The alfapump® implantable device in the management of refractory ascites: an update

Alfapump® for refractory ascites: an update

Delphine Weil-Verhoeven, Vincent Di Martino, Guido Stirnimann, Jean Paul Cervoni, Eric Nguyen-Khac, Thierry Thévenot
Abstract
Refactory ascites (RA) is a frequent and life-threatening complication of cirrhosis. In selected patients with RA, transjugular intrahepatic portosystemic shunt (TIPS) placement and liver transplantation (LT) are currently considered as the best therapeutic alternatives to repeated large volume paracentesis. In patients with a contraindication to TIPS or LT, the alfapump® system (Sequana Medical, Ghent, Belgium) has been developed to reduce the need for iterative paracentesis, and consequently to improve the quality of life and nutritional status. We report here recent data on technical progress made since the first implantation, the efficacy and tolerance of the device, the position of the pump in the therapeutic arsenal for refractory ascites, and the grey areas that remain to be clarified regarding the optimal selection of patients who are potential candidates for this treatment.

Key Words: Alfapump; Refractory ascites; Automated low flow ascites pump; Cirrhosis; Liver

Core Tip: The alfapump® system (Sequana Medical, Ghent, Belgium) is a subcutaneous implantable device that allows the transfer of ascites from the peritoneal cavity to the bladder. In this review, we describe the practical aspects of the alfapump® device implantation, we discuss its effectiveness and safety as a treatment of refractory ascites in cirrhotic patients, based on the most recent published data.

INTRODUCTION
Cirrhotic patients may develop a wide range of complications secondary to portal hypertension and/or liver insufficiency. Among them, ascites occurs in nearly 60% of
patients with compensated cirrhosis within 10 years, during the course of their disease [1]. Approximately 10% of patients with ascites develop refractory ascites (RA), defined as ascites that cannot be mobilized by appropriate medical therapy (i.e., a low salt diet combined with diuretic therapy) [2], or whose early recurrence cannot satisfactorily be prevented. The prognosis of RA is poor, with a transplant-free survival (TFS) rate of only 50% at 6 mo, notably because of an increased risk of type 2 hepatorenal syndrome (recently renamed HRS-non-AKI by the European Association for the Study of the Liver [3,4]). RA generally leads to severe malnutrition, deteriorated quality of life and uncomfortable symptoms or complications (in particular anorexia, abdominal hernia, and dyspnea). Liver transplantation (LT) is the ultimate solution for RA and should be considered systematically. In patients who are not eligible for LT because of advanced age and/or comorbidities, or for whom access to LT remains limited (low or intermediate MELD scores), alternative or “bridging” therapies should be proposed. The first-line treatment of RA consists of large volume paracentesis (LVP). This procedure, although easy to perform, is not risk-free (a risk of major complications of around 1%, especially in case of severe liver failure [5]) and LVP does not improve the patient’s quality of life because of the repeated hospitalizations. Furthermore, albumin infusions, administered for the prevention of post-paracentesis circulatory dysfunction after each LVP, also contribute to a heavy healthcare burden. Transjugular portosystemic shunt (TIPS) placement reduces portal pressure and improves effective blood volume and renal function within 4 to 6 wk, making this procedure an effective treatment for RA. In the most recent series including patients with recurrent ascites, covered TIPS was associated not only with better control of ascites, but also with a significant improvement in one-year TFS compared to patients treated with iterative paracentesis (93% vs 52%; \(P = 0.003 \)) without increasing the incidence of hepatic encephalopathy [6]. However, careful selection of candidates for TIPS placement is necessary to prevent the occurrence of short- and medium-term complications, and TIPS can ultimately be implanted in only 40% of cirrhotic patients with ascites [7]. The Automated Low-Flow Ascites Pump (alfapump®) system is a therapeutic alternative to
TIPS and LT for the treatment of RA [2,8]. In this review, we describe the practical aspects of the alfpump® device implantation and discuss its effectiveness and safety as a treatment of RA, according to the current literature.

