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Abstract
The eye is a highly protected organ, and designing an 
effective therapy is often considered a challenging task. 
The anatomical and physiological barriers result in low 
ocular bioavailability of drugs. Due to these constraints, 
less than 5% of the administered dose is absorbed 
from the conventional ophthalmic dosage forms. Fur-
ther, physicochemical properties such as lipophilicity, 
molecular weight and charge modulate the perme-
ability of drug molecules. Vision-threatening diseases 
such as glaucoma, diabetic macular edema, cataract, 
wet and dry age-related macular degeneration, prolif-
erative vitreoretinopathy, uveitis, and cytomegalovirus 
retinitis alter the pathophysiological and molecular 
mechanisms. Understanding these mechanisms may 
result in the development of novel treatment modali-
ties. Recently, transporter/receptor targeted prodrug 
approach has generated significant interest in ocular 
drug delivery. These transporters and receptors are in-
volved in the transport of essential nutrients, vitamins, 
and xenobiotics across biological membranes. Several 
influx transporters (peptides, amino acids, glucose, lac-

tate and nucleosides/nucleobases) and receptors (folate 
and biotin) have been identified on conjunctiva, cor-
nea, and retina. Structural and functional delineation of 
these transporters will enable more drugs targeting the 
posterior segment to be successfully delivered topically. 
Prodrug derivatization targeting transporters and recep-
tors expressed on ocular tissues has been the subject 
of intense research. Several prodrugs have been de-
signed to target these transporters and enhance the 
absorption of poorly permeating parent drug. Moreover, 
this approach might be used in gene delivery to modify 
cellular function and membrane receptors. This review 
provides comprehensive information on ocular drug de-
livery, with special emphasis on the use of transporters 
and receptors to improve drug bioavailability.
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DRUG DELIVERY TO THE EYE
The eye is one of  the most complex organs in the human 
body. The eye may be described as being comprised of  
three distinguishable regions: the outer cornea and sclera; 
the middle layer, which consists of  the iris, ciliary body, 
and the choroid; and the inner region, or retina (Figure 1). 
Drug delivery to the eye presents unique challenges due 
to the complexity of  this organ. Based on the route of  
administration, ocular drug delivery is classified into three 
types: (1) topical; (2) systemic; and (3) intraocular delivery. 
Dosage forms such as eye drops, suspensions and oint-
ments are used for topical delivery. Eye drops account for 
approximately 90% of  ophthalmologic market formula-
tions[1,2] and are widely used in the delivery of  anesthetics, 
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antihistamines, β-receptor blockers, non-steroidal anti-in-
flammatory drugs, parasympatholytics, parasympathomi-
metics, prostaglandins, steroids, and sympathomimetics[3]. 
In some cases, eye drops devoid of  medications are used 
for lubricating and tear-replacing solutions. 

Ocular bioavailability of  drugs following topical ad-
ministration is significantly less (1%-5%) and hence this 
route is predominantly used for treatment of  anterior 
segment disorders[4,5]. Most drugs administered topically 
are washed away rapidly by the nasolachrymal drainage 
and high tear fluid turnover[6]. Regardless of  the low ocu-
lar bioavailability, eye drops are widely used because of  
their affordability and ease in scale up and manufacturing 
processes. 

Systemic administration of  drugs is preferred for pos-
terior segment disorders affecting the retina[4]. This in-
volves the administration of  drugs as tablets, capsules or 
intravenous injections. The presence of  the blood retinal 
barrier, which is selectively permeable to more lipophilic 
molecules, limits the entry of  drug molecules into the 
eye and hence only 1%-2% of  administered drug reaches 
the vitreous cavity[7]. For example, lipid-soluble drugs 
such as chloramphenicol and minocycline penetrate the 
blood retinal barrier, while aminoglycosides (amikacin) 
and β-lactams (cefazolin) used in the treatment of  en-
dophthalmitis, do not reach the vitreous in adequate 
concentrations[8]. This demands frequent administration 
of  high doses, resulting in non-specific absorption and 
systemic toxicity[9,10]. Intraocular delivery in the form of  
intravitreal and periocular injections is becoming a popu-
lar approach for treatment of  posterior segment diseases. 
Intravitreal administration involves the injection of  drug 
solution/suspension directly into vitreous humor via pars 
plana using a 30 G needle[11]. Unlike topical and systemic 
routes, intravitreal injection offers high concentrations of  
drug in the choroid and retina. Nevertheless, intravitreal 
injections are very painful and are associated with several 
side effects such as cataract, endophthalmitis and retinal 
detachment[12]. Periocular injection involves administra-
tion of  drug via peribulbar, posterior juxtascleral, retro-
bulbar, sub-tenon and subconjunctival routes (Figure 2)[13]. 
Periocular refers to the region surrounding the eye, and 
drugs that are placed close to sclera reach the posterior 
segment by three routes: transcleral (sclera→ choroid→ 
retina); transcorneal route (tear film → cornea → aque-
ous humor → lens → vitreous humor); and systemic 
circulation through the conjunctival and choroidal capil-
laries[13] (Figure 3). Lee et al[14] studied the permeation of  
radio-labeled mannitol following subconjunctival injec-
tion in rabbits. They concluded that direct penetration 
through the sclera is the primary pathway to the posterior 
segment, followed by recirculation pathway and transcor-
neal pathways.

