Contents

Monthly Volume 14 Number 9 September 15, 2022

REVIEW

- **1604** Advances in postoperative adjuvant therapy for primary liver cancer
 Zeng ZM, Mo N, Zeng J, Ma FC, Jiang YF, Huang HS, Liao XW, Zhu GZ, Ma J, Peng T

- **1622** Immunotherapy for nonalcoholic fatty liver disease-related hepatocellular carcinoma: Lights and shadows
 Costante F, Airola C, Santopao F, Gasbarrini A, Pompili M, Ponziani FR

- **1637** Emerging role of caldesmon in cancer: A potential biomarker for colorectal cancer and other cancers

MINIREVIEWS

- **1654** Liquid biopsy to detect resistance mutations against anti-epidermal growth factor receptor therapy in metastatic colorectal cancer
 Valenzuela G, Burotto M, Marcelain K, González-Montero J

- **1665** Implication of gut microbiome in immunotherapy for colorectal cancer

ORIGINAL ARTICLE

Basic Study

- **1675** Potential of six-transmembrane epithelial antigen of the prostate 4 as a prognostic marker for colorectal cancer
 Fang ZX, Li CL, Chen WJ, Wu HT, Liu J

Case Control Study

- **1689** Inverse relations between *Helicobacter pylori* infection and risk of esophageal precancerous lesions in drinkers and peanut consumption

Retrospective Cohort Study

- **1699** Prognostic impact of tumor deposits on overall survival in colorectal cancer: Based on Surveillance, Epidemiology, and End Results database
 Wu WX, Zhang DK, Chen SX, Hou ZY, Sun BL, Yao L, Jie JZ

- **1711** Consolidation chemotherapy with capecitabine after neoadjuvant chemoradiotherapy in high-risk patients with locally advanced rectal cancer: Propensity score study
Contents

Retrospective Study

1727 Efficacy and safety of computed tomography-guided microwave ablation with fine needle-assisted puncture positioning technique for hepatocellular carcinoma
Hao MZ, Hu YB, Chen QZ, Chen ZX, Lin HL

1739 Clinicopathological characterization of ten patients with primary malignant melanoma of the esophagus and literature review

1758 Endoscopic debulking resection with additive chemoradiotherapy: Optimal management of advanced inoperable esophageal squamous cell carcinoma
Ren LH, Zhu Y, Chen R, Shrestha Sachin M, Lu Q, Xie WH, Lu T, Wei XY, Shi RH

1771 Nomogram for predicting the prognosis of tumor patients with sepsis after gastrointestinal surgery
Chen RX, Wu ZQ, Li ZY, Wang HZ, Ji JF

1785 Efficacy and safety of laparoscopic radical resection following neoadjuvant therapy for pancreatic ductal adenocarcinoma: A retrospective study
He YG, Huang XB, Li YM, Li J, Peng XH, Huang W, Tang YC, Zheng L

Observational Study

1798 To scope or not - the challenges of managing patients with positive fecal occult blood test after recent colonoscopy

1808 Clinical implications of interleukins-31, 32, and 33 in gastric cancer
Liu QH, Zhang JW, Xia L, Wise SG, Hambly BD, Tao K, Bao SS

1823 Construction and analysis of an ulcer risk prediction model after endoscopic submucosal dissection for early gastric cancer
Gong SD, Li H, Xie YB, Wang XH

1833 Percutaneous insertion of a novel dedicated metal stent to treat malignant hilar biliary obstruction

EVIDENCE-BASED MEDICINE

1844 Prediction of gastric cancer risk by a polygenic risk score of Helicobacter pylori

META-ANALYSIS

1856 Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data

1874 Prognostic and clinicopathological value of Twist expression in esophageal cancer: A meta-analysis
Song WP, Wang SY, Zhou SC, Wu DS, Xie JY, Liu TT, Wu XZ, Che GW
LETTER TO THE EDITOR

1886 Nutrition deprivation affects the cytotoxic effect of CD8 T cells in hepatocellular carcinoma

Zhang CY, Liu S, Yang M
ABOUT COVER
Editorial Board Member of *World Journal of Gastrointestinal Oncology*, Luigi Marano, MD, PhD, Associate Professor, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena 53100, Italy. luigi.marano@unisi.it

