Retrospective Study

Clinical association between coagulation indicators and bone metastasis in patients with gastric cancer

Wang X *et al.* Coagulation indicators predict bone metastases

Xuan Wang, Jing-Ya Wang, Min Chen, Juan Ren, Xin Zhang
Abstract

BACKGROUND
Bones are one of the most common target organs for cancer metastasis. Early evaluation of bone metastasis (BM) status is clinically significant. Cancer patients often experience a hypercoagulable state.

AIM
To evaluate the correlation between coagulation indicators and the burden of BM in gastric cancer (GC).

METHODS
We conducted a single-center retrospective study and enrolled 454 patients. Clinical information including routine blood examination and coagulation markers were collected before any treatment. Patients were grouped according to the status of BM. Receiver operating characteristic curves were used to assess diagnostic performance and determine the optimal cutoff values of the above indicators. Cutoff values, sensitivity and specificity were based on the maximum Youden index. Univariate and multivariate logistic regression analyses were used to evaluate the relationships between biomarkers and BM.

RESULTS
Of the 454 enrolled patients, 191 patients were diagnosed with BM. The receiver operating characteristic curve analysis suggested that prothrombin time (PT) [cutoff: 13.25; sensitivity: 0.651; specificity: 0.709; area under receiver operating characteristic curve (AUC) = 0.738], activated partial thromboplastin time (aPTT) (cutoff: 35.15; sensitivity: 0.640; specificity: 0.640; AUC = 0.678) and fibrin degradation products (FDP) (cutoff: 2.75; sensitivity: 0.668; specificity: 0.801; AUC = 0.768) act as novel predictors for BM. Based on multivariate logistic regression analysis, the results showed the independent correlation between PT [odds ratio (OR): 3.16; 95% confidence interval
(CI): 1.612-6.194; \(P = 0.001 \], aPTT (OR: 2.234; 95\%CI: 1.157-4.313; \(P = 0.017 \)) and FDP (OR: 3.17; 95\%CI: 1.637-6.139; \(P = 0.001 \)) and BM in patients with GC. Moreover, age, carcinoembryonic antigen, erythrocyte and globulin were found to be significantly associated with BM.

CONCLUSION
Coagulation markers, namely PT, aPTT and FDP, might be potential predictors for screening BM in patients with GC.

Key Words: Gastric cancer; Bone metastasis; Coagulation markers; Risk factor; Activated partial thromboplastin time; Prothrombin time; Fibrin degradation products

Core Tip: Bones are one of the most common organs involved in cancer metastasis. Early evaluation of bone metastasis (BM) status is clinically significant. In this study, we confirmed that coagulation markers (prothrombin time, activated partial thromboplastin time and fibrin degradation products), carcinoembryonic antigen and globulin are independent risk factors for BM in patients with gastric cancer. Patients with these risk factors should be screened early for BM, which may significantly decrease mortality rates related to BM in patients with gastric cancer.

INTRODUCTION
Gastric cancer (GC) is one of the most malignant neoplasms worldwide. According to GLOBOCAN’s 2020 statistics, there were approximately 1.089 million new GC cases
and 769,000 GC deaths worldwide. GC has the fifth highest incidence rate and the fourth highest mortality rate of all cancers\(^1\).

Common metastatic sites of GC are the liver, lungs, and peritoneum. Bone metastasis (BM) is relatively rare, ranging from 0.9% to 3.8%\(^2,3\). However, this incidence has been as high as 13.4% in autopsies\(^4\). The majority of patients with BM have several symptoms including bone pain, mobility disorders, hypercalcemia, pathological fractures and spinal cord compression, which seriously affects their quality of life. Unfortunately, BM is often underdiagnosed because sensitive diagnostic tests are recommended only after the onset of clinical symptoms. In addition, the median survival time for patients with GC-related BM is only 3-6 mo\(^3,5\).

