xiong YF, Sheng X, Zhu WW

Association of serum interleukin-6 with negative symptoms in stable early-onset schizophrenia

Identification of male schizophrenia patients using brain morphology based on machine learning algorithms

Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL

Retrospective Study

Assessing the current situation and the influencing factors affecting perceived stigma among older patients after leukemia diagnosis

Tang X, Chen SQ, Huang JH, Deng CF, Zou JQ, Zuo J

Status quo and factors of depression and anxiety in patients with non-muscle invasive bladder cancer after plasma electrocision

Lu B, Ding M, Xu HB, Yan CY

Analysis of status and influencing factors of mental health in patients with systemic lupus erythematosus

Relationship between preoperative psychological stress and short-term prognosis in elderly patients with femoral neck fracture

Fu WH, Hu ZL, Liao YJ, Chen RJ, Qiu JB, Que WT, Wang WT, Li WH, Lan WB

Clinical effect of acupuncture at ghost points combined with fluoxetine hydrochloride on mild-to-moderate depression

Contents

Clinical intervention effect of Xuefu Zhuyu decoction on chronic heart failure complicated with depression

Effects of serum inflammatory factors, health index and disease activity scores on ankylosing spondylitis patients with sleep disorder
866 Wang H, Sun JY, Zhang Y

Personalized and continuous care intervention affects rehabilitation, living quality, and negative emotions of patients with breast cancer
876 Kong LX, Zhao YH, Feng ZL, Liu TT

Computerized cognitive remediation therapy on cognitive impairment and social function in patients with chronic schizophrenia
884 Hu JJ, Sun XR, Ni SM, Kong Y

Impact of thoracic paravertebral block and sufentanil on outcomes and postoperative cognitive dysfunction in thoracoscopic lung cancer surgery
894 Wang DD, Wang HY, Zhu Y, Lu XH

Effect of a systemic intervention combined with a psychological intervention in stroke patients with oropharyngeal dysfunction
904 Song J, Wang JD, Chen D, Chen J, Huang JF, Fang M

Clinical Trials Study

Application of psychological intervention in intensive care unit nursing for patients with severe acute pancreatitis
913 Huang CX, Xu XY, Gu DM, Xue HP

Observational Study

Change in self-image pressure level before and after autologous fat breast augmentation and its effect on social adaptability
920 Li J, Wang HM, Jiang Y, Liu ZN, He BH

Correlation between pre-anesthesia anxiety and emergence agitation in non-small cell lung cancer surgery patients
930 Yan F, Yuan LH, He X, Yu KF

Prospective Study

Clinical efficacy of Baijin pills in the treatment of generalized tonic-clonic seizure epilepsy with cognitive impairment
938 Li JB, Jiang J, Xue L, Zhao S, Liu HQ

Randomized Clinical Trial

Problem-solving model guided by stimulus-organism-response theory: State of mind and coping styles of depressed mothers after cesarean delivery
945 Yuan RF, Jiang MQ, Li J, Zhang JJ
SYSTEMATIC REVIEWS

954 This pain drives me crazy: Psychiatric symptoms in women with interstitial cystitis/bladder pain syndrome

SCIENTOMETRICS

985 Bibliometric analysis of research in epilepsy and comorbid depression from 2014 to 2023

Chen L, He XH, Li XL, Yang J, Huang H
ABOUT COVER
Editorial Board Member of World Journal of Psychiatry, Su-Xia Li, MD, PhD, DSc (Med), Associate Professor, Department of Clinical Pharmacology, National Institute on Drug Dependence, Peking University, Beijing 100191, China. li313@bjum.edu.cn

AIMS AND SCOPE
The primary aim of World Journal of Psychiatry (WJP, World J Psychiatry) is to provide scholars and readers from various fields of psychiatry with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.
WJP mainly publishes articles reporting research results and findings obtained in the field of psychiatry and covering a wide range of topics including adolescent psychiatry, biological psychiatry, child psychiatry, community psychiatry, ethnopsychology, psychoanalysis, psychosomatic medicine, etc.

INDEXING/ABSTRACTING
The WJP is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Current Contents/Clinical Medicine, Journal Citation Reports/Science Edition, PubMed, PubMed Central, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJP as 3.1; IF without journal self cites: 2.9; 5-year IF: 4.2; Journal Citation Indicator: 0.52; Ranking: 91 among 155 journals in psychiatry; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xin-Xin Che; Production Department Director: Xu Guo; Cover Editor: Jia-Ping Yan.