CHALLENGES TO OCULAR DRUG 
DELIVERY
The unique anatomic and physiologic properties of  the 

eye make it a complex organ, offering numerous chal-
lenges in developing ocular drug delivery strategies. Due 
to these constraints, less than 1% of  the administered 
dose is absorbed when conventional ophthalmic forms 
such as solutions, suspensions, and ointments are applied 
to the eye[15], and up to 90% of  marketed ophthalmic 
products may be identified as a type of  conventional de-
livery system. This apparent disparity is quite significant 
and drives the translational research in the area of  ocular 
drug delivery to overcome the unmet needs regarding 
the treatment of  both anterior and posterior segment eye 
diseases[16]. Poor bioavailability of  drugs from ocular dos-
age forms to the anterior segment is attributed to factors 
such as solution drainage, lacrimation, tear dilution, tear 
turnover, nonproductive absorption, poor residence time, 
and the permeability barrier of  the corneal epithelial 
membrane[17]. Drugs applied topically to the eye can reach 
the intraocular tissues via the corneal and/or non-corneal 
(conjunctival-scleral) routes[18,19]. Tight junctions pres-
ent in the apical side of  the conjunctival epithelium im-
pede the paracellular transport of  hydrophilic substrates 
through the conjunctiva[20,21]. Thus, a healthy conjunctiva 
is impervious and impermeable to toxins, microbes, and 
allergens. However, several hydrophilic molecules have 
been shown to possess greater permeability through the 
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Figure 1  Structure of the eye. Credit: National Eye Institute, National Insti-
tutes of Health. 
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non-corneal route than through the corneal route[22-27]. 
Conversely, a variety of  lipophilic molecules were found 
to preferentially traverse the cornea rather than the non-
corneal region[22,28,29]. However, the presence of  hydrous 
stroma in the cornea may hamper permeation of  highly 
lipophilic molecules through the cornea. The passage 
of  molecules through the cornea depends on their lipo-
philicity, molecular weight, charge, and degree of  ioniza-
tion[18,30,31].

The blood-retinal barrier (BRB) restricts penetration 
of  drugs into the posterior segment when administered 
systemically or periocularly[32]. Anatomically, two BRB’s may 
be differentiated: the outer BRB, presented by the retinal 
pigment epithelial (RPE), and the inner BRB, presented by 
the endothelium of  the retinal vasculature[33]. Molecules 
with optimum membrane permeability characteristics 
and substrates of  one of  the membrane transporters can 
cross the BRB[33-37]. Specialized membrane transporters 
such as amino acid, dicarboxylate, monocarboxylic acid, 
nucleoside, organic ion, and peptide transporters channel 
nutrients, metabolites, and xenobiotics to the retina. Struc-
tural and functional delineation of  these transporters will 
enable more drugs targeting the posterior segment to be 
successfully delivered topically. 

ROLE OF EFFLUX PUMPS IN OCULAR 
DRUG DELIVERY
Yet another barrier that can affect the ocular bioavailability 
is the presence of  efflux transporters such as P-glycopro-
tein (P-gp) and multidrug resistance-associated protein 
(MRP)[38-42]. Several substrates have been identified for the 
efflux transporters expressed in in vitro cell culture mod-
els[40,43-46]. Drug resistance mediated by efflux transporters 
is quite common in the area of  cancer research. Efflux 
transporters such as P-gp and MRP are members of  the 

ATP binding cassette (ABC) transporter family that utilizes 
ATP for translocation of  various substrates across mem-
branes[47]. Efflux transporters prevent the entry of  toxic 
substances into the cells and aid in the healthy state of  
cells. Earlier investigation by Dano in 1973 described the 
evidence of  efflux transporter resulting in drug resistance 
in Ehrlich astrocytes[48]. Later, P-gp was identified in the 
multidrug resistant cells and found to be responsible in the 
efflux of  various cancer drugs like paclitaxel and doxorubi-
cin[49]. P-gp, a transmembrane glycoprotein (approximately 
170 kDa) with 10-15 kDa of  N-terminal glycosylation, 
binds to the drug molecules and transports them out of  
the cell utilizing ATP hydrolysis. P-gp has wide substrate 
specificity for several drug classes including steroids, cardi-
an glycosides, glucocorticoids, non-nucleoside reverse tran-
scriptase inhibitors, protease inhibitors and immunosup-
pressive drugs[50]. Ocular drug resistance is a relatively new 
science, and presence of  efflux transporters on various 
ocular tissues like cornea, conjunctiva, iris and retina was 
not known until recently. Efflux transporters have been 
identified extensively in major organs like the small intes-
tine, kidney and liver, and their implication in drug delivery 
is well known[51]. However, the knowledge and relative ex-
pression of  efflux pumps in ocular tissues is very limited, 
and the data published so far is limited to cell lines and 
lower species. These efflux transporters prevent the entry 
of  several drug molecules into the eye (Figure 4). P-gp is 
expressed on the corneal epithelium[48,50], conjunctival epi-
thelial cells[52], iris and ciliary muscle cells[53], retinal capillary 
endothelial cells[54], retinal pigmented epithelial cells[55,56], 
and ciliary non-pigmented epithelium[57]. The expression 
of  P-gp on cornea can significantly modulate the absorp-
tion of  topically administered drugs. Dey et al[58] studied 
the ocular absorption of  [14C] erythromycin in the presence 
and absence of  P-gp inhibitors. In the presence of  P-gp 
inhibitors such as testosterone, verapamil, quinidine, and 
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metabolites and other external harmful molecules. P-gp 
and MRP have been found to be expressed on several 
ocular tissues[66-68]. As more research evolves in this area, 
formulations that contain substrates of  these efflux pumps 
may offer opportunities to enhance the ocular bioavailabil-
ity by co-administration of  efflux pump inhibitors[41,69-72].