Imaging is currently the most important diagnostic method for BM. Elevated serum tumor markers such as carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9) and bone-associated alkaline phosphatase (ALP) provide additional diagnostic significance\(^6,7\). Computed tomography (CT) or enhanced CT is not a routine test for BM screening. It is only recommended when the patient is symptomatic, which leads to asymptomatic BM in patients with GC being largely undetected\(^8\). Previous studies have found that fibrinogen, activated partial thromboplastin time (aPTT) and D-dimer are independent risk factors for BM in non-small cell lung cancer\(^8\). However, there has been little research on multiple risk factors, such as a combination of clinical data and laboratory indicators, for BM in patients with GC. This study explored risk factors for BM from GC through multivariate analysis based on laboratory tests.

MATERIALS AND METHODS

Patients

We retrospectively collected data on patients diagnosed with GC at the First Affiliated Hospital of Xi’an Jiaotong University from January 2014 to January 2019. The inclusion criteria were no distant metastases or BM. Exclusion criteria included: (1) A history of thrombotic disease, anticoagulant therapy or antiplatelet therapy; (2) Acute infection or disseminated intravascular coagulation; and (3) Lack of pretreatment laboratory data. In
total, 454 patients were enrolled in this study. Data evaluated included sex, age at diagnosis, preoperative routine blood examination (erythrocyte, hemoglobin, leukocyte, neutrophil, lymphocyte, monocyte and platelet), glucose, albumin, globulin, CEA, CA19-9, CA72-4 and coagulation markers including prothrombin time (PT), prothrombin ratio (PTR), international normalized ratio (INR), aPTT, thrombin time (TT), fibrinogen, D-dimer and fibrin degradation products (FDP). Laboratory indicators were collected before any treatment. Blood parameters were those closest to the time of treatment. This study was approved by the Ethics Committee of First Affiliated Hospital of Xi’an Jiaotong University.

Statistical analysis
Cases were grouped according to BM status. Categorical variables were expressed as frequency (percentage) and compared using the χ^2 test. Continuous variables were expressed as mean and standard deviation or median and interquartile range depending on whether they were normally distributed. Normally distributed continuous variables were compared using the Student’s t-test. Continuous variables that were not normally distributed were compared using the Mann-Whitney U test. The parameters with significant differences between the control group and the BM group were selected for receiver operating characteristic (ROC) analysis. The optimal cutoff values for parameters were obtained by ROC analyses based on the Youden index. The prediction probability (PP) of combined ROC curve was obtained by binary logistic regression. Multivariate logistic regression was performed to assess the relationship between laboratory variables and BM status. Statistical analyses and data plotting were performed with SPSS Statistics (version 20.0; IBM Corp., Armonk, NY, United States). A two-sided P value < 0.05 was considered statistically significant.

RESULTS
Patient characteristics
We collected data from 454 patients with GC and grouped them according to the method described previously. As shown in Table 1, there were 191 cases in the BM group. The median age of patients was 61 years, and males comprised the majority of patients (73.8%). Patients with BM had higher levels of GC markers (CEA, CA19-9 and CA72-4), neutrophils, glucose, globulin and most coagulation parameters (PT, PTR, INR, aPTT, fibrinogen, D-dimer and FDP) (all \(P < 0.001 \)). Moreover, erythrocyte, lymphocyte and platelet levels were significantly lower in the BM group (all \(P < 0.05 \)) (Table 1).