AIMS AND SCOPE
The primary aim of *World Journal of Gastrointestinal Oncology* (WJGO, *World J Gastrointest Oncol*) is to provide scholars and readers from various fields of gastrointestinal oncology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJGO mainly publishes articles reporting research results and findings obtained in the field of gastrointestinal oncology and covering a wide range of topics including liver cell adenoma, gastric neoplasms, appendiceal neoplasms, biliary tract neoplasms, hepatocellular carcinoma, pancreatic carcinoma, cecal neoplasms, colonic neoplasms, colorectal neoplasms, duodenal neoplasms, esophageal neoplasms, gallbladder neoplasms, etc.

INDEXING/ABSTRACTING
The *WJGO* is now abstracted and indexed in PubMed, PubMed Central, Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 edition of Journal Citation Reports® cites the 2021 impact factor (IF) for *WJGO* as 3.404; IF without journal self cites: 3.357; 5-year IF: 3.250; Journal Citation Indicator: 0.53; Ranking: 162 among 245 journals in oncology; Quartile category: Q3; Ranking: 59 among 93 journals in gastroenterology and hepatology; and Quartile category: Q3. The *WJGO*’s CiteScore for 2021 is 3.6 and Scopus CiteScore rank 2021: Gastroenterology is 72/149; Oncology is 203/360.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xiang Li; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Gastrointestinal Oncology

ISSN
ISSN 1948-5204 (online)

LAUNCH DATE
February 15, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Monjur Ahmed, Florin Burada

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
September 15, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Observational Study

Percutaneous insertion of a novel dedicated metal stent to treat malignant hilar biliary obstruction

Francesco Cortese, Fabrizio Acquafredda, Andrea Mardighian, Maria Teresa Zurlo, Valentina Ferraro, Riccardo Memeo, Stavros Spiliopoulos, Riccardo Inchingolo

Specialty type: Radiology, nuclear medicine and medical imaging

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report's scientific quality classification
Grade A (Excellent): A
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Havre RF, Norway; Piltcher-da-Silva R, Brazil; Sugimoto M, Japan

Received: April 8, 2022
Peer-review started: April 8, 2022
First decision: May 11, 2022
Revised: June 11, 2022
Accepted: August 21, 2022
Article in press: August 21, 2022
Published online: September 15, 2022

Abstract

BACKGROUND
Percutaneous bilateral biliary stenting is an established method for the management of unresectable malignant hilar biliary obstruction.

AIM
To evaluate the efficacy and safety of a novel uncovered biliary stent, specifically designed for hilar reconstruction.

METHODS
This, single-center, retrospective study included 18 patients (mean age 71 ± 11 years; 61.1% male) undergoing percutaneous transhepatic Moving cell stent (MCS) placement for hilar reconstruction using the stent-in-stent technique for malignant biliary strictures, between November 2020 and July 2021. The Patients were diagnosed with cholangiocarcinoma (12/18; 66.6%), gallbladder cancer (5/18; 27.7%), and colorectal liver metastasis (1/18; 5.5%). Primary endpoints were technical (appropriate stent placement) and clinical (relief from jaundice) success. Secondary endpoints included stent patency, overall survival, complication rates and stent-related complications.

RESULTS
The technical and clinical success rates were 100% (18/18 cases). According to Kaplan-Meier analysis, the estimated overall patient survival was 80.5% and 60.4% at 6 and 12 mo respectively, while stent patency was 90.9% and 68.2% at 6...
mo and 12 mo respectively. The mean stent patency was 172.53 ± 56.20 d and median stent patency was 165 d (range 83-315). Laboratory tests for cholestasis significantly improved after procedure: mean total bilirubin decreased from 15.2 ± 6.0 mg/dL to 1.3 ± 0.4 mg/dL ($P < 0.001$); mean γGT decreased from 1389 ± 832 U/L to 114.6 ± 53.5 U/L ($P < 0.001$). One periprocedural complication was reported. Stent-related complications were observed in 5 patients (27.7%), including 1 occlusion (5.5%) and 1 stent migration (5.5%).

CONCLUSION

Percutaneous hilar bifurcation biliary stenting with the MCS resulted in excellent clinical and technical success rates, with acceptable complication rates. Further studies are needed to confirm these initial positive results.