TRANSPORTER/RECEPTOR MEDIATED 
DRUG DELIVERY
The eye is a highly compartmentalized organ with several 
anatomical and physiological barriers. The partial barriers 
that isolate the eye from the rest of  the body impede the 
effective passage of  many drugs[73]. Over the past two de-
cades, several efforts have been made to increase the ocu-
lar bioavailability of  drugs by enhancing the contact time 
of  drugs with the target tissue, without compromising pa-
tient compliance[74,75]. Ophthalmic drug molecules should 
possess optimum hydrophilicity and lipophilicity for two 
reasons: (1) to facilitate the formulation of  eye drops/in-
jections; and (2) to allow sufficient permeability across the 
anatomical barriers such as corneal epithelium, choroid, 
retinal pigment epithelium. Drugs with an octanol/buffer 
distribution coefficient in the range of  100-1000 are con-
sidered to be optimum for corneal absorption[76,77]. Unfor-
tunately, the buffer distribution coefficient of  most drugs 
does not fall within this range, requiring the development 
of  novel drug delivery strategies such as bioadhesive 
hydrogels, micro- and nanoparticles, liposomes and col-
lagen shields. The prodrug approach is a more traditional, 
promising, and less expensive method for achieving the 
desired solubility and lipophilicity. This approach involves 
chemical modification of  drug molecules using pro-
moieties to improve their physicochemical properties[78]. 

cyclosporine A, the ocular bioavailability of  [14C] erythro-
mycin was significantly enhanced, indicating the role of  
P-gp in ocular absorption of  topically applied drugs. MRP 
is another major class of  ABCC efflux transporter leading 
to drug resistance, and the MRP family has nine members 
(MRP 1-9) with varying substrate specificity[59]. MRPs are 
organic anion transporters and they play a vital role in 
the transport of  anionic and neutral drugs conjugated to 
acidic ligands. So far, isoforms of  the MRP family have 
been identified on ocular tissues. MRP1 expression was 
identified in rabbit conjunctival epithelial cells[60] and RPE 
cells[61], while MRP2 and MRP5 expression was identified 
in corneal epithelium[62,63]. In a recent study, Vellonen et al[64] 

compared expression of  efflux proteins [MDR1 (ABCB1), 
MRP1-6 (ABCC1-6), and BCRP (ABCG2)] in normal 
human corneal epithelial tissue, primary human corneal 
epithelial cells (HCEpiC), and corneal epithelial cell cul-
ture model (HCE model) based on human immortal cell 
line. They concluded that BCRP, MRP1, and MRP5 are 
expressed in the corneal epithelium, while MDR1, MRP2, 
MRP3, MRP4, and MRP6 are not significantly expressed. 
Conflicting results have been observed with the expression 
profile of  the efflux transporters in various ocular tissues, 
especially the human corneal epithelium. Nevertheless, a 
wide array of  ocular drugs including antibiotics, sulfated 
steroids, macrolides (azithromycin and erythromycin), and 
quinolones (ciprofloxacin and grepafloxacin) has been 
proven to be substrates for these efflux pumps, which de-
ter their ocular bioavailability[65]. To a large extent, the role 
of  efflux pumps in ocular drug resistance remains to be 
explored. Although the functional significance of  efflux 
pumps in the eye have not been elaborated completely, one 
may reasonably assume that they present another strategy 
for defending the eye from potential harm due to toxic 
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The selection and linkage of  pro-moieties depend on the 
metabolic enzymes, and after absorption, the prodrugs 
are subject to enzymatic hydrolysis resulting in the active 
parent drug. The bioreversion rate of  the prodrug de-
pends on affinity of  prodrug linkage towards hydrolyzing 
enzyme(s), mainly esterases/peptidases and the turnover 
rate of  the enzyme. Lipophilic chemical modification has 
been used successfully to improve their ocular bioavail-
ability of  various hydrophilic drugs[79,80]. For example, the 
bioavailability of  ganciclovir (hydrophilic drug) after oral 
administration is 6%. This necessitates the use of  high 
systemic doses of  ganciclovir for attaining therapeutic 
concentrations in the eye, which gradually results in sys-
temic toxicity. Intravitreal injections (0.2-0.4 mg) minimize 
systemic toxicity and increase the vitreal concentrations of  
ganciclovir; however, they are associated with patient non-
compliance, and rapid elimination of  vitreal ganciclovir 
(elimination t1/2: approximately 13 h in humans) requires 
repeated intravitreal injections, leading to side effects like 
retinal detachment, endophthalmitis, and vitreal hemor-
rhage. Short-chain carboxylic mono- and di-esters of  
ganciclovir, especially aminobutyrate ester of  ganciclovir, 
exhibited maximum stability, optimum lipophilicity and 
sufficient solution stability at neutral or slightly acidic 
pH (4.0-7.0) and excellent activity against various herpes 
viruses such as HSV-2 and VZV[81]. This study highlights 
the use of  the prodrug approach in enhancing the ocular 
bioavailability of  ganciclovir without compromising the 
antiviral activity. More recently, the progress in molecular 
cloning of  transporter genes led to the identification of  
membrane transporters/receptors that play an important 
role in transferring exo- and endogenous nutrients[82]. 
Despite the high vascularity of  the retina, blood retinal 
barriers regulate the movement of  nutrients between 
circulation and neural retina[83]. Therefore, most nutrients 
are transported into the retinal cells by specific transport/
receptor systems[84]. Identification of  such membrane 
transporters/receptors including peptide, amino acids, 
nucleoside and nucleobase, glucose, monocarboxylic acid, 
organic anion and organic cation transporters, led to the 
development of  prodrugs for poorly permeating drug 
molecules[85]. Transporter-targeted prodrugs offer several 
advantages including: (1) improving the stability of  parent 
drug molecule; (2) altering the physicochemical properties 
such as solubility and lipophilicity; (3) improving the phar-
macokinetics properties; and (4) improving the perme-
ability of  drugs as the prodrugs become substrates for the 
influx transporters and simultaneously evade the efflux 
pumps (Figure 4). Table 1 presents the list of  transporter/
receptor(s)in the eye. 