NAME OF JOURNAL
World Journal of Psychiatry

ISSN
ISSN 2220-3206 (online)

LAUNCH DATE
December 31, 2011

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Ting-Shao Zhu

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2220-3206/editorialboard.htm

PUBLICATION DATE
June 19, 2024

COPYRIGHT
© 2024 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/GerInfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.if6publishing.com
Retrospective Study

Clinical effect of acupuncture at ghost points combined with fluoxetine hydrochloride on mild-to-moderate depression

Yi Wang, Qun Lu, Ittipalanukul Penpat, Juan Wu, Dilinuer Abulikemu, Fei-Cui Zeng, Jia-Ying Huang, Zhi-Hai Hu

Abstract

BACKGROUND

Depression is a common, chronic, and recurrent mood disorder that has become a worldwide health hazard. Fluoxetine hydrochloride, a common treatment method, can inhibit 5-hydroxytryptamine (5-HT) recycling in the presynaptic membrane; however, the efficacy of a single drug is inadequate. At present, mild-to-moderate depression can be treated with acupuncture of ghost caves, but the clinical curative effect of combined therapy with fluoxetine hydrochloride has not

Specialty type: Psychiatry
Provenance and peer review: Unsolicited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report's classification
Scientific Quality: Grade C
Novelty: Grade B
Creativity or Innovation: Grade B
Scientific Significance: Grade B

Yi Wang, Zhi-Hai Hu, Department of Acupuncture and Moxibustion, Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
Qun Lu, Department of Laboratory Medicine, Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
Ittipalanukul Penpat, Department of Postgraduate Student, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Juan Wu, Department of Radiology, Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
Dilinuer Abulikemu, Department of General Practice, Shanghai University of Traditional Chinese Medicine Affiliated Shuguang Hospital, Shanghai 200120, China
Fei-Cui Zeng, General Practice of Traditional Chinese Medicine, North Bund Street Community Health Service Center, Shanghai 200080, China
Jia-Ying Huang, General Practice of Traditional Chinese Medicine, Shanghai Hongkou District Jiaxing Road Community Health Service Center, Shanghai 200082, China

Corresponding author: Zhi-Hai Hu, MM, Chief Physician, Department of Acupuncture and Moxibustion, Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, The Affiliated to Shanghai University of Traditional Chinese Medicine, No. 230 Baoding Road, Hongkou District, Shanghai 200082, China. huzhihai19750805@163.com
AIM
To evaluate the clinical effect of acupuncture at ghost points combined with fluoxetine hydrochloride in the treatment of mild-to-moderate depression.

METHODS
This retrospective study included 160 patients with mild-to-moderate depression who were admitted to Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, between January 2022 and June 2023. Patients were separated into a single-agent group (fluoxetine hydrochloride treatment, \(n = 80 \)) and a coalition group (fluoxetine hydrochloride treatment combined with acupuncture at ghost points, \(n = 80 \)). Pre-treatment symptoms were recorded, and the clinical curative effect and adverse reactions [Asberg Antidepressant Side Effects Scale (SERS)] were assessed. Depression before and after treatment [Hamilton Depression Scale (HAMD)-24], neurotransmitter levels [5-HT, norepinephrine (NE), dopamine (DA)], oxidative stress indicators [superoxide dismutase (SOD), malondialdehyde (MDA)], and sleep quality [Pittsburgh Sleep Quality Index (PSQI)] were compared.

RESULTS
The total efficacy rate was 97.50% in the coalition group and 86.25% in the single-agent group (\(P < 0.05 \)). After 2, 4, 6, and 8 wk of treatment, the HAMD, self-rating depression scale, and SERS scores of the coalition and single-agent groups decreased compared with pre-treatment, and the decrease was more significant in the coalition group (\(P < 0.05 \)). After 8 wk of treatment, the levels of NE, DA, 5-HT, and SOD in the coalition and single-agent groups increased, while the levels of MDA decreased; the increases and decrease in the coalition group were more significant (\(P < 0.05 \)). The PSQI scores of the coalition and single-agent groups decreased, and the decrease was more significant in the coalition group (\(P < 0.05 \)).