Key Words: Malignant hilar biliary obstructions; Hilar cholangiocarcinoma; Self-expandable metallic stent; Stent-in-stent technique; Percutaneous approach; Bilateral Y-stenting

Citation: Cortese F, Acquafredda F, Mardighian A, Zurlo MT, Ferraro V, Memeo R, Spiliopoulos S, Inchingolo R. Percutaneous insertion of a novel dedicated metal stent to treat malignant hilar biliary obstruction. *World J Gastrointest Oncol* 2022; 14(9): 1833-1843

URL: https://www.wjgnet.com/1948-5204/full/v14/i9/1833.htm

DOI: https://dx.doi.org/10.4251/wjgo.v14.i9.1833

INTRODUCTION

Malignant hilar biliary obstructions (MHBO) are very difficult to treat because most patients are diagnosed at an unresectable stage[1]. Hilar Cholangiocarcinoma (HiCC) is the most frequent cause of MHBO. Other malignant strictures may be due to pancreatic, gallbladder and liver tumors, to metastatic hilar lesions or to lymphadenopathies[2]. The primary principle behind the criteria for unresectability is the requirement for biliary and vascular reconstruction options with adequate future remnant hepatic parenchyma, as well as the presence of distant metastases or comorbidity of the patient[3,4]. Since only 10% to 20% of patients are suitable for resection, most of them receive palliative treatment[5]. The main aim of palliation is to re-create a connection between the biliary system and bowel to allow for physiological drainage, in order to reduce pain, relieve biliary obstruction, significantly decreasing the incidence of cholangitis and allowing the administration of chemotherapy[6].

Due to the complexity of MHBO management, an organized multidisciplinary approach is paramount to deliver best quality care[7]. The main palliative treatments are biliary drainage and biliary stent implantation which can be performed with percutaneous or endoscopic approach, but there is no clear evidences of the superiority of one over the other. According to currently available data and the ESMO guidelines, percutaneous is the recommended approach in cases in which the endoscopic methods are not possible, commonly noted in advanced hilar Bismuth IV obstructions[8-10]. Moreover, percutaneous approach enables precise lobar selection for drainage[6].

With regard to bilateral vs unilateral drainage/stenting in cases of advanced HiCC, the goal is to drain at least 50% of the liver volume, which usually requires more than one stent when bile ducts are dissociated[8]. A self-expandable metallic stent (SEMS) rather than a plastic one is preferred in patients with unresectable cancer and a life expectancy longer than 3 mo[9].

Bilateral stent implantation can be achieved using side-by-side (SBS) or stent-in-stent (SIS) technique, but there is no large consensus concerning which procedure is better[11,12]. Some studies have shown that SIS technique may offer a lower adverse events rate[13] and longer stent patency[12]. On the other hand, some authors have found no significant differences in clinical outcomes between SIS and SBS techniques[14,15]. However, SIS procedure is technically more difficult and complex due to the necessity of introducing the second SEMS through the mesh of the previously placed SEMS[16-18]. To
overcome this issue, a novel uncovered SEMS, the HILZO Moving Cell Stent (MCS) (BCM Co., Gyeonggi-do, South Korea) was created.

The purpose of the present study was to evaluate the efficacy and safety of a novel uncovered biliary stent, specifically designed for hilar reconstruction, in patients with MBHO.

MATERIALS AND METHODS

Patients

This, single-center, retrospective study was conducted at “F.Miulli” Hospital in the Interventional Radiology Unit. A total of 18 patients (mean age 71 ± 11 years; 61.1% male) with MBHO undergoing percutaneous MCS (BCM Co., Ltd., Gyeonggi-do, South Korea) placement using SIS technique were enrolled within a 12-mo period (November 2020 and November 2021). The study was approved by the ethics committee of M Hospital and the patients provided written informed consent prior to enrolment. The study protocol conformed to the ethical guidelines of the 2013 Declaration of Helsinki (most recent version).