Peptide transporter
Peptide transporters are among the most versatile mem-
brane carrier systems with a wide range of  substrate 
specificity. They are classified into three types: PepT1, 
PepT2 and peptide/histidine transporters (PHT1 and 
PHT2), with difference in their substrate specificity, 
transport capacity and affinity[86]. PepT1 belongs to solute 

carrier family 15 member 1 (SLC15A1) that is encoded 
in humans by the SLC15A1 gene. PepT1 is a low-affinity 
proton coupled transporter responsible for the transloca-
tion of  di- and tri-peptides[87,88]. PepT2, another proton-
coupled oligopeptide transporter belonging to the same 
family,is a high-affinity transporter that is responsible for 
the translocation of  small peptides, β-lactam antibiotics 
and other peptidomimetic drugs[89]. PepT1 is predomi-
nantly expressed on the intestine and helps in the absorp-
tion of  protein digestion products, while PepT2 is mainly 
expressed on the brain and kidney. The peptide/histidine 
transporters PHT1 and PHT2 are expressed on the ly-
sosomal membrane of  cells and are responsible for the 
efflux of  histidine and small peptides from the lysosomes 
into the cytoplasm. The presence of  an oligopeptide 
transport system on the corneal epithelium was identified 
by Anand et al[90] by studying the transport mechanism of  
L-valyl ester of  acyclovir (L-val-ACV) across rabbit cor-
nea in the presence of  competitive inhibitors for human 
peptide transporter (hPepT1). Transcorneal permeation 
of  L-val-ACV was approximately threefold higher across 
the intact rabbit cornea than ACV. Substrates of  hPepT1 
such as dipeptides, angiotensin converting enzyme inhibi-
tors, and β-lactam antibiotics significantly inhibited the 
transport of  L-val-ACV, indicating the presence of  a car-
rier-mediated transport system specific for peptide. The 
oligopeptide transporter on the rabbit cornea opened up 
new avenues for the development of  transporter-targeted 
prodrugs. Later, the same group evaluated the antiviral 
efficacy of  val-val-ACV against herpetic epithelial and 
stromal keratitis. They concluded that val-val-ACV dem-
onstrated higher water-solubility than ACV and lower 
cytotoxicity than trifluorothymidine. Val-val-ACV also 
showed excellent activity against HSV-1 in the stromal 
keratitis models and rabbit epithelia[91]. Peptide transport-
ers are also expressed on the basolateral side of  retina 
and neural retina[92,93]. The role of  peptide transporters in 
the vitreal clearance of  cephalexin, a peptide transporter 
substrate, was investigated using a dual probe microdialy-
sis technique in the presence of  glycyl-proline[92]. Co-ad-
ministration of  gly-pro increased the vitreal half-life and 
AUC of  cephalexin, suggesting the involvement of  pep-
tide transporters in the clearance of  cephalexin from the 
posterior chamber. Later studies performed by Majumdar 
et al[94] investigated the expression of  peptide transporters 
on the retina. Ex-vivo uptake in excised rabbit retina/cho-
roid tissues and in vivo retinal uptake using [3H] gly-sar 
and peptidomimetics demonstrated the functional pres-
ence of  peptide transporter on the retina. Berger et al[93] 

studied the distribution of  peptide transporter (PepT2) 
in the retinal Müller glial cells of  the rat nervous system. 
Peptide transporter facing the vitreous humor can be tar-
geted following intravitreal administration of  prodrugs to 
achieve higher drug levels in the retina. Identification and 
characterization of  transporters on the basolateral side 
of  RPE is relatively difficult. Some researchers have tried 
to identify these transporters following systemic adminis-
tration of  peptide substrates and measuring the vitreous 
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humor concentrations in the presence and absence of  
competitive inhibitors. For example, Dias et al[95] studied 
the ocular penetration of  ACV and its peptide prodrugs 
val-ACV and val-val-ACV following systemic administra-
tion in rabbits using microdialysis. The anterior segment 
area under curve values of  ACV, val-ACV and val-val-
ACV were 53.70 (± 35.58), 139.85 (± 9.43) and 291.05 
(± 88.13) min × μmol/L, respectively. However, the drug 
concentration in vitreous humor was below the detection 
limit. The same group studied the mechanism of  a dipep-
tide ([3H] glycylsarcosine) transport into vitreous humor, 
retina and aqueous humor, following systemic adminis-
tration in the presence and absence of  inhibitors. In the 
presence of  inhibitors, the transport of  glycylsarcosine 
into the aqueous, vitreous, and retina was significantly 
inhibited. These results indicate the expression of  a pep-
tide transporter on the blood-aqueous and blood-retinal 
barriers that can be exploited for the targeted delivery 
following systemic administration[96]. 

Amino acid transporter
Amino acid transporters are responsible for translocation 
of  amino acids from blood to various organs. Amino 
acids are responsible for protein synthesis and play a sig-
nificant role in maintenance of  structural and functional 
integrity of  conjunctiva and retina/RPE. Amino acid 
transporters are ubiquitous in nature, with overlapping 
substrate specificity; hence, they are heavily exploited 
for targeted delivery of  drugs. Amino acid transporters 
can be classified on the basis of  sodium dependence, 
charge, and substrate specificity[97]. A sodium-dependent 
transporter binds amino acids after binding to sodium 
ions and undergoes a conformational change that allows 
the dumping of  sodium ions and amino acids into the 
cytoplasm. System B, B0,+, IMINO, system X-(anionic), 
ASC (cationic, anionic, and neutral forms), and ATB0,+, 
belong to the sodium-dependent transporter category, 
while system y+ (cationic), b0,+, and system L (large) do 
not depend on sodium for transporting amino acids. 
Large amino acid transporter (system L) is expressed in 
two isoforms, LAT1 and LAT2, which are involved in 
the uptake of  large aromatic or branched amino acids 
from extracellular fluids. LAT1 transports large neutral 
amino acids such as Leu, Phe, Ile, Trp, Val, Tyr, His 
and Met, while LAT2 transports large and small neutral 
amino acids[7]. Amino acid transport systems have been 
characterized on corneal epithelium and endothelium. 
The presence of  various amino acid transporters such as 
ASCT1, LAT1 and ATB0+ has been characterized on the 
cornea. These transporters are involved in the transport 
of  several amino acids such as L arginine, L-phenylalanine 
and L-alanine across the cornea[98]. The presence and 
function of  amino acid transporters on human retina 
are heavily published in literature[99,100]. Gandhi et al[101] 
investigated the presence of  a LAT2 on the ARPE-19 
cell line. The same group also reported the presence of  
sodium-dependent, B0,+ amino acid transporter on rabbit 
corneal epithelium and human cornea and its interaction 