DATA COLLECTION STRATEGY
A search of PubMed and Embase was performed by two independent investigators (D.W.V. and T.T), since inception. The search terms used were “alfapump” AND “ascites”. Additionally, reference lists were manually searched for relevant literature. The articles identified by the initial search were considered for further analysis if they contained original data relating to alfpump use in patients with non-malignant ascites related to cirrhosis. The search for the terms “alfapump” AND “ascites” retrieved a total of 72 articles. Of these 72 publications, we excluded papers that were not in English (n = 2), articles not published in full (n = 23), articles that were off-topic (n = 7), as well as letters to the editor (n = 7), editorials (n = 2), errata/corrigenda (n = 2), reviews (n = 11), and guidelines (n = 1). Thus, a final total of 17 original articles reporting data on the use of the alfpump in patients with refractory ascites related to cirrhosis were included in the review (see flowchart of study selection in Supplementary Figure 1).

TECHNICAL ASPECTS
Working principle of the alfpump®
The basic working principle and surgical aspects of the implantation of the alfpump® have been described elsewhere [9]. Briefly, the device is manufactured by Sequana Medical (Ghent, Belgium) and obtained the CE mark in July, 2011. It comprises a battery-powered pump implanted subcutaneously in the abdominal wall, connected to a first catheter placed in the peritoneal cavity, and to a second catheter that is tunneled under the skin and connected to the bladder, thereby enabling the transfer of ascites to the bladder for elimination via urination (Figure 1). Sensors are used to adjust the pumping cycles according to the peritoneal and bladder pressures: the cycle is
interrupted if the pressure becomes too low in the peritoneal cavity or too high in the bladder.

A consensus statement has recently been published by hepatologists and surgeons experienced in using the alfapump®, which provides practical recommendations regarding patients selection, implantation procedure and post-implantation care[^10].

The absolute contraindications for the implantation of the alfapump® device are loculated ascites, untreatable obstructive uropathy, the presence of an active bacterial infection at the time of implantation (spontaneous bacterial peritonitis, urinary infection, or abdominal skin infection in particular), and an expected survival of less than 3 mo. Special caution is advised regarding frail patients, and nutritional status should be considered and optimized before implantation[^10]. Once implanted, the patient must charge the pump battery by transcutaneous induction, twice a day for about 20 minutes, using a user-friendly charging device (Smart Charger) that is placed over the area of the pump. While charging, the charger also collects data from the pump, which are then transmitted anonymously to a central databank of Sequana Medical. The data are transferred to the treating physician by e-mail on a weekly basis and in the event of acute dysfunction. This makes it possible not only to provide an early warning in case of pump dysfunction, but also to adjust the operating time, the frequency of cycles, the daily volume of ascites to be evacuated, and to check the correct charging of the device[^9].

Implantation procedure, use and follow-up of the alfapump®

Consistent data are available in the literature and detailed procedures have been published in expert consensus statements[^10] and in the article by Dembinsky et al[^11]. The manufacturer provides technical instructions regarding the surgical procedure and advice regarding pre- and post-implantation care, that are consistent with expert recommendations. In accordance with these recommendations[^10,11], the patient is hospitalized 24-48 h before implantation. Paracentesis is performed to ensure that there is no ongoing spontaneous bacterial peritonitis, and to drain the abdomen. It is
mandatory to leave 1-2 Liters of ascites prior to implantation in order to check that the pump is functioning adequately before surgical closure and to minimize the risk of ascitic fluid leakage. Intravenous antibiotic prophylaxis is started on the day of the implantation and continued for 48 to 72 h. Prior to the procedure, the daily volume, operating time and frequency of the pumping cycles are determined and programmed (FlowControl™ software) by the clinician according to the volume and frequency of paracentesis required in the weeks prior to implantation. A target should be set that is 20% higher than the pre-implant rate, because a post-operative increase in ascites production is frequent. The alfapump® works in cycles of very small volumes (5-10 mL) that are pumped every 5-10 min into the bladder, enabling the removal of 500 mL to 4 L of ascites per day. Some inactive periods can be determined for the patient’s comfort (for example to avoid nocturnal urination [9]). A detailed description of the surgical procedure has been published elsewhere [9,10,11]. Briefly, it consists in the following steps: 1) skin incision, 2) bladder catheter insertion, 3) peritoneal catheter placement, 4) pump pocket creation and catheter tunnelling, 5) catheter attachment to the pump, 6) closure of the surgical incisions [11].