The diagnosis of MBHO was based on standard clinical and radiological criteria [following computed tomography (CT) and/or magnetic resonance imaging (MRI)], and was confirmed by percutaneous needle biopsy or percutaneous endobiliary forceps biopsy [19]. All patients were evaluated by a multidisciplinary team including oncologists, surgeons, gastroenterologists, radiotherapists, and interventional radiologists. Inclusion criteria were: MBHO caused by a biopsy-confirmed hilar malignancy, not suitable for surgery (due to unresectability, metastatic disease or severe comorbidities) and an estimated survival of over 3 mo. Exclusion criteria were patients with uncorrectable coagulopathy (INR >1.8; Platelets < 50,000) and presence of an atrophic lobe.

In the patient group, the causes of hilar obstruction included cholangiocarcinoma (12/18; 66.6%), gallbladder cancer (5/18; 27.7%), and colorectal liver metastasis (1/18; 5.5%). Patients’ baseline demographic data are outlined in Table 1.

Stent features

The Hilzo Biliary MCS (BCM Co., Ltd., Gyeonggi-do, South Korea) (Figure 1) is a novel uncovered metallic stent with a small cell size (4 mm) and a high radial force, dedicated for biliary SIS technique. The small cell size is expected to reduce ingrowth, and the high radial force results in higher expansion potential. The special design of this novel stent allows each cell to expand from 4 mm to 10 mm to enable a passage of the second stent through the stent struts. The MCS has radiopaque markers at each end, and two in the midsection and requires an 8Fr percutaneous access [20].

Procedure

This was a two-stage procedure. The first stage was percutaneous transhepatic biliary drainage (PTBD) and the second stage was MCS placement. All procedures were performed in the angiography suite, according to the CIRSE Standards of Practice on Percutaneous Transhepatic Cholangiography, Biliary Drainage and Stenting [21] using local anesthesia (2% Lidocaine), and conscious sedation (Fentanyl and Midazolam). A single-dose of iv antibiotic prophylaxis (Cefprozil 1g) was administrated before each procedure.

Under ultrasound guidance (Philips CX50) combined with fluoroscopy (Philips Allura FD20 Clarity), both right and left intrahepatic bile ducts were punctured with 21-gauge Chiba needles (Cook, Bloomington, IN, United States) and two 8.5-Fr drainage catheters (Cook Medical, Bloomington, IN, United States) were inserted (Figure 2A).

In 11 cases in which histological diagnosis was not already available, a percutaneous transluminal biopsy [19] was performed using a dedicated, transluminal biliary access and biopsy forceps set (Cook Medical, Bloomington, IN, United States) during the same PTBD session.

After approximately 7 to 21 d, and following improvement of obstructive jaundice symptoms, biliary stents placement was performed. Under fluoroscopic guidance, two hydrophilic guidewires (0.035 in.; Terumo Corporation, Tokyo, Japan) were introduced via the previously placed drainage catheters that were removed and two bilateral 8-Fr sheaths were placed within the biliary ducts over the hydrophilic guidewires.

Following cholangiography for the evaluation of the position and length of the biliary obstruction, the hydrophilic guidewire on one side was changed with an Amplatz Super Stiff™ 0.035 in. guidewire (Boston Scientific Corporation, Boston, MA, United States) using a 5-fr catheter KMP Beacon Tip (Cook Medical, Bloomington, IN, United States), and the corresponding type of MCS (10 or 8 mm × 10 or 8 or 6 cm) was implanted over the guidewire and dilated with a standard balloon catheter (Armada 35 PTA Catheter, Abbott Vascular, Santa Clara, CA, United States).

Analogously, on the other side, the hydrophilic guidewire was inserted through a mesh of the first MCS and exchanged (Figure 2B) with the stiff guidewire. Subsequently the second MCS (10 or 8 mm × 10 or 8 or 6 cm) was implanted and dilated. At this time, from the upper part of the first stent, the mesh of the controlateral MCS was engaged with the wire and, over the two stiff guidewires, two balloon...
Cortese F et al. A single center experience

Table 1 Patient’s baseline characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients, n</td>
<td>18</td>
</tr>
<tr>
<td>Median age, yr</td>
<td>71</td>
</tr>
<tr>
<td>Range age, yr</td>
<td>37-84</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>11 (61.1)</td>
</tr>
<tr>
<td>Etiology, n (%)</td>
<td></td>
</tr>
<tr>
<td>Cholangiocarcinoma</td>
<td>12 (66.6)</td>
</tr>
<tr>
<td>Gallbladder carcinoma</td>
<td>5 (27.7)</td>
</tr>
<tr>
<td>Colorectal liver metastases</td>
<td>1 (5.5)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>17 (94.4)</td>
</tr>
</tbody>
</table>