with the amino acid ester prodrugs of  ACV (γ-glutamate-
ACV and phenylalanine-ACV)[102]. Katragadda et al[103] 
studied the in vivo corneal absorption of  the amino acid 
prodrugs ACV (L-alanine-ACV, L-serine-ACV, L-serine-
succinate-ACV and L-cysteine-ACV) using a topical well 
model and microdialysis in rabbits. They concluded that 
L-serine-ACV seems to be a promising candidate for the 
treatment of  ocular HSV infections due to its enhanced 
stability, comparable AUC, and high concentration at the 
last time point (Clast). Further studies also revealed higher 
antiviral activity against varicella-zoster and herpes sim-
plex virus, and in comparison to ACV. ATB0,+ is a broad 
substrate-specific transporter that recognizes neutral and 
cationic amino acids. Studies have the shown the poten-
tial of  ATB0,+ in delivery of  antiviral drugs such as ACV 
and ganciclovir, which are covalently coupled to anionic 
amino acids[104]. Retinal cells have a basal requirement 
of  amino acids for protein synthesis. Several amino acid 
neurotransmitters (glutamate, GABA and glycine) and 
neuroactive amino acids (aspartate, homocysteic acid, and 
taurine) have been identified in the retina[100,105-107]. High 
affinity, sodium-dependent glycine transporter (Glyt-1) is 
cloned on retinal neurons[100,108]. Glty-1 plays an impor-
tant role in maintaining the glycine homeostasis in the 
retina of  all vertebrate species. Glutamate, a major excit-
atory neurotransmitter, is mainly localized on the bipolar 
cells, retinal ganglion cells and slightly ischemic photo-
receptors[109]. The vitreal levels of  glutamate are mildly 
elevated with diabetic retinopathy and rhegmatogenous 
retinal detachments. This may be attributed to the high-
affinity excitatory glutamate transport proteins that can 
be utilized in drug delivery[110]. Recently, Yamamoto et al[35] 
studied the gene expression level of  LAT1 and LAT2 in 
ARPE-19 cells and concluded that both LAT1 and LAT2 
are involved in L-leucine transport. These amino acid 
transport systems could help in the design of  prodrugs 
that are likely to be transported across the retina for bet-
ter ocular delivery and bioavailability.

Nucleoside transporters
Nucleosides are transported via two carrier-mediated 
mechanisms, namely, facilitated diffusion, also referred to 
as equilibrative (sodium-independent) transport system 
and energy-dependent transporters also referred to as 
concentrative (sodium-dependent) transport system[111]. 
These transporters have been found in the epithelium of  
kidneys, intestine, conjunctiva, and choroid plexus[112-114]. 
Two types of  equilibrative (labeled hENT1 and hENT2) 
and five types of  concentrative transporters (labeled N1 
through N5) have been reported so far[114-118]. The equili-
brative nucleoside transporters (ENT) are differentiated 
by their relative sensitivities to nitrobenzylthioinosine 
(NBT). hENT1 is sensitive to NBT, whereas hENT2 is 
not[119,120]. The differences between concentrative trans-
porters are in their substrate specificities. The N1 trans-
porter is specific to purines and uridine; N2 is selective 
to pyrimidines and adenosine; N3 has broad specificity 
for purines and pyrimidines; N4 is pyrimidine selective, 
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but transports adenosine and guanosine as well; and the 
N5 transporter is NBT sensitive and preferentially trans-
ports guanosine[114,118,120-122]. In the eye, sodium-depen-
dent transporters have been found in the retina[121] and 
conjunctiva[123]. Transport of  guanosine and adenosine 
investigated in retinal cell cultures indicated strong tem-
perature dependency with maximal uptake of  both sub-
strates occurring at 37  ℃[121]. The transport was found to 
be significantly decreased when calcium and sodium ions 
containing electrolytes were substituted with other salts 
in the buffers used in the experiments. Substrate specific-
ity testing revealed that adenosine inhibited guanosine 
uptake and not vice versa, indicating that separate pro-
cesses exist for the uptake of  each substrate. Moreover, 
L-N6-phenyl isopropyladenosine, N6-dimethyladenosine, 
8-bromo adenosine, 5’-deoxy-5’-methylthioadenosine, 
and inosine significantly reduced the transport of  ad-
enosine and guanosine. The conjunctival mechanisms in-
volved with nucleoside transport were first elucidated by 
Hosoya et al[113]. They reported mucosal presence of  both 
sodium-dependent and sodium-independent hENT2 on 
excised rat conjunctiva. Uridine transport across the con-
junctiva follows a strong mucosal to serosal directionality, 
temperature sensitivity, and phlorizin sensitivity. A struc-
tural feature necessary for coupling of  the substrate and 
the transporter is the 3’-hydroxyl group of  the D-ribose 
present in the nucleoside. 

Glucose transporter
The energy for metabolic and electrochemical activity 
in the eye comes largely from oxidative breakdown of  
glucose[124]. The most prevalent and classical view regard-
ing energy metabolism in the eye is that glucose is the 
primary substrate and that the highest rate of  glycolysis 
and respiration manifests in the photoreceptor cells[125-128]. 
However, an entirely different hypothesis was suggested 
by Jones et al[129], Tsacopoulos et al[130-132] and Poitry-Yamate 
et al[133,134] based on their research on honeybee drone retina 
and guinea pig retina. Their research led to the proposal 
that glycolysis occurs in glial cells and that Müller cells 
predominate as the sole aerobic producers of  lactate, 
serving as the primary fuel in the photoreceptors and 
other retinal neurons. Extensive research to establish 
metabolic processes occurring in the eye led to the con-
clusion that under normal conditions, when ambient 
glucose supply to the eye is adequate, glucose serves as 
the primary source of  energy in the retina, rather than 
glial-generated lactate[135-137]. It has also been shown that 
lactate production does occur in Müller cells via aerobic 
metabolism of  glucose[138-140]. Changes in metabolism and 
metabolic rate have profound implications in the pro-
gression of  various ocular diseases[141-150]. Seven isoforms 
of  the glucose transporter (GLUT1 through GLUT7) 
have been identified so far[151]. The facilitative glucose 
transporter, GLUT1, was found to be expressed in the 
cornea, iris-ciliary body, lens, and retina[152-156]. In addition 
to these glucose transporters, Na+-D-glucose transporter 
(SGLT1) has been found in the mucosal side of  the con-
junctiva[157]. Although a wealth of  information is available 
regarding glucose transporters, their utility in ocular drug 
delivery still remains an elusive goal, likely due to the high 
substrate specificity associated with these transporters. 