CONCLUSION
Acupuncture at ghost points combined with paroxetine tablets can safely improve depressive symptoms and sleep disorders, regulate neurotransmitter levels, and reduce stress responses in patients with mild-to-moderate depression.

Key Words: Depression; Prick; Fluoxetine hydrochloride; Curative effect; Depressive symptoms; Oxidative stress index

INTRODUCTION
Depression is a mental and psychological disease characterized by persistent low mood, slow thinking, decline in cognitive function, decreased volitional activity, and physical symptoms, and it is an important cause of global mental disability[1,2]. Depression is expected to become the world’s largest disease threatening human physical and mental health by 2030[3]. Selective serotonin reuptake inhibitor antidepressants including fluoxetine hydrochloride are currently one of the typical drug types used in the clinical treatment of depression[4]. They act on the synapses of the central nervous system to inhibit the reuptake of serotonin by the presynaptic membrane, thereby achieving therapeutic effects. However, satisfactory results are difficult to achieve owing to shortcomings, such as a long period of stable plasma concentration, a narrow antidepressant spectrum, and obvious side effects[5].

Depression aligns with the traditional Chinese medicine ‘depressive syndrome’ category and is closely associated with the Yang-deficiency constitution. Based on the theory that Yang deficiency causes depression, some studies have verified the feasibility of treating depression with Yang support[6,7]. Acupuncture plays a unique role in the treatment of diseases and is a common therapy in traditional Chinese medicine. Current clinical trials on acupuncture’s effects on brain...
mechanisms of the central nervous system have aroused medical attention. Studies have shown that acupuncture plays a significant role in protecting neurons[8]. In addition, domestic and foreign doctors have achieved remarkable results in the clinical treatment of patients with depression using acupuncture. Its mechanism of action is related to the regulation of the cortical striatum reward/motivation circuit in the brains of patients with depression. Studies have shown that acupuncture combined with drug treatment for depression can improve the depressive state and physical symptoms of patients with depression. Compared with drug use alone, acupuncture combined with drug treatment has been shown to improve efficacy, reduce adverse reactions, and reduce drug dose[9]. Acupuncture at effective thirteen ghost points is used in traditional Chinese medicine to treat emotional diseases. In recent years, acupuncture has been commonly used to treat intractable insomnia, Alzheimer’s disease, vascular dementia, and other brain diseases, and can effectively alleviate conditions with significant curative effects[10,11]. However, few reports exist on the clinical effects of acupuncture at ghost points combined with fluoxetine hydrochloride in mild-to-moderate depression. This study aimed to explore the clinical effects of acupuncture at ghost points combined with fluoxetine hydrochloride on mild-to-moderate depression to provide a reference for clinical treatment.

MATERIALS AND METHODS

Participants

This retrospective study included 160 patients with mild-to-moderate depression who were admitted to Shanghai Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, between January 2022 and June 2023. The diagnostic criteria for depression included core symptoms and additional symptoms[12]. Core symptoms were as follows: (1) Majority of time spent in a depressed state unaffected by external factors for > 2 wk; (2) Disinterest or inability to obtain pleasure from things that were once of interest or love; and (3) Regular feelings of tiredness and powerlessness. Additional symptoms were as follows: (1) Inattention; (2) Regular feelings of self-denial and lack of self-confidence; (3) Feelings of responsibility for mistakes with the concept of self-incrimination; (4) Thoughts of having no future; (5) Insomnia; (6) Regular suicidal tendencies and behavior; (7) Loss of appetite; and (8) Mild-to-moderate depression, namely a Hamilton Depression Scale-24 (HAM-D-24) score of 7 to 24 points.

The inclusion criteria for this study were as follows: (1) Symptoms meeting the above diagnostic criteria; (2) No history of other antipsychotic drugs or hypnotic drugs before treatment; (3) Age of 18-70 years; and (4) Availability of complete data. The exclusion criteria were as follows: (1) Presence of severe, life-threatening organic lesions; (2) Presence of a malignant tumor, infection, or hemorrhage; (3) History of serious suicide attempts and behaviors; (4) Pregnancy or lactation; and (5) Presence of unhealed moxibustion site trauma skin lesions, local ulcers, red and swollen skin, or allergies. Based on the differences in intervention methods, patients were separated into single-agent and coalition groups (n = 80 cases each). No significant differences were identified in baseline data between the coalition and single-agent groups (P > 0.05) (Table 1).