As with any new surgical technology, there is an unavoidable learning curve before achieving an acceptable level of success. In Europe, implantation is usually performed surgically under general anesthesia and takes an average of sixty minutes [9]. In the United States and Canada, a less invasive method for implantation has been developed, using an interventional radiology technique. In the recently published North American multicenter MOSAIC study, most procedures (29 out of 30) were performed by interventional radiology, and 11 patients were implanted under conscious sedation or local anesthetic [12,13]. Briefly, the peritoneal catheter was inserted under ultrasound guidance into the right lower quadrant, and excess ascites was removed to prevent leakage and catheter migration. The bladder catheter was inserted above the pubis symphysis and correct placement was confirmed by aspiration of urine or dyed saline or contrast-enhanced fluoroscopy. A subcutaneous pocket was then created by an incision 5 cm in length at the midclavicular line, 5-6 cm below the costal border, mostly
on the right quadrant (76% of patients). Both catheters were then tunneled to the pump pocket, connected to the pump, and fixed in place with sutures; the alfapump® was finally housed in the pocket before multilayer closure [13]. In this study, technical success was obtained in all patients. The median duration of hospitalization was 4 days (range: 2-69 days). After a 3-month follow-up period, three serious adverse events were classified as “procedure-related” (one bleeding at the site of bladder catheter insertion, one fluid leakage at the implant site of the pump, and one bacterial peritonitis 26 days after implantation). At 3 mo, two pumps had been explanted for infectious complications (cellulitis and pump pocket infection). Four re-interventions were performed, mostly because of peritoneal catheter dysfunction (three cases). This minimally invasive approach remains infrequent in European centers but a series of three cases reported by a team from Birmingham provided encouraging results [14]. Whatever the method used for implantation, a Sequana Medical implant specialist must be present during the procedure, to check that the pump is working properly, and in the event of a dysfunction, to have a back-up alfapump® available. During the hospitalization, which lasts approximately 4 to 7 days in the absence of complications, the patient must receive appropriate therapeutic education and training in the use of the pump. In particular, the patient must be able to alert the physician immediately if symptoms occur, such as suture loosening, an inflammatory aspect at the surgical site, abdominal pain, reconstitution of abundant ascites, fever, or urinary symptoms. Notably, the presence of the alfapump® contraindictates the subsequent use of magnetic resonance imaging (risk of displacement of the pump and catheters, and damage to the system). Explantation of the pump may be necessary in some cases (death, LT, local complication or pump dysfunction); this decision must be made on a case-by-case basis and in a multidisciplinary manner. The median life span of the device is around two years.