VITAMIN TRANSPORTERS
Ascorbic acid transporter
Ascorbic acid, also known as vitamin C, is a water soluble 
vitamin responsible for several metabolic and physiologi-
cal functions due to its antioxidant property. Ascorbic 
acid protects the cornea and other intraocular tissues 
by absorbing the UV radiations between 280-310 nm. 
Higher levels of  ascorbic acid in the eye prevent lens 
cataracts and inhibit peroxidase activity. Human ocular 
tissues contain significantly higher amounts of  ascorbic 
acid due to their protective role. The concentration of  
ascorbic acid in tear fluid, corneal epithelium and aque-
ous humor are 23 ± 9.6 μmol/L, 1.33 ± 0.48 mg/g and 
0.20 ± 0.1 mg/mL, respectively. The concentration of  
ascorbic acid in aqueous humor is approximately 20-fold 
higher than the plasma concentrations[158]. These figures 
intrigued the researcher to study the presence of  ascorbic 
acid transporter and its role in the transport of  ascorbic 
acid. Cellular transport of  ascorbic acid is mediated by 
hexose transporters (GLUT) and sodium-dependent vi-
tamin C transporters (SVCT1 and SVCT2). GLUT1 is a 
low affinity and high capacity transporter that facilitates 
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Table 1  List of transporter/receptor(s) present in the eye

Tissue Transporter/receptor Subtypes Ref.

Cornea Amino acid LAT1, LAT2, 
Phenylalanine, 

tyrosine

[213,214] 

Glucose GLUT1 [215]
Nucleoside [216]

Peptide hPEPT1 [90]
Folate [180]
Biotin [175]

Conjunctiva Acid-base NKCC, HE1 [217]
Amino acid Bo,+ [218]

Glucose GLUT1 [157,219]
Peptide Dipeptide [220]

Monocarboxylate [221]
Nucleoside [113]

Lens Amino acid System A, L, Gly, 
Ly+, β, ASC 

[222] 

Ascorbic acid SVCT2 [223]
Glucose GLUT1, GLUT3 [224]

Glutathione R-GSHT [225]
Iris-ciliary body Glucose GLUT1, GLUT4 [226]

Nucleoside [227]
Retina Amino acid Glycine, 

glutamine, arginie, 
proline, taurine 

[99,228,229]

Glucose GLUT1, GLUT3 [230]
Monocarboxylic acid MCT1, MCT3 [231,232]

Nucleoside [121,233]
Peptide PEPT1, PEPT2, 

PHT1, PHT2 
[92,93,95,96]

Vitamins(ascorbic 
acid, biotin, folic 
acid, riboflavin) 

SVCT2, RFT, FR-α, 
SMVT 

[85,183]
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the transport of  the oxidized form of  ascorbic acid (de-
hydroascorbic acid), while SVCT1 and SVCT2 are high 
affinity and low capacity sodium-dependent transporters 
that transport the reduced form, L-ascorbic acid. Inter-
estingly, the ascorbic acid concentrations are higher in 
diurnal animals as compared to nocturnal animals. Nei-
ther SVCT1 nor SVCT2 was observed in the ciliary body 
of  rat (nocturnal animal), while albino rabbit (diurnal 
animal) SVCT2 was expressed abundantly in pigmented 
epithelium of  the ciliary body and expressed moderately 
in the deeper layers of  the corneal epithelium[159]. SVCT2 
is widely expressed in several ocular tissues such as ciliary 
body, cornea, lachrymal gland, and retina[160].

The presence of  ascorbic acid on bovine corneal 
endothelial cells and its role in the transport of  ascorbic 
acid to the stroma was reported by Bode et al[158]. Talluri 
et al[161] studied the uptake mechanism of  L-ascorbic acid 
by rabbit corneal epithelial cells and characterized the 
specific transporter involved in this translocation. They 
concluded that SVCT2 is responsible for the uptake of  
L-ascorbic acid. Further, the uptake was found to be so-
dium-dependent and saturable at higher concentrations. 
Ascorbic acid transporter is utilized to some extent in 
drug delivery, especially in the transport of  glucosamine 
by the facilitative glucose transporter, GLUT1. Glucos-
amine is an essential sugar derivative and a widely used 
nutraceutical agent that helps in the synthesis of  glyco-
proteins and glycosaminoglycans[162]. Glucosamine has 
significant modulatory effects on insulin resistance and 
diabetes-associated complications[160]. Recently, SVCT2 
transporter has been used in the delivery of  neurotropic 
agents to the central nervous system (CNS). Informa-
tion available in the literature supports the use of  ascor-
bic acid-conjugated prodrugs nipecotic, kynurenic and 
diclofenamic acids for brain delivery[163,164]. Luo et al[165] 
demonstrated that amino acid-conjugated prodrugs of  
saquinavir improved its solubility, metabolic stability and 
absorptive permeability. Hence, SVCT targeted prodrug 
approach can be utilized as an attractive strategy to en-
hance the ocular absorption of  drugs. 