Methods

The single-agent group received oral fluoxetine hydrochloride capsules (Lilai Suzhou Pharmaceutical Co., Ltd., Sinopharm Approval No.: 20170022). The specific method of administration was performed according to the physicians’ advice. Oral administration of a 20 mg/d dose for 8 wk was recommended. The coalition group was based on single drug administration plus acupuncture at ghost points. Acupoint selection included ghost points “above the star”: Shuigou, Shaoshang, Yinbai, Daling, and Shenmai. The operation method was as follows: The patient was placed in the supine position and underwent routine skin disinfection. A Hua Tuo card (0.25 mm in diameter) was used with a disposable stainless steel filiform needle (diameter, 0.25 mm; length, 40 mm) for acupuncture. The Shuigou point was obliquely punctured in the direction of the nasal septum, which should stimulate tears. The needle was then sequentially inserted into the Shaoshang, Yinbai, Daling, and Shenmai points with strong needle sensation. Among them, the Shaoshang and Yinbai points were obliquely punctured from the outside to the nail angle at a depth of 0.1-0.2, and the Daling point was punctured directly with electric shock. The Shangxing point was punctured with a flat thorn at an acupuncture depth of 0.5-0.8 in using the extraction method. All acupuncture operators had equal training performing the standardized operation. Each treatment lasted 30 min and was administered once per day, 5 times per week. Four treatment cycles took place: One observation cycle comprised ten occurrences, and continuous treatment was administered for three cycles.

Survey tools

Clinical efficacy: To evaluate clinical efficacy in patients, the improvement rate of HAMD-24 scores was calculated prior to treatment and 8 wk after treatment to obtain the efficacy index. The efficacy index was calculated as follows: (HAM-D-24 score pre-treatment-HAMD-24 score 8 wk after treatment)/HAMD-24 score pre-treatment × 100%. The efficacy index was categorized as follows: Clinical control, efficacy index ≥ 75%; obvious effect, 50% ≤ efficacy index < 75%; effective, 25% ≤ efficacy index < 50%; and ineffective, efficacy index < 25%. The total effective rate was calculated as follows: (Effective + obvious + clinical control)/total disease × 100%. The efficacy evaluation was completed at 0, 2, and 8 wk.

Depressive symptoms: The HAMD-24[13] and self-rating depression scale (SDS)[14] were used to score depressive symptoms before and after treatment (2, 4, 6, and 8 wk after treatment). HAMD-24 scores were categorized as follows: Normal, scores of < 7; mild depression, scores of 7-16; moderate depression, scores of 17-23; severe depression, scores of 24-34; and further division of severe depression, scores of > 34. With a total of 20 items in the scale, the SDS was
Wang Y et al. Mild-to-moderate depression

Table 1 Comparison of baseline data

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Degree of depression</th>
<th>Duration of disease (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Mean ± SD</td>
<td>Mild</td>
</tr>
<tr>
<td>Coalition group (n = 80)</td>
<td>35</td>
<td>45</td>
<td>35.33 ± 9.06</td>
<td>46</td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>37</td>
<td>43</td>
<td>36.16 ± 9.00</td>
<td>48</td>
</tr>
<tr>
<td>(\chi^2 / t)</td>
<td>0.101</td>
<td>-0.587</td>
<td>0.103</td>
<td>-0.826</td>
</tr>
<tr>
<td>P value</td>
<td>0.751</td>
<td>0.558</td>
<td>0.748</td>
<td>0.410</td>
</tr>
</tbody>
</table>

categorized as follows [standard score = rough score × 1.25 (integer part)]: Normal, 25-49 points; mild depression, 50-59 points; moderate depression, 60-69 points; and severe depression, 70 points.

Neurotransmitter levels: Neurotransmitter levels were analyzed. Before treatment and 8 wk after treatment, 10 mL of fasting peripheral venous blood was extracted from patients in the two groups, and 5 mL was placed into a 4 °C centrifuge for centrifugation. The upper serum was absorbed using a pipette and divided into 0.6-mL EP tubes. Serum levels of norepinephrine (NE), 5-hydroxytryptamine (5-HT), and dopamine (DA) were measured using high-pressure liquid chromatography-electrochemistry (North Institute of Biotechnology, Beijing).