Figure 1 The Hilzo Biliary Moving Cell Stent. A: The Hilzo Biliary Moving Cell Stent developed with small cell size (4 mm), with radiopaque markers at each end and two X-shape markers in the midsection; B: Each cell can expand from 4 mm to 10 mm to allows easier passage of the second stent through the cell.

catheters were placed inside the MCSs and a kissing balloon dilatation was performed (Figure 2C).

A final contrast check was performed to depict appropriate stent placement according to the SIS technique, thus the apex of the longest stent should be positioned within the duodenum, while the apex of the shorter stent should end within the first MCS (Figure 2D).

Pre-scheduled follow up protocol was set at 3 and 6 mo and every 6 mo thereafter and included clinical evaluation, laboratory tests and restaging CT (Figure 3).

Definitions and statistical analysis

The study’s primary endpoints were technical and clinical success. Technical success was defined as appropriate placement of a bilateral MCS using the SIS technique (as described above). Clinical success was defined as a reduction of bilirubin values to normal (< 1.3 mg/dL) or to < 50% of the pre-PTDB value within 14 d. Secondary endpoints included stent patency, overall survival, peri-procedural adverse events, procedural duration and stent-related complications. Stent patency was defined as the time between stent placement and stent dysfunction, determined by the relapse of cholestasis and/or cholangitis according to clinical, laboratory and imaging findings. Stent patency and patient survival were estimated by the Kaplan-Meier method. Adverse events were graded according to the CIRSE Classification System for Complications[22]. Procedural duration was considered as the amount of elapsed time between local anaesthesia and removal of the sheaths.

mean ± SD were used to describe continuous variables, while counts and percentages were used for categorical variables. The statistical analysis was conducted using the SPSS statistical software (version 17.0; SPSS Inc., Chicago, IL, United States) and a P value of < 0.05 was considered significant.
Figure 2 Percutaneous transhepatic cholangiography. A: Percutaneous transhepatic cholangiography (PTC) showing hilar biliary obstructions with two bilateral bilateral 8.5-Fr drainage catheters; B: A hydrophilic guidewire (0.035 in.; Terumo Corporation, Tokyo, Japan) was inserted through a mesh of the Moving Cell Stent (MCS); C: PTC showing a kissing balloon dilatation over the stiff guidewires inside MCS placed using stent-in-stent technique; D: PTC showing the appropriate stents placement with the apex of the longest stent lies in the duodenum, while the apex of the shorter stent ends inside the first.

RESULTS

The clinical outcomes of bilateral MCS placement using the SIS technique are summarized in Table 2. Technical success and clinical success were 100% (18 out of 18 patients). The median procedural duration was 81.5 min ± 32.2 min. A single (5.5%) periprocedural adverse event occurred: Hemobilia due to porto-biliary fistula, treated during the same procedure with absorbable gelatin sponge (Spongostan) injection within the affected portal branch. This complication occurred during bile duct PTBD, and not during stent placement, and was judged as grade 1 according to the CIRSE Classification System for Complications[22].

The mean follow-up time was 169 d (range 83-315 d). Stent-related complications occurred in five (27.7%) patients (Table 3). Three (16.5%) patients who developed cholangitis without stent obstruction were treated with antibiotic therapy. Two patients (11%) presented with jaundice. For the first patient, the symptoms appeared 85 d after stent placement and the jaundice was caused by stent migration (5.5%) into common bile duct, treated with an additional MCS implantation. For the second patient, the jaundice appeared 151 d after stent placement and was caused by neoplastic ingrowth (5.5%). Due to the progression disease and the poor performance status of patients, it was decided to perform PTBD instead of an additional MCS placement. During the follow-up period, 4 patients (22.2%) died due to liver failure and/or progression disease.
Table 2 Clinical outcomes