EFFECTIVENESS AND TOLERANCE OF THE DEVICE

Control of ascites
Most studies evaluating the efficacy of the alfapump® device included relatively small numbers of selected patients, generally not very old, with preserved liver function (Table 1). The international landmark PIONEER study performed in 40 patients showed a significant decrease in the number of monthly paracenteses in the “alfapump®” group compared to the “conventional treatment” group (0.2 vs 3.4; p<0.01) [15]. More recently, a large prospective, multicenter, open-label, randomized, controlled study (RCT) was conducted in five European countries and aimed to evaluate the safety and efficacy of the alfapump® system in cirrhotic patients with RA in comparison with LVP [16]. This study included 60 patients (29 in the “alfapump®” group and 31 in the “SoC” (standard of care) group). Time to first LVP (the primary endpoint) was significantly longer in the “alfapump®” group compared with “SoC” (HR: 0.13, p<0.001). A total of 10/29 patients (37%) required LVP after pump implantation, mostly due to insufficient pumped volumes (4 patients) or device issues (5 patients). A recent meta-analysis of nine studies, including the European RCT [16] and 8 observational studies [12,14,15,17,21], evaluated the efficacy of the alfapump® in a total of 196 patients [22]. Despite significant heterogeneity between the studies (some of which were retrospective [17,21]), the proportion of patients receiving an alfapump® who no longer required paracentesis after pump implantation was 62%. This significant reduction in the need for paracentesis after pump implantation persisted over time (average follow-up time ranging from 6 to 24 mo.) [23]. Interestingly, the reduced use of paracentesis is accompanied by an early and prolonged improvement in nutritional status [12,16]. In the study by Bureau et al., there was a significant improvement in brachial circumference, tricipital skinfold thickness and hand grip strength in the first three months after alfapump® placement compared to the control group [16].

The effect of the alfapump® on quality of life was specifically studied in the RCT by Bureau et al [16] and in the MOSAiC study [12,23], and it was shown that quality of life, assessed by the Chronic Liver Disease Questionnaire, was significantly improved in patients with “alfapump” compared to patients who underwent iterative paracentesis,
in particular due to a reduction in ascites-related symptoms [12,16,23]. This benefit may be of interest in patients not eligible for LT.

Survival data

It is noteworthy that no prognostic impact of alfapump® has been demonstrated so far. In the European RCT, the overall survival at six months was not different in the “alfapump®” group compared to the “iterative paracentesis” group (77% vs 87%, P = 0.35) [16]. In the series reported by Stirmann et al [18], the median TFS of patients with alfapump® was only 9.8 mo, and the TFS rate was only 40% at 12 mo. The better TFS rate at 12 mo (57%) observed in the North American series could be explained, at least partially, by the lower severity of patients at inclusion. More insights should be provided by a European clinical trial that is currently recruiting (NCT04326946), in which the primary endpoint is 6-month post-implant survival.

A retrospective, single-centre, observational study compared the outcome of patients with RA treated with TIPS (n = 19) vs alfapump® (n = 40) [24]. As expected, patients receiving alfapump® had more impaired liver function (MELD-Na 16 vs 12; P = 0.04) and more frequently had encephalopathy (47% vs 16%; P = 0.02). Within the 6 mo following the procedure, the proportion of patients who did not require further paracentesis was 58% in the “TIPS” group vs 43% in the “alfapump®” group (p=NS). Two patients (10%) were transplanted in the “TIPS” group during the follow-up, vs 11 (27%) in the “alfapump®” group. In the subgroup of patients with a MELD-Na score below 15, 12-month TFS was significantly higher in the “TIPS” group (65% vs 23% in the “alfapump®” group, P = 0.02), but the retrospective design of this study makes the results questionable. Two hypotheses can be proposed to explain the high mortality rate in patients from the “alfapump®” group who did not undergo LT. The first and major explanation is that, although alfapump® is an effective treatment to control ascites, it does not protect the patient against the other complications of persistent portal hypertension. The second hypothesis is related to the specific complications of the device, which are not rare (Tables 2, 3) and may impact on prognosis per se or indirectly, if explantation of the pump is required.
Safety profile
Assessing the safety of the device remains challenging since most of the reported series do not include a control group. The heterogeneity of inclusion and non-inclusion criteria across studies (Table 1) hinders the interpretation of the results.