Oxidative stress index: To measure the oxidative stress index, another 5 mL blood sample was taken. After centrifugation of the supernatant, an enzyme-linked immunosorbent assay (Wuhan Bode Biotechnology Co., Ltd.) was used to detect malondialdehyde (MDA) and superoxide dismutase (SOD) levels.

Sleep quality: The Pittsburgh Sleep Quality Index (PSQI)[15] was used to evaluate sleep quality. The PSQI consists of 19 self-rating questions and 5 other rating questions. The total score ranges from 0 to 21 points, with 0-5 indicating very good sleep quality, 6-10 indicating good sleep quality, 11-15 indicating average sleep quality, and > 15 indicating poor sleep quality.

Adverse reactions: According to the Asberg Rating Scale for Side Effects (SERS)[16], the adverse reactions in the coalition and single-agent groups were evaluated before and after treatment (2, 4, 6, and 8 wk later). The SERS contains a total of 14 items and uses a 4-level scoring method (0-3 points). The total score ranges from 0 to 42 and is proportional to the degree of adverse reactions.

Statistical analysis

Data were analyzed using the IBM SPSS software (version 29.0). Counting variables are expressed as numbers and percentages, and continuous variables are reported as means ± SD. They were tested using \(\chi^2 \) and \(t \) tests, respectively. \(P < 0.05 \) indicates statistical significance.

RESULTS

Clinical effect
The total efficacy rate was 97.50% in the coalition group and 86.25% in the single-agent group (\(P < 0.05 \)) (Table 2).

Depressive symptom
Pre-treatment, the HAMD-24 and SDS scores of the coalition and single-agent groups were not significantly different (\(P > 0.05 \)). However, 2, 4, 6, and 8 wk after treatment, the HAMD-24 and SDS scores of the coalition and single-agent groups decreased, with a more significant decrease in the coalition group (\(P < 0.05 \)) (Figure 1).

Neurotransmitter levels
Pre-treatment, the 5-HT, DA, and NE levels were not significantly different among the coalition and single-agent groups (\(P > 0.05 \)). However, 2, 4, 6, and 8 wk after treatment, the levels of 5-HT, DA, and NE increased in the coalition and single-agent groups, with more significant increases in the coalition group (\(P < 0.05 \)) (Table 3).

Oxidative stress index
Pre-treatment, the MDA and SOD levels were not significantly different between the coalition and single-agent groups (\(P > 0.05 \)). However, after 8 wk of treatment, SOD levels increased and MDA levels decreased, with more significant increase and decrease ranges in the coalition group (\(P < 0.05 \)) (Table 4).

PSQI score
Pre-treatment, the PSQI scores were not significantly different between the coalition and single-agent groups (\(P > 0.05 \)). After 8 wk of treatment, the PSQI scores of the coalition and single-agent groups decreased, with a more significant
Table 2 Comparison of clinical efficacy between the coalition and single-agent groups, n (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Clinical control</th>
<th>Remarkable</th>
<th>Effective</th>
<th>Invalid</th>
<th>Total effective rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition group (n = 80)</td>
<td>28 (35.00)</td>
<td>32 (40.00)</td>
<td>18 (22.50)</td>
<td>2 (2.50)</td>
<td>78 (97.50)</td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>18 (22.50)</td>
<td>23 (28.75)</td>
<td>28 (35.00)</td>
<td>11 (13.75)</td>
<td>69 (86.25)</td>
</tr>
</tbody>
</table>

χ² = 6.782, P value = 0.009

Table 3 Comparison of neurotransmitter levels between the two groups at pre-treatment and 8 wk after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>5-HT (ng/mL)</th>
<th>DA (pg/mL)</th>
<th>NE (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>After 8 wk</td>
<td>Pre-treatment</td>
</tr>
<tr>
<td>Coalition group (n = 80)</td>
<td>95.81 ± 8.35</td>
<td>130.56 ± 16.39<sup>a</sup></td>
<td>122.59 ± 13.55<sup>a</sup></td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>96.38 ± 9.05</td>
<td>119.25 ± 14.45<sup>a</sup></td>
<td>120.36 ± 12.85<sup>a</sup></td>
</tr>
</tbody>
</table>

^aP < 0.00001
5-HT: 5-hydroxytryptamine; DA: Dopamine; NE: Norepinephrine.