Biotin carrier system
Biotin, also known as B-complex vitamin (vitamin B7), is a 
water soluble vitamin essential for normal cellular growth, 
function, and development. Biotin is a cofactor for the 
carboxylases that catalyze various metabolic reactions such 
as gluconeogenesis, fatty acid biosynthesis, and catabolism 
of  several branched chain amino acids[166,167]. Biotin is pri-
marily absorbed and metabolized in the intestine, liver and 
placenta[168-170]. The involvement of  sodium-dependent 
multivitamin transporter (SMVT) in the uptake of  biotin, 
pantothenate and lipoate from human placenta was first 
report by Grassel[171]. Studies by Said et al[169,172] and sev-
eral other groups concluded that SMVT is the primary 
transport system responsible for the uptake of  biotin up-
take[170]. SMVT plays an important role in the transport of  
vitamins and cofactors essential for the normal function-
ing of  the eye. Moreover, adequate biotin concentrations 
are required for the development of  retina and correct 
ocular morphogenesis. So far, no study has been pub-
lished relating to the biotin concentrations in mammalian 
retina[173]. The circulating blood is responsible for main-
taining biotin concentrations in the retina. Nevertheless, 
the biotin transport from the circulating blood is regulated 
by the blood-retinal barrier, comprised of  retinal capillary 
endothelial cells (inner BRB) and retinal pigment epithelial 
cells (outer BRB). Ohkura et al[174] examined the biotin 
transport mechanism at the inner BRB and concluded 
that SMVT is involved in the transport of  biotin from the 
circulating blood to the retina, across the inner BRB. 

SMVT expressed on the inner BRB could be exploited 
in drug delivery into the retina due to its excellent capacity 
(Km) and broad substrate specificity. Biotin prodrugs and 
polymeric conjugates utilize SMVT to increase the per-
meability of  drugs. Janoria et al[175] studied the presence of  
SMVT on rabbit corneal epithelial cells. From in vitro and 
ex vivo studies they concluded that SMVT is expressed on 
corneal epithelial cells and is responsible for the uptake of  
biotin, pantothenic acid and lipoic acid. The presence of  
biotin in tears further substantiates the physiological sig-
nificance of  this transporter. The same research group[176] 
characterized the presence of  SMVT in human retinal 
pigmented epithelium cell line (ARPE-19) cells and stud-
ied the role of  SMVT on the uptake of  biotin-ganciclovir 
in both ARPE-19 and rabbit retina. Molecular identifica-
tion of  SMVT was conducted with reverse transcriptase 
polymerase chain reaction (RT-PCR) in ARPE-19 cells. 
The band between 800 and 900 bp in gel electrophore-
sis confirmed the presence of  hSMVT (Figure 5). They 
concluded that biotin-ganciclovir prodrug is recognized 
by the SMVT transport system in ARPE-19 cell line and 
rabbit retina. Further, biotin-ganciclovir exhibited a bet-
ter, therapeutically desirable pharmacological profile in 
the vitreous fluid, compared to ganciclovir (Table 2). 
These findings would be of  great interest in exploring the 
potential of  SMVT to deliver biotin conjugates. 

Folate carrier system
Folate, also known as vitamin B9, is a water soluble es-
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Band of hSMVT at 862 bp

500 bp

Figure 5  hSMVT cDNA was generated by reverse transcription polymerase 
chain reaction amplification of total RNA from ARPE-19 cells (lane 2). 
Aliquots of polymerase chain reaction products were analyzed by gel electropho-
resis on 0.8% agarose. Ethidium bromide staining of the gel showed a approxi-
mately 862 bp band corresponding. Reproduced with permission from[176]. 
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sential vitamin that enters the cells through a membrane-
associated folate binding protein in addition to classical 
high affinity/low capacity carrier system[177,178]. Folic acid 
is a synthetic form of  folate that plays an important role 
in maintaining numerous bodily function,s including 
the development of  visual system. Folic acid deficiency 
results in retinal edema, retinal dysfunction, damage of  
photoreceptor cells, nutritional amblyopia, and optic 
neuropathy, leading to loss of  visual function[179,180]. The 
hydrophilic nature of  folic acid prevents it from entering 
the lipoidal cell membrane. Transport of  folate across the 
cell membrane occurs predominantly via three pathways: 
folate receptors (FR), reduced folate carrier (RFC), and 
proton-coupled folate transporter (PCFT)[181]. FRs are 
coded by two specific genes: FR-α and FR-β, with differ-
ential tissue expression[181]. FR-α is distributed through-
out the retina, including the basolateral membrane of  
retinal pigment epithelium[182], while RFT-1 is present only 
on the apical surface of  retinal pigment epithelium[183]. 
Folate from the choroidal blood vessels is taken by the 
FR-α located on the basolateral side of  RPE and is trans-
ferred to the apical membrane of  the RPE. RFT-1, pres-
ent on the apical surface, transports the folate to adjacent 
metabolically active photoreceptor cells[184]. Tumor cells 
overexpress FR, and hence folate has been widely used 
for targeting anti-cancer drugs in the form of  prodrugs 
and delivery systems (folate conjugated nanoparticles and 
micelles)[185,186]. Kansara et al[85] investigated the expression 
of  FR-α in human-derived retinoblastoma cell line (Y-79). 
These studies have also demonstrated the mechanism and 
intracellular regulation of  folic acid uptake using various 
membrane transport inhibitors. Later, the same group 
developed and characterized folate conjugated polymeric 
micelles for retinoblastoma cells using doxorubicin as a 
model drug. Uptake of  doxorubicin in Y-79 cells over-
expressing FRs was approximately four times higher 
with folate-conjugated polymeric micelles than with pure 

drug (Figure 6). Moreover, folate-conjugated polymeric 
micelles of  doxorubicin exhibited higher cytotoxicity in 
retinoblastoma cell line (Y-79 cells) when compared with 
pure doxorubicin (Figure 7)[186]. Such systems can provide 
sustained and targeted delivery of  drugs to retinoblas-
toma cells following intravitreal administration. Jwala 
et al[180] characterized the expression of  folate transport 
proteins in Staten’s Seruminstitut rabbit corneal (SIRC) 
epithelial cell line. They observed a linear increase in the 
uptake of  [3H] Folic acid over 30 min, and the uptake 
process followed saturation kinetics with apparent Km of  
14.2 nmol/L, Vmax of  1.5 × 10-5 μmol/min per milligram 
protein and Kd of  2.1 × 10-6/min. Molecular evidence of  
FR-α and PCFT was established in SIRC epithelial cell 
line using RT-PCR and Western blotting analysis (Figures 
8 and 9). Permeability studies have further confirmed the 
existence of  the folate carrier-mediated system across 
the rabbit cornea. Drug targeting via FRs is an effective 
method for cell-selective drug delivery, since this process 
allows a satisfactory transport rate and ligand-dependent 
cell specificity. Targetability of  various delivery systems 
such as liposomes, polymer conjugates, polymeric mi-
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Table 2  Vitreous pharmacokinetic parameters of ganciclovir 
and biotin-ganciclovir following intravitreal administration 
(mean ± SD)