Device-related complications
Complications directly related to the device are frequent. Among 100 patients with available data, Lepida et al reported a pooled estimate rate of overall pump-related adverse events of 0.77 (95%CI: 0.64-0.87) with low heterogeneity [22]. Some of these events may require re-intervention, or even pump removal, which is not an uncommon event during follow-up (Table 2). We note, amongst others, the following events: dysfunction of the peritoneal catheter due to blockage (debris, fibrin clots or peritoneal aspiration) or displacement, more rarely dysfunction of the bladder catheter (occlusion, disconnection), migration or dysfunction of the pump, and infection of the pump pocket (Figure 3).

Concerns regarding renal function
Among the frequently reported adverse events of the pump, acute kidney injury (AKI) may occur in up to 30% of patients during follow-up [22]. However, the heterogeneous definitions used for AKI and the widely varying timeframe between pump implantation and assessment of renal function must be taken into consideration in the interpretation of this finding. It should be noted that the existence of chronic renal failure (based on serum creatinine values > 133 to 176 μmol/L or glomerular filtration rate < 30 to 50 mL/min depending on the series) was an ineligibility criterion for alfapump® in most studies (Table 1). An association between alfapump® and renal function deterioration at 6 mo was suggested in a series of 10 patients followed for one year [19], but these results were not confirmed in the MOSAIC cohort [12]. In the European RCT, almost half of the patients experienced AKI, which was observed during the first week after implantation in 41% of them, but 75% of patients recovered their previous renal function [16]. In the meta-analysis, the mean increase in serum creatinine after implantation was 23 μmol/L (95%CI: 10-35) [22]. Several distinct and
interrelated mechanisms may contribute to the deterioration of renal function in the postoperative period, such as changes in intra-abdominal pressure, systemic inflammation and hemodynamic changes. In the medium term, it has been suggested that the continuous removal of ascites could cause circulatory dysfunction \[^{10}\], thus favoring a deterioration of renal function. However, data regarding the impact of alfapump\(^\circledR\) implantation on the hemodynamic parameters are limited and conflicting \[^{12,16,19}\] and this hypothesis has not been confirmed so far \[^{25}\]. The issue of long-term albumin administration to prevent post-paracentesis circulatory dysfunction in these patients is not clear-cut, due to a lack of published data, and is therefore left at the discretion of the clinician in charge of the patient \[^{26}\]. The ANSWER study provides some evidence that the benefits of long-term albumin administration in decompensated cirrhosis could be due to improved circulatory function and reduced proinflammatory cytokines \[^{27}\]. However, the dosage, duration and frequency of administration remain open to debate. Consequently, expert recommendations \[^{10}\] advise following current guidelines regarding the use of albumin infusion after implantation, i.e. whenever AKI occurs \[^{28}\]; experts also considered albumin infusion whenever total daily volume of ascites removed exceeds 1 liter \[^{10}\].

Bacterial infections

The second common adverse effect of pump implantation is the occurrence of bacterial infection. In the meta-analysis by Lepida \textit{et al}, the incidence rates of ascites fluid infection and urinary tract infection were 27% and 20%, respectively \[^{22}\]. In the North American study, 15 bacterial infections occurred in 13 patients during the 12-month follow-up, of whom 12 were considered to be related to the alfapump\(^\circledR\) \[^{12}\]. Again, the absence of a control group limits the interpretation of these data. In the European RCT, the incidence of infectious events was similar in both the “alfapump\(^\circledR\)” and “standard treatment” groups \[^{16}\]. Although the risk of developing multidrug-resistant infections related to long-term antibiotic prophylaxis remains a concern \[^{7}\], patients receiving alfapump\(^\circledR\) have a particularly high risk of infection, and consequently long-term antibiotic prophylaxis should be maintained unless the patient’s condition improves.
significantly (which occurs rarely). Norfloxacin 400 mg/day remains the antibiotic of choice but, in the future, other molecules (such as rifaximin) with lower bacterial resistance and a better safety profile may be an alternative approach for long-term antibiotic prophylaxis. Whatever the choice of antibiotic used for long-term prophylaxis, regular screening for multidrug-resistant organisms in these cirrhotic patients should be considered during antibiotic prophylaxis, in order to re-evaluate this strategy whenever multidrug-resistant gram-negative bacteria or quinolone-resistant gram-negative bacteria emerge. However, two recent studies have provided more optimistic results regarding the long-term use of quinolones. The first observed that the incidence of infections caused by multidrug-resistant bacteria did not differ between the norfloxacin and placebo groups in patients with decompensated cirrhosis, while in the Global Study, no association was found between quinolone prophylaxis and multidrug-resistant bacterial infections, even when analysis was performed within different geographical areas.