Table 4 Comparison of oxidative stress indexes between the two groups at pre-treatment and 8 wk after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>MDA (mmol/L)</th>
<th>SOD (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-treatment</td>
<td>After 8 wk</td>
</tr>
<tr>
<td>Coalition group (n = 80)</td>
<td>12.21 ± 1.80</td>
<td>7.54 ± 1.02<sup>a</sup></td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>12.09 ± 1.77</td>
<td>8.80 ± 1.31<sup>a</sup></td>
</tr>
</tbody>
</table>

^aP < 0.00001
MDA: Malondialdehyde; SOD: Superoxide dismutase.

decrease in the coalition group (P < 0.05) (Table 5).

SERS score

Pre-treatment, the SERS scores were not significantly different between the coalition and single-agent groups (P > 0.05); however, after 2, 4, 6, and 8 wk of treatment, the SERS scores of the coalition and single-agent groups decreased, with a more significant decrease in the coalition group (P < 0.05) (Table 6).

DISCUSSION

The clinical manifestations of mild-to-moderate depression mainly include inattention, persistently low mood, low self-evaluation, slow thinking activity, poor social adaptability, and listlessness. With disease aggravation, patients may experience mental symptoms, such as delusions and hallucinations[17]. In recent years, the incidence of depression has increased annually, placing a heavy burden on society and families. Paroxetine hydrochloride is a class of selective NE reuptake inhibitors that can be metabolized by the liver without metabolite activity and has a good antidepressant effect with few adverse reactions. It is commonly used to treat depression, but its single-drug effect is poor[18].

The ‘depression syndrome’ category of traditional Chinese medicine occurs because of congenital physical weakness or liver fire flourishing coupled with acquired emotional disorders, resulting in qi blockage, mental disorders, and a class of diseases. Clinical manifestations include depression, chest pain, and hypochondriac fullness. In the theory of traditional
Table 5 Comparison of Pittsburgh Sleep Quality Index scores between the two groups at pre-treatment and 8 wk after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-treatment</th>
<th>After 8 wk of treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition group (n = 80)</td>
<td>14.80 ± 3.23</td>
<td>5.38 ± 1.70<sup>a</sup></td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>14.85 ± 3.16</td>
<td>7.53 ± 2.09<sup>a</sup></td>
</tr>
<tr>
<td>t</td>
<td>-0.099</td>
<td>-7.130</td>
</tr>
<tr>
<td>P value</td>
<td>0.921</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

^a_{P < 0.0001.}

Table 6 Comparison of Scale for Side Effects scores between the two groups at pre-treatment and 8 wk after treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre-treatment</th>
<th>After 2 wk</th>
<th>After 4 wk</th>
<th>After 6 wk</th>
<th>After 8 wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalition group (n = 80)</td>
<td>10.75 ± 2.51</td>
<td>8.89 ± 2.39<sup>b</sup></td>
<td>8.16 ± 2.10<sup>c</sup></td>
<td>6.75 ± 2.13<sup>d</sup></td>
<td>5.11 ± 1.69<sup>d</sup></td>
</tr>
<tr>
<td>Single-agent group (n = 80)</td>
<td>10.86 ± 2.32</td>
<td>9.85 ± 2.11<sup>b</sup></td>
<td>9.18 ± 2.03<sup>c</sup></td>
<td>7.75 ± 2.00<sup>d</sup></td>
<td>6.82 ± 1.84<sup>d</sup></td>
</tr>
<tr>
<td>t</td>
<td>-0.294</td>
<td>-2.702</td>
<td>-3.136</td>
<td>-3.062</td>
<td>-6.116</td>
</tr>
<tr>
<td>P value</td>
<td>0.769</td>
<td>0.008</td>
<td>0.002</td>
<td>0.003</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

^a_{P < 0.01.}
^b_{P < 0.0001.}

Figure 1 Hamilton Depression Scale-24 and self-rating depression scale scores in the two groups before and after treatment (2, 4, 6, 8 wk).
A: Hamilton Depression Scale-24 scores in the two groups before and after treatment (2, 4, 6, and 8 wk); B: Self-rating depression scale scores in the two groups before and after treatment (2, 4, 6, and 8 wk). HAMD-24: Hamilton Depression Scale-24; SDS: Self-rating depression scale.
^a_{P < 0.05, b}^{P < 0.01, c}_{P < 0.001, d}^{P < 0.0001, e}_{P < 0.0001.}