Parameters GCV (Biotin-GCV)

Biotin-GCV Regenerated 
GCV

AUC (mg/mL 
per minute)

10.6 ± 1.27 17.5 ± 1.38a   1.85 ± 0.744

λz (× 10-3/min)   2.58 ± 0.124   3.19 ± 0.536
T1/2 (min)  270 ± 15.7  222 ± 40.5
Vss (mL)   1.56 ± 0.100   1.47 ± 0.106
Cl (µL/min)   4.39 ± 0.603   5.45 ± 0.673
MRT last (min)  197 ± 22.2  175 ± 17.6  264 ± 9.26
Clast (µg/mL) 7.06 ± 1.38 8.28 ± 2.27
Cmax (µg/mL)   5.37 ± 0.435
Tmax (min) 66.7 ± 23.1 

aP < 0.05 vs the control. GCV: Ganciclovir; AUC: Area under the vitreous 
time concentration curve; λz: Elimination rate constant; T1/2: Vitreal 
elimination half-life; Vss: Volume of distribution at steady; Cl: Clearance 
state; MRT: Mean residence time. Reproduced with permission from[176].

Pure DOX          DOXMC            DOXM       DOXM + folic acid

Figure 6  Quantitative uptake of doxorubicin in Y-79 cells using doxoru-
bicin, doxorubicin-loaded in polymeric micelles, folate conjugated poly-
meric micelles and folate conjugated polymeric micelles in presence of 
folic acid. aP < 0.05. Reproduced with permission from[186]. 
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Figure 7  Cell viability studies of doxorubicin in ARPE-19 cells following 
treatment with doxorubicin and folate conjugated polymeric micelles. Re-
produced with permission from[186]. 
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celles and nanoparticulates has been achieved with a co-
valently attached folate on the surface[187].

Riboflavin
Riboflavin, or vitamin B2, is water soluble and highly 
photosensitive. In its active forms, flavin adenine dinucle-
otide (FAD) and flavin mononucleotide (FMN) function 
as critical cofactors involved in the transfer of  electrons 
during several biological redox reactions[188,189]. Since the 
primary source of  riboflavin is dietary intake, lack of  this 
vitamin in food, particularly during pregnancy and adoles-
cence can lead to developmental abnormalities and other 
well documented clinical manifestations[189-193]. Riboflavin 
is found in almost all parts of  the eye, including corneal 
epithelium and substantia propria, conjunctiva, lens, iris-
ciliary body, aqueous and vitreous humors, choroid, and 
retina[194]. Riboflavin deficiency produces corneal vascu-
larization, lenticular cataracts, changes in conjunctiva and 
lachrymal glands, and eye lesions[195-200]. Three riboflavin 
transporters (RFT) have been reported so far: RFT1, 
RFT2, and RFT3[201-203]. Structural elucidation of  RFTs 
occurred recently, and mechanisms involving riboflavin 
transport via RFTs is still being researched rigorously. 
Kansara et al[204] investigated the uptake mechanism and 
intracellular transport of  riboflavin in human-derived 
Y-79 cells, which are a model for neural retina. They were 
the first to establish functional evidence for the presence 
of  a high affinity riboflavin transporter in this in vitro cell 
model. The carrier-mediated active transport system was 
found to be energy- and temperature-dependent, but 
sodium- and pH-independent, in nature. Several stud-
ies have been done to further the understanding of  the 
transporter and its function in brain[205], intestine and nu-
trition[206,207], diseases[208,209], and microbes[210-212]. However, 
studies on the transporter do not seem to have caught 
the interest of  scientists in eye research.

CONCLUSION
Drug delivery to the eye remained a major obstacle for 
scientists in the field. Better understating of  the anatomi-
cal and physiological barriers, including the drug efflux 
mechanisms, is crucial to optimizing the drug delivery to 
the eye. Identification of  nutrient transporter/receptor(s) 
and understanding their roles in targeted delivery of  
drugs to various ocular tissues has gained a lot of  atten-
tion recently. This strategy can successfully evade efflux 

mechanism and simultaneously overcome the tight junc-
tions that hinder the permeability of  most drug mol-
ecules. Receptors can be utilized for targeted delivery of  
nanocarriers, which is yet another exciting and promis-
ing approach that allows sustained delivery of  drugs for 
diseases affecting the back of  the eye. On the whole, the 
field of  ocular drug delivery holds a great future for the 
development of  less invasive, targeted, and controlled 
release formulations, especially for the treatment of  pos-
terior segment diseases.
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6: RFC (621 bp)
7, 8: PCFT (625, 624 bp)

Figure 8  Reverse transcription polymerase chain reaction analysis of 
folate receptor-α, reduce folate carrier, proton coupled folate transporter. 
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase. Reproduced with 
permission from[180]. FR: Folate receptors; RFC: Reduced folate carrier; PCFT: 
Proton-coupled folate transporter.

15 µg           45 µg

FR-α (40 kDa)

PCFT (50 kDa)

Figure 9  Western blotting analysis of folate receptor-α and proton coupled 
folate transporter. Reproduced with permission from[180]. FR: Folate receptors; 
PCFT: Proton-coupled folate transporter.
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