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical success, n (%)</td>
<td>18 (100)</td>
</tr>
<tr>
<td>Clinical success, n (%)</td>
<td>18 (100)</td>
</tr>
<tr>
<td>Periprocedural complications, n (%)</td>
<td>1 (5.5)</td>
</tr>
<tr>
<td>Stent-related complications, n (%)</td>
<td>5 (27.7)</td>
</tr>
<tr>
<td>Stent occlusion, n (%)</td>
<td>1 (5.5)</td>
</tr>
<tr>
<td>Stent migration, n (%)</td>
<td>1 (5.5)</td>
</tr>
<tr>
<td>Mean procedural duration min</td>
<td>81.5 ± 32.2</td>
</tr>
<tr>
<td>Median stent patency days (range)</td>
<td>169 (93-315)</td>
</tr>
<tr>
<td>Overall mortality, n (%)</td>
<td>4 (22.2)</td>
</tr>
</tbody>
</table>

Table 3 Patients with stent-related complications

<table>
<thead>
<tr>
<th>Age/sex</th>
<th>Etiology</th>
<th>Clinical manifestations</th>
<th>US findings</th>
<th>PTC findings</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>75/F</td>
<td>GC</td>
<td>Jaundice</td>
<td>Left intrahepatic biliary dilatation</td>
<td>Stent migration</td>
<td>Additional MCS using SIS technique</td>
</tr>
<tr>
<td>77/M</td>
<td>CC</td>
<td>Jaundice</td>
<td>Bilateral intrahepatic biliary dilatation</td>
<td>Stent occlusion</td>
<td>PTBD</td>
</tr>
<tr>
<td>68/F</td>
<td>CC</td>
<td>Cholangitis</td>
<td>Aerobilia and no biliary dilatation</td>
<td>Not performed</td>
<td>Antibiotic therapy</td>
</tr>
<tr>
<td>81/M</td>
<td>CC</td>
<td>Cholangitis</td>
<td>Aerobilia and no biliary dilatation</td>
<td>Not performed</td>
<td>Antibiotic therapy</td>
</tr>
<tr>
<td>75/F</td>
<td>CC</td>
<td>Cholangitis</td>
<td>Aerobilia and no biliary dilatation</td>
<td>Not performed</td>
<td>Antibiotic therapy</td>
</tr>
</tbody>
</table>

According to the Kaplan-Meier analysis, the estimated overall patient survival rate was 80.5% and 60.4% at 6 mo and 12 mo respectively, while stent patency was 90.9% and 68.2% at 6 and 12 mo respectively (Figure 4). The mean stent patency was 172.5 ± 56.2 d and median stent patency was 165 d (range 83-315). Laboratory tests for cholestasis significantly improved after procedure: mean total bilirubin decreased from 15.2 ± 6.0 mg/dL to 1.3 ± 0.4 mg/dL (P < 0.001); mean γGT decreased from 1389 ± 832 U/L to 114.6 ± 53.5 U/L (P < 0.001) (Table 4).

DISCUSSION

MHBO are often unresectable at presentation, thus palliative biliary decompression play a crucial role in improving the patients’ quality of life[6].

Although outcomes of endoscopic US-guided biliary drainage techniques for hilar obstructions are very satisfactory[23-25], bilobar drainage with Y-configured SEMS using percutaneous approach is a well-established method for the palliative management of unresectable advanced MHBO in patients with estimated lifetime of more than 3 mo[9,10].

Bilateral SEMS placement can be achieved with SBS or SIS techniques (Figure 5). The SBS technique, considered technically easier[12], consists of the implantation of two parallel and close SEMS at and below the hepatic confluence, draining both hepatic lobes. Theoretically, the SBS technique has its inherent problems. The two SEMS cannot be fully expanded with major probability of partial collapse. Furthermore, the strong radial force caused by the parallel stent placement might be too strong to cause portal vein compression, bile duct rupture, or tumor ingrowth/tissue hyperplasia through the stent mesh[26,27].