BM in patients with GC can be predicted by novel tumor markers PT, aPTT and FDP

We performed ROC analysis to assess the efficacy of parameters to predict BM in patients with GC and obtained a series of cutoff values. The optimal cutoff values (sensitivity and specificity) were: age, 59.5 (54.6% and 58.3%); CEA, 3.97 (64.9% and 71.1%); CA19-9, 12.81 (65.5% and 64.9%); CA72-4, 6.71 (51.8% and 74.7%); erythrocyte level, 4.43 (42.3% and 79.7%); hemoglobin, 133.5 (42.7% and 75.9%); leukocyte level, 6.28 (49.2% and 68.5%); neutrophil level, 4.23 (48.4% and 74.9%); lymphocyte level, 1.43 (55.2% and 64.2%); platelet level, 167.5 (73.1% and 44.9%); glucose, 4.82 (52.4% and 74.8%); globulin, 28.75 (50.0% and 81.4%); PT, 13.25 (65.1% and 70.9%); PTR, 1.09 (40.7% and 78.5%); INR, 1.1 (37.6% and 81.9%); aPTT, 35.15 (64.0% and 64.0%); TT, 15.95 (69.7% and 48.7%); fibrinogen, 4.06 (42.3% and 82.0%); D-dimer, 1.03 (69.0% and 72.8%); FDP, 2.75 (66.8% and 80.1%) (Figure 1, Supplementary Figures 1 and 2). The area under ROC curves and 95% confidence intervals (CI) were: CEA, 0.694 (0.639-0.748); CA19-9, 0.673 (0.617-0.729); CA72-4, 0.624 (0.560-0.688); PT, 0.738 (0.692-0.784); aPTT, 0.678 (0.629-0.727); and FDP, 0.768 (0.722-0.814) (Table 2, Figure 1).

Parameters were grouped by aforementioned cutoff values. Multivariate logistic regression analysis showed that higher PT [odds ratio (OR): 3.16; 95% CI: 1.612-6.194; \(P = 0.001 \)], higher aPTT (OR: 2.234; 95% CI: 1.157-4.313; \(P = 0.017 \)) and elevated FDP (OR: 3.17; 95% CI: 1.637-6.139; \(P = 0.001 \)) were independent risk factors for BM in patients with GC. In addition, higher CEA and globulin as well as lower age and red blood cell
count were also independent risk factors for BM with an OR (95%CI) of 2.847 (1.496-5.418), 4.253 (2.114-8.558), 0.392 (0.203-0.756), and 0.482 (0.24-0.966), respectively (all \(P < 0.05 \) (Table 3). The area under ROC curve (95%CI) of PP was 0.879 (0.841-0.917) with a sensitivity of 0.831 and a specificity of 0.806 (Table 2, Figure 1).

DISCUSSION

BM is a common complication of certain cancers, including breast cancer and prostate cancer\(^9\), whereas BM due to GC is less frequent\(^{[10]}\). The common metastatic sites of GC are the liver, lungs and peritoneum. Most patients with BM due to GC have multiple metastases, and most metastases are difficult to resect surgically\(^{[11]}\). Once tumors have metastasized to the bone, they are virtually incurable and cause severe morbidity before the patient dies. BM leads to pain, pathological fractures, nerve compression syndrome and hypercalcemia. According to relevant research reports, the proportion of patients suspected of BM due to GC found by bone scan screening was as high as 25.0%-45.3%\(^{[12]}\).

Several factors have been shown to have predictive value for BM due to GC. BM is a dynamic process of osteolytic and osteogenesis mediated by osteoclasts that disrupts normal bone homeostasis. Bone ALP is an indicator of osteoblast metabolism and a relatively specific osteogenic marker, which has predictive value in patients with BM due to GC\(^{[6]}\). Bone screening is recommended for cancer types with a high incidence of BM, such as prostate cancer, breast cancer, small cell lung cancer and renal cell carcinoma. A variety of imaging studies are available, including plain X-rays, bone scintigraphy, CT scans, magnetic resonance imaging, positron emission tomography and positron emission tomography/CT, to assess bone involvement. However, bone screening has not been routinely recommended by the Chinese Society of Clinical Oncology for patients with GC\(^{[13]}\). Excessive X-rays and CT imaging are expensive and put patients at risk of unnecessary radiation exposure and/or invasive procedures due to false positive results. Therefore, it is necessary to evaluate BM through a combination of imaging and analyzing hematological parameters and patient symptoms.
In this study, we screened possible risk factors for BM by comparing baseline data between the control group and the BM group. Through multivariate logistic regression analysis of candidate tumor markers, routine blood counts, coagulation indicators, albumin and globulin, we found that elevated CEA, globulin, PT, aPTT and FDP and younger age and lower red blood cells were independent risk factors for BM due to GC. CEA is a classic GC marker and has been shown to be a risk factor for distant metastasis and lymph node metastasis[14,15]. Globulin was identified as an independent predictor of occult metastasis in the neck of oral squamous cell carcinoma[16]. In GC, a high level of globulin is a valuable predictor of tumor progression[17]