Chinese medicine, qi and blood are important components of the human body which maintain the operation of the body’s qi machine. Internal injury of the seven emotions relates to a weak zangqi element, and the stagnation of liver qi and loss of temper lead to the imbalance of Yin and Yang in Zangfu organs, qi, and blood, resulting in mental health disorders and similar diseases of emotional depression[19]. Acupuncture at ghost points clears channels and collaterals, regulates qi, harmonizes Yin and Yang, and improves depressive symptoms[20]. The Shangxing point selected in this study is located in the governor vessel, which can awaken the brain and tranquilize the mind. Shaoshang is the well point of the lung meridian, and Yinbai is the well point of the spleen meridian. Acupuncture can not only drain the lung and transport the spleen but can also awaken the spirit and open the orifices. Shenmai is the Jinmen point of the bladder meridian, which is the same as the lung meridian qi and blood. Therefore, acupuncture can stimulate the meridian qi of ...
the human body and regulate the function of qi and blood. ‘Lingshu Meridian’ records that changes in the Yangming meridian change the spirit and emotion. Qi and blood are easy to move, and the spirit is not separated from qi and blood. The thirteen ghost acupoints were specially used to wake up the spirit, open the orifices, clear the heart, relieve depression, regulate qi, and tranquilize the mind[21]. Acupuncture at the Guixin and Daling point broadens the chest and regulates qi to promote blood circulation and dredge collaterals. It may be combined with acupuncture at the Laogong point of the heart to purge fire, clear the heart, and calm the mind. Loss of transportation and transformation of the spleen leads to phlegm and dampness. Acupuncture at the Guilei point helps the transportation and transformation of the spleen to invigorate it, remove dampness, and reduce turbidity. Acupuncture at the Guigong Shuigou and Guitang Shangxing on the head can dredge the governor vessel and regulate the mind, open the orifices, and relieve depression[22].

In this study, the total efficacy rate was 97.50% in the coalition group and 86.25% in the single-agent group (P < 0.05), suggesting that acupuncture combined with paroxetine hydrochloride tablets had a better effect on mild-to-moderate depression. After treatment, the HAMD, SDS, and PSQI scores in the coalition group were lower than those in the single-agent group (P < 0.05), suggesting that acupuncture at ghost points combined with paroxetine hydrochloride tablets can significantly improve depressive symptoms and sleep disorders in patients. Antidepressants are usually accompanied by adverse reactions, such as drowsiness, dizziness, headache, and gastrointestinal reactions. Studies have shown that acupuncture may not only accelerate the onset time of antidepressants but also improve the overall efficacy and reduce adverse reactions[23,24]. In this study, the total SERS scores of the coalition group after treatment were lower than those of the single-agent group (P < 0.05), suggesting that acupuncture at ghost points can safely reduce the adverse reactions caused by paroxetine hydrochloride tablets.