On the other hand, in the SIS technique, after placing the first SEMS across the hilar stricture, a second SEMS is inserted into the contralateral hepatic duct through the mesh of first SEMS. Thereby, the single radial forces of both stents are added together opposing the biliary stricture, with a lower
Table 4 Laboratory tests

<table>
<thead>
<tr>
<th></th>
<th>PRE-PTBD</th>
<th>PRE-stent</th>
<th>POST-stent</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>15.2 ± 6.0</td>
<td>4.04 ± 1.50</td>
<td>1.31 ± 0.40</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dL)</td>
<td>13.5 ± 5.5</td>
<td>3.32 ± 1.30</td>
<td>0.86 ± 0.30</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>γGT (U/L)</td>
<td>1389.2 ± 832.2</td>
<td>393.6 ± 321.7</td>
<td>114.6 ± 53.5</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>Alkaline phosphatase (mU/mL)</td>
<td>3217.2 ± 250.0</td>
<td>2003.3 ± 179.4</td>
<td>115.7 ± 117.8</td>
<td>0.037</td>
</tr>
<tr>
<td>AST (UI/L)</td>
<td>243.9 ± 136.4</td>
<td>93.5 ± 47.6</td>
<td>50.6 ± 21.8</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>ALT (UI/L)</td>
<td>319.3 ± 242.7</td>
<td>104.3 ± 53.3</td>
<td>71.7 ± 40.7</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>WBC (10³/µL)</td>
<td>10.2 ± 3.1</td>
<td>9.82 ± 4.00</td>
<td>7.16 ± 1.70</td>
<td>< di 0.001</td>
</tr>
<tr>
<td>PCR (mg/dL)</td>
<td>3.1 ± 1.5</td>
<td>3.9 ± 6.5</td>
<td>1.2 ± 1.2</td>
<td>< di 0.002</td>
</tr>
</tbody>
</table>

PTBD: Percutaneous transhepatic biliary drainage; ALT: Alanine aminotransferase; WBC: White blood cell; PCR: Polymerase chain reaction.

Figure 3 Three-months follow-up contrast-enhanced computed tomography. Sagittal oblique MPR showing two Y-shape Moving Cell Stent placed at the hilar bifurcation biliary with no intrahepatic biliary dilatation.

The probability of stent migration or collapse; so the entire length of stricture is expanded by a single stent caliber[26]. Moreover, the SIS technique provides a more physiological Y-conformation stent to bile outflow, but it is still technically challenging[27].

The Hilzo Biliary MCS was designed specially for the SIS technique. According to the literature, there are only two previously published studies both investigating endoscopic bilateral Y-stenting using the MCS[17,18], therefore this is the first study investigating percutaneous placement of MCS.

The herein presented results are in accordance with those of Ogura *et al*[17] and Kawai *et al*[18]. Specifically, similar technical success (100.0% vs 95.6%[17] vs 100.0%[18]), clinical success (100.0% vs 95.6 %[17] vs 89.9%[18]), periprocedural complications (5.5% vs 4.4%[17] vs 7.4%[18]) and 6-months stent patency rate (90.9% vs approx. 85.0% vs approx. 75.0%) were noted. However, dissimilar stent occlusion rates were noted [1/18 (5.5%) vs 4/23 (17.0%)[17] vs 12/27 (44.4%)[18]). The authors speculate that this discrepancy could be attributed to the only substantial technical difference: routine balloon post-dilatation was performed in all procedures in this study, whereas post-dilation was not performed in the two previously published studies. This could have contributed in the increased procedural duration noted in this study (81.5 ± 32.0 min vs 36.6 min, range 18-62[16] vs 23.7 ± 8.1 min[17]), but interestingly did not result in an increase of periprocedural complications.
Figure 4 Kaplan-Meier analysis. A: The estimated stent patency; B: Overall patient survival.

Figure 5 Bilateral self-expandable metallic stent placement can be achieved with side-by-side or stent-in-stent techniques. A: Stent-by-stent technique: Two parallel and close self-expandable metallic stent (SEMS) at and below the hepatic confluence to drain the bile duct of both hepatic lobes; B: Stent-in-stent technique: Bilateral SEMS placed in a Y-configuration, in which a second stent across through the mesh of the first stent.

Generally, SEMS can be classified as small closed-cell, large open-cell types and mixed form of closed-cell type[16]. Closed-cell type SEMS (Wallstent, Boston Scientific Corp., Marlborough, MA, United States; Bonastent, Standard SciTech, Inc., Seoul, South Korea; Hanarostent, MI Tech Co., Seoul, Korea) have small cells to prevent ingrowth. However, characteristic of the closed-cell type hinders the deployment of a second stent or revision after stent malfunction, particularly in high-grade strictures [16], therefore they are not suitable for the SIS technique.