UNRESOLVED ISSUES AND PERSPECTIVES

According to data on the efficacy and safety of the alfpump® device, it appears that the selection of candidates for insertion of an alfpump® as well as their pre-therapeutic evaluation must be rigorous (Figure 4). Multidisciplinary evaluation involving surgeons, anesthetists and hepatologists is recommended. In fact, relative contraindications are frequent in these frail patients with RA (for example pre-existing kidney injury, severe malnutrition or sarcopenia, cognitive impairment due to hepatic encephalopathy, significant peripheral oedema, bed confinement) and the risk-benefit ratio should be carefully considered. When LT is not possible, alfpump® implantation may be a satisfactory solution to improve the patient's quality of life, provided there are no severe comorbidities that could threaten the short-term prognosis or compromise the success of the implantation procedure and/or the use of the device. Patients awaiting a liver transplant
In patients who are candidates for LT, but with a long estimated waiting time until transplantation, (notably when there is no possibility of prioritizing LT), alfapump® implantation may be discussed whenever TIPS is contraindicated. Few reports are available about the use of alfapump® in patients awaiting LT. A recent single-centre retrospective study among 22 patients listed for LT in Switzerland aimed to demonstrate the feasibility of LT in patients with an alfapump®.[32] In this cohort, the median (range) MELD score at alfapump® implantation was 15 (8-25), and only 14/22 patients underwent LT within an average of 6 mo after the pump implantation. The pump was removed before LT and at the end of the LT procedure in 3 and 8 patients respectively, and left in place in 3 patients for a limited period of time. No technical issues were attributed to the alfapump® during the LT procedure. The authors reported that 8 patients died before LT, 7 while on the waiting list and one after being delisted due to progressive liver disease. The causes of death among the patients on the waiting list were progressive liver disease in 4 (of whom one had a bacterial infection of unknown focus and another suffered from peritonitis), and multi-organ failure in 3 patients (who respectively developed pump pocket empyema, an abdominal wall phlegmon with communication into the abdominal cavity, and septic shock associated with probable infected abdominal focus). A last patient died after small bowel perforation not directly related to the pump catheter. The lack of a control group of patients listed for LT with RA and treated by iterative LVP, precludes any firm conclusions. However, while these results suggest that alfapump® does not technically compromise LT, they also emphasize the high risk of severe infection in these patients carrying intra-abdominal foreign material.

Unproven benefits

The alfapump® offers interesting perspectives that warrant further evaluation.

a. Frailty

Frailty is recognized as a determining factor in the overall prognosis of cirrhotic patients and contributes to mortality on the LT waiting list.[33,34] By enabling an improvement in nutritional status and a return to physical activity, we may speculate
that the alfpump® device could limit sarcopenia and frailty, but data regarding this potential benefit are scarce and this point warrants specific evaluation in dedicated studies.