Tumors are often accompanied by a state of coagulation activation[18]. Fibrinogen, aPTT and D-dimer were found to be risk factors for BM in non-small cell lung carcinoma patients[19]. Our study confirmed that PT, aPTT and FDP as coagulation indicators, are independent predictors of BM in GC patients. In fact, tumor cells often express tissue factor or other procoagulants that can initiate coagulation[20]. There is considerable evidence that inhibiting coagulation can inhibit tumor metastasis[21,22]. BM due to GC can develop regardless of the tumor stage, although the proportion of patients with stage IV GC with BM exceeds the proportion of patients with stages I-III combined. It was found that even after radical gastrectomy, BM recurred in 1.8% of patients[23]. This indicates that the risk of BM should be considered when these indicators are abnormally elevated in patients with GC, especially when they are higher than the cutoff values in Table 2. Furthermore, the cutoff values of the BM risk factors indicated in this study are different from their respective upper limits of clinical normality. In other words, elevated coagulation indicators may indicate BM risk even within the range of clinically normal reference values.

A hypercoagulable state represents a heterogeneous group of disorders that cover a variety of risk factors such as thrombosis, obesity, pregnancy, cancer and its treatment, antiphospholipid antibody syndrome, heparin-induced thrombocytopenia and myeloproliferative disorders[24]. This suggests that in order to improve the specificity of coagulation factors in assessing BM due to GC, other factors that may affect their levels
need to be excluded. Although we discovered independent risk factors for BM due to GC, we did not explore whether they were specific to BM or due to other metastatic sites’ GC.

Because we retrospectively collected data from patients with GC, bone-associated ALP was not routinely tested and was not included in the analysis. There is evidence that tumor-induced hypercoagulability and fibrin formation are required for tumor angiogenesis, metastasis and invasion because cross-linked fibrin in the extracellular matrix may be the framework for tumor cell migration during invasion. Based on this, circulating tumor cells and micrometastases are considered early events in the process of tumor cell metastasis\[^{25}\]. Bone ALP is a specific marker of osteoblast metabolism and is significantly associated with the presence and degree of bone involvement in metastatic tumors. Bone-associated ALP has been shown to be an important predictor of BM in patients with breast and prostate cancer\[^{26}\]. More than half of patients with BM due to GC have elevated ALP and tumor markers\[^{3,6}\]. Coagulation indexes and bone ALP reflect the two stages of tumor hematogenous metastasis and BM, respectively. In this study, we demonstrated that the PP obtained by combination ROC had a higher diagnostic efficacy than any single risk factor. The combination of coagulation indexes, globulins, tumor markers and bone ALP may greatly improve the diagnostic efficiency of BM due to GC.

CONCLUSION
Overall, coagulation markers (PT, aPTT and FDP), CEA and globulin are independent risk factors for BM due to GC. Patients with these risk factors should be screened for BM early, which could lead to significantly decreased mortality in patients with GC and BM.
<table>
<thead>
<tr>
<th></th>
<th>PRIMARY SOURCES</th>
<th>SIMILARITY INDEX</th>
<th>PRIMARY SOURCES</th>
<th>SIMILARITY INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pengcheng Sun, Samuel O. Antwi, Kurt Sartorius, Xiao Zheng, Xiaodong Li. "Tumor Microenvironment, Clinical Features, and Advances in Therapy for Bone Metastasis in Gastric Cancer", Cancers, 2022</td>
<td>3%</td>
<td>Crossref</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>worldwidescience.org</td>
<td>1%</td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>www.researchgate.net</td>
<td>1%</td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>"Abstracts", Journal of Thrombosis and Haemostasis, 2015.</td>
<td>1%</td>
<td>Crossref</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Julia A.M. Anderson, Jeffrey I. Weitz. "Hypercoagulable States", Critical Care Clinics, 2011</td>
<td>< 1%</td>
<td>Crossref</td>
<td></td>
</tr>
</tbody>
</table>