The 5-HT content in the cerebral cortex and synapses is very high and can promote neuronal differentiation. A lower level of 5-HT correlates with more severe depressive symptoms and worse prognosis[25]. DA is a catecholamine neurotransmitter present in the nerve tissues and body fluids. When people are happy, relaxed, pleasant, comfortable, and enjoyiable, DA secretion increases significantly. Poor function of the DA system in patients with depression directly damages the plasticity of the hippocampus-frontal cortex synapses, leading to emotional regulation and cognitive dysfunction[26]. NE is a common neurotransmitter affecting various regions of the brain. It can regulate arousal and stress responses by regulating synaptic afferent activity and reducing afferents of interfering stimuli. It has been reported that depression is closely related to disorders of brain 5-HT and NE activity, and increasing the levels of NE and 5-HT in the brain is a good strategy to treat depression[27]. In a study on depression, Wang et al[28] found that NE and 5-HT activity in the brains of patients was significantly increased after drug intervention. And it showed that similar to the effect of the positive drug (fluoxetine) on the regulation of NE and 5-HT content, Xiaoyao-jieyuan-san could effectively increase the NE and 5-HT content in the brain tissue of PSD rats. Studies have shown that acupuncture at ghost points can excite the ascending nerve activation system and promote the production of neurotransmitters, such as 5-HT, DA, and NE. It can further regulate the excitation and inhibition processes of the cerebral cortex through the nerve-endocrine-immune system; thus, various neurotransmitters between synapses can be balanced. Acupuncture at ghost points can simultaneously enhance stress, promote adrenal secretion, and improve mental symptoms[29]. SOD is an enzyme that scavenges free oxygen radicals, and MDA is a product of peroxidation. The expression levels of both reflect the degree of lipid peroxidation in the body and the ability of the body to scavengoe free oxygen radicals[30]. After 8 wk of treatment, the levels of NE, 5-HT, DA, and SOD in the coalition and single-agent groups increased, while the level of MDA decreased. The increase and decrease in the coalition group were more significant (P < 0.05), suggesting that paroxetine hydrochloride tablets combined with acupuncture at ghost points can regulate the levels of neurotransmitters in patients with mild-to-moderate depression and reduce the oxidative stress response. This study still has some limitations. For example, this study is a single-center study with a single sample source. Therefore, its generalizability to a wider population, including different ethnic and cultural backgrounds, is not clear. In the future, multi-center studies will be carried out to expand the sample size for further exploration.

CONCLUSION

In summary, treatment with paroxetine hydrochloride tablets combined with acupuncture at ghost points in patients with mild-to-moderate depression can safely and significantly improve depressive symptoms and sleep disorders, regulate the levels of neurotransmitters, and reduce oxidative stress responses.

FOOTNOTES

Author contributions: Wang Y and Lu Q designed and completed the research; Penpat I, Wu J, Abulikemu D, Zeng FC, and Huang JY collected and analyzed the information and data; Hu ZH designed and reviewed the study.

Supported by the General Program of Shanghai Science and Technology Commission on Medical Innovation Research, No. 21Y11923500; the second Round of the “National Medical Strong and Excellent” Three-Year Action Plan (2022-2024) of the Hongkou District of Shanghai Traditional Chinese Medicine Schools and Characteristic Technology Inheritance Support Construction Project, No. HKGYQXYM-2022-17; and the Shanghai Culture and Tourism Bureau.

Institutional review board statement: The study was approved by the Ethics Committee of the Shanghai Hospital of Integrated Medicine.
Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, No. 2021-053-1.

Informed consent statement: All study participants or their legal guardians provided written informed consent for personal and medical data collection before enrolling in the study.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Data sharing statement: The clinical data used in this study can be obtained from the corresponding author upon request.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country of origin: China

ORCID number: Yi Wang 0000-0002-4978-9562; Qun Lu 0009-0007-9752-2313; Ittipalanukul Penpat 0009-0001-4648-515X; Juan Wu 0000-0002-7260-6373; Dilmuer Abilikemu 0000-0003-4912-2634; Fei-Cui Zeng 0000-0003-2900-1237; Jia-Ying Huang 0000-0001-8148-3152; Zhi-Hai Hu 0000-0001-6662-1596.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Che XX

REFERENCES

7 Li XH, Li JL, Dong TT, Ma X, Xue XQ, Yang JG. [Governor vessel moxibustion combined with western medication for mild to moderate depression with kidney-yang deficiency: a randomized controlled trial]. Zhongguo Zhen Jiu 2023; 43: 14-18 [PMID: 36633233 DOI: 10.13073/jzj-2025-2930.20200403-0001].

17 Ulah I, Di Minno A, Esposito C, El-Seedi HR, Khalifa SAM, Baldi A, Greco A, Santonastaso S, Cioffi V, Sperandeo R, Sacchi R, Daglia M. Efficacy of a food supplement based on S-adenosyl methionine and probiotic strains in subjects with subthreshold depression and mild-to-

WJIP | https://www.wjipnet.com

855 June 19, 2024 Volume 14 Issue 6

Fu W, Wang MY, Ning BL, Zhou P, Fu WB. [Professor FU Wen-bin's experience in treatment of mental disorder with acupuncture and moxibustion from perspective of "psychosomatic medicine"]. *Zhonggguo Zhen Jiu* 2021; **41**: 1140-1144 [PMID: 34628748 DOI: 10.13703/j.0255-2930.20210119-k0001]