Percutaneous treatment of hepatocellular carcinoma

By reducing the quantity of ascites, alfpump® renders the percutaneous treatment of hepatocellular carcinoma possible. To date, this was reported in only one case-report [38], but this therapeutic approach warrants further study.

c. Cure of hernia

A retrospective study of European multicenter data recently showed that patients who had concomitant umbilical or inguinal hernia repair and alfpump® placement had a shorter hospital stay, fewer complications, and better survival without paracentesis than patients undergoing emergency hernia surgery [36]. Hernia surgery concomitant with the implantation of the alfpump® enables the patient to undergo programmed surgery and to avoid the usual postoperative drainage, since the pump performs the ascites control. However, these data must be confirmed prospectively before this “concomitant” approach can be recommended. In the current state of knowledge, experts discourage concomitant repair of hernias [10].

d. Prevention of multidrug-resistant bacterial infections

Due to the decrease in hospitalizations for paracentesis, patients with alfpump® may be less exposed to nosocomial bacterial infections, which mainly involve multi-drug resistant bacteria. This may be of interest for patients who are candidates for LT. However, this potential benefit has not yet been evaluated in the long-term, and must be balanced against the risk of infections related to the procedure.

Cost-effectiveness

The overall cost of the procedure (implantation and patient follow-up), compared with that of standard treatment (iterative paracentesis), is a crucial point for the routine use of the alfpump®. This cost in the first six months after implantation is higher than the standard of care treatment, mainly due to the cost of the device and the surgical intervention (about 30,000 Euros), but tends to stabilize thereafter [16]. The ongoing
French multicenter randomized medico-economic study (ARIAPUMP protocol, NCT03506893) comparing two management approaches for RA, namely alfapump® implantation and iterative paracentesis, will make it possible to compare the costs of the long-term care for both these strategies, taking into account whether or not there is programmed LT. The radiological approach offers interesting perspectives in reducing the peri-operative risk of morbidity in frail patients. Whether this mini-invasive technique can significantly reduce the duration of the post-procedure hospital stay, or the rate of local complications, has not yet been demonstrated, due to insufficient data and a lack of head-to-head studies.

CONCLUSION
The alfapump® is a device that has proven its effectiveness in reducing the need for iterative paracentesis and in improving the quality of life of cirrhotic patients with refractory ascites. It should be considered in particular for patients contraindicated for a TIPS, regardless of the patient’s eligibility for LT. To minimize the risk of complications after implantation, careful selection of these frail patients is essential. The concerns related to the cost of the device, the surgical procedure of implantation, as well as the potential complications that can occur are not fully resolved yet, but the implantation technique could evolve towards a "minimally invasive" approach, with a view to reducing the risks and improving the cost-effectiveness of the implantation. Patient information and active participation of the patient are two prerequisites for successful management. Additional studies, particularly real-world data from large heterogeneous populations with long-term follow-up, are required to clarify some unresolved issues, notably concerning the acceptable limits of liver and kidney function, age, forms of albumin compensation, or cost-effectiveness. There are currently several ongoing observational studies (NCT04326946, NCT03973866, NCT03506893) that will hopefully provide a more complete picture of the advantages and disadvantages of this innovative device.
PRIMARY SOURCES

<table>
<thead>
<tr>
<th>#</th>
<th>Source</th>
<th>Title</th>
<th>Crossref</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>discovery.ucl.ac.uk</td>
<td>Emily C. Bendel, Kenneth Sniderman, Cathryn Shaw, R. Todd Frederick et al. "Feasibility and Procedural Safety of alfapump System Implantation by IR: Experience from the MOSAIC Study, a Multicenter, Open-Label Prospective Study in Cirrhotic Patients with Refractory Ascites", Journal of Vascular and Interventional Radiology, 2020</td>
<td>Crossref</td>
<td>1%</td>
</tr>
<tr>
<td>2</td>
<td>njghonweb.org</td>
<td>Antonia Lepida, Astrid Marot, Eric Trépo, Delphine Degré, Christophe Moreno, Pierre Deltenre. "Systematic review with meta-analysis: automated low-flow ascites pump therapy for refractory ascites", Alimentary Pharmacology & Therapeutics, 2019</td>
<td></td>
<td>1%</td>
</tr>
</tbody>
</table>