Open-cell type SEMS (JOSTENT SelfX, Abbott Vascular Devices, Redwood City, CA, United States; Zilver stent, Wilson-Cook Medical, Inc., Bloomington, IN, United States; Niti-S Y-type or Niti-S large cell D-type, Taewoong Medical Inc., Seoul, South Korea) facilitate the second stent implantation. Theoretically open-cell-type SEMS could be more vulnerable to tumor ingrowth and also demonstrate less radial force [16]. Although there are no published studies directly comparing outcomes of the SIS technique using these different stent types, superior stent patency rates were achieved by the MCS in this study compared to that of open-cell stents (MCS: 90.9%-68.2% vs large cell Niti-D biliary stent: 60%-20%[28] vs Sentinol stent: 65%-0%[29], at 6 mo and 12 mo, respectively).

Finally, the BONASTENT M-Hilar (Standard Sci Tech Inc., Seoul, South Korea) is a dedicate hilar reconstruction mixed form of closed-cell type stent, with a cross-wired structure only at the 25-mm-long central portion to facilitate placement of the contralateral stent[16,29]. However, the reported technical success rate was low (78.6%), as the insertion of the second stent via the 25-mm central portion, is technical demanding unlike the MCS in which all the cells are dilatable and are therefore potential insertion sites for the second stent[30].
This study has several limitations. First, the number of patients is relatively low, so the statistical validity of the results is limited. Moreover, there was no control group, so comparative data are not available, while the single-center design limits the external validity of the results.

CONCLUSION

In conclusion, palliative treatment of patients with unresectable MHBO using percutaneous MCS placement with the SIS technique is safe and feasible and resulted in excellent clinical and technical success rates. Periprocedural and stent-related complications were acceptable. Prospective, multicentre, randomized trials are needed to verify these initial promising results.

ARTICLE HIGHLIGHTS

Research background

The treatment of malignant hilar biliary obstruction is very difficult because patients are often not suitable for surgery, therefore palliative care plays a pivotal role.

Research motivation

According to the literature, there are only two previously published studies both investigating endoscopic bilateral Y-stenting using the, therefore this is the first study investigating percutaneous placement of Moving Cell Stent (MCS).

Research objectives

To evaluate the efficacy and safety of a novel uncovered biliary stent, specifically designed for hilar reconstruction in patients with unresectable malignant hilar biliary obstructions.

Research methods

A retrospective, single-centre study was performed, investigating 18 patients with unresectable malignant hilar biliary obstructions treated with a novel uncovered biliary metallic stent (MCS; BCM Co., Ltd., Gyeonggi-do, South Korea), specifically designed for hilar reconstruction, using stent-in-stent technique via percutaneous approach. Primary endpoints were clinical and technical success.

Research results

The technical and clinical success rates were 100%. One periprocedural complication was reported. Stent-related complications were observed in 5 patients. According to Kaplan-Meier analysis, the estimated overall patient survival was 80.5% and 60.4% at 6 and 12 mo respectively, while stent patency was 90.9% and 68.2% at 6 mo and 12 mo respectively.

Research conclusions

For patients with unresectable malignant hilar biliary obstruction using percutaneous placement with the stent-in-stent technique was a feasible and safe and resulted in excellent technical and clinical success rates. Periprocedural and stent-related complications were acceptable.

Research perspectives

Since MCS is a recently introduced stent, prospective, multicentre, randomized trials are needed to verify these initial promising results.

FOOTNOTES

Author contributions: Cortese F, Acquafredda F, Mardighian A, Zurlo MT, Ferraro V, Memeo R, Spiliopoulos S, Inchingolo R equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Institutional review board statement: The study was reviewed and approved by the independent ethics committee of University Hospital Company “Consorziale Policlinico” of Bari, No 7083.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: There are no conflicts of interest to report.
REFERENCES

wired metallic stents for endoscopic bilateral stent-in-stent placement in malignant hilar biliary strictures. Lee TH
DOI: 10.3348/kjr.2012.13.6.795

stents for malignant biliary hilar obstruction. Ahn SJ
DOI: 10.1177/0284185120978512

large cell-type stents for malignant hilar biliary obstruction. Kim GH