
1

Supplementary data

MATERIALS ANDMETHODS

Probes identification

Supplementary Table 1 describes the identification of TaqMan probes that were

used to evaluate the gene expression of circulating microRNAs.

DNA extraction and sequencing of 16S rRNA

The bacterial DNA was isolated from the fecal samples using the QIAamp fast

DNA stool mini kit (Qiagen, United States), following the manufacturer's

instructions. The hypervariable V4 region from the rRNA gene was amplified

by PCR using the following primer pair: 515F (5'-

GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-

GGACTACHVGGGTWTCTAAT-3'). To pool different samples in the same

reaction, we used the primer-fusion method and each sample had a distinct

barcode attached on the corresponding PCR product. The purified products

were subjected to emulsion PCR using Ion PGM™ Hi-Q™ view OT2 kit

(Thermo Fisher Scientific, United States). After, the resulting enriched beads

were sequenced in a next-generation sequencing (NGS) machine (Ion Torrent

PGM, Life Technologies) using Ion PGM™ Hi-Q™ view sequencing kit

(Thermo Fisher Scientific, United States).

Bioinformatics analyses

16S rRNA reads processing for downstream analyses: The sequence data

exported from the Ion Torrent PGM™ System was processed using a custom

pipeline in Mothur v.1.41.1[1]. Initially, sequences were depleted of barcodes

and primers (where no mismatch was allowed) and then a quality filter was

applied to eliminate low quality reads. Quality control was conducted by

trimming the low-quality reads, those with incorrect length, those containing an

ambiguous base, or containing homopolymers longer than 8 bp. All potentially

chimeric sequences were identified and removed using VSEARCH[2].

After these initial quality filtering and trimming steps, the remaining

sequences were clustered into operational taxonomic units (OTUs) based on a
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99% identity level and were classified against the SILVA v132 reference

database at 97% similarity[3]. Sequences that could not be classified (i.e.,

“unknown” sequences), as well as sequences identified as eukaryotes,

mitochondria, and chloroplasts were removed prior to further analysis. To

reduce spurious OTUs caused by PCR or sequencing errors, an additional

filtering step was performed by removing OTUs with less than 10 reads. The

resulting OTU table was normalized using the cumulative sum scaling (CSS)

method. For alpha diversity analysis, the OTU table was rarefied to the smallest

library size. Subsequent analyses of the sequence dataset were performed in R v.

3.6.1 (using vegan, phyloseq and ggplot2 packages) or QIIME v. 1.9.1[4].

Microbial ,community and statistical analysis

Alpha-diversity was assessed using species richness indices (ACE and Chao1)

and species diversity indices (Shannon and Simpson). For overall comparison of

significant differences among bacterial communities (i.e., beta diversity),

principal coordinates analysis (PCoA) was performed. A matrix using

phylogenetic (weighted Unifrac) and non-phylogenetic (Bray–Curtis

dissimilarity) metrics was calculated for each pair of samples. The distances

were turned into points in space with the number of dimensions one less than

the number of samples. To achieve statistical confidence for the sample

grouping observed by PCoA, the ANOSIM multivariate test was performed on

the distance matrix. To compare additional differences among the microbial

communities, clustering methods based on Bray–Curtis dissimilarity were

performed. The results of hierarchical clustering were visualized using

heatmaps and dendrograms.

To detect potential taxa biomarkers, the linear discriminant effect size

(LEfSe) method was performed[5]. The algorithm performs a nonparametric

factorial Kruskal-Wallis sumrank test and LDA to determine statistically

significant different features among taxa and estimates the effect size of the

difference. Differences were considered significant for a logarithmic LDA score
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threshold of ± 1.0 and a P value < 0.05 after adjusting for multiple hypotheses

testing with the Benjamini–Hochberg method.

Metagenome prediction

Predictive functional gene profiling was based on 16S rRNA gene sequencing

data using Piphillin[6] with updated KEGG database (May 2017) and a

confidence cutoff value of 97. Piphillin uses direct nearest-neighbor matching

between 16S rRNA amplicons and genomes to predict the represented genomes.

This tool is not obliged to any unique data pre-processing protocol supporting

KEGG and BioCyc as a reference database. The resulting table is then filtered to

include only microbial metabolic pathways. Beta diversity of KEGG Orthology

(KO) and Pathways (ko) abundances was calculated using the Bray−Curtis

metric. Comparison of functional profiles of each population was performed

using PERMANOVA. Differentially abundant features were determined using

linear discriminant analysis (LDA) effect size (LefSe). Benjamini–Hochberg

adjusted p-value was calculated to control the false discovery rate (FDR) in

multiple testing. The KEGG groups were considered significantly enriched by

satisfying an FDR corrected p-value of 0.05.

Correlations between the analyzed markers

Complementary data on correlations between cardiomyocyte morphometry

variables with inflammatory and histopathological markers of liver injury,

atherogenic indices, microRNAs, biochemical parameters and anthropometric

parameters of the animals were evaluated.

RESULTS

Correlations Between the Cardiomyocyte Morphometry and Liver Injury

Markers and Cardiovascular Risk

With all variables in hands, we then did a correlation analysis among

cardiomyocyte morphometry (i.e. the percentage of normal cardiomyocytes, the

percentage of atrophic cardiomyocytes and the average area of these cells) and
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this information is described in the Supplementary Table 2. This correlation

analysis was performed between all the anthropometric, inflammatory,

fibrogenesis, atherogenic ratios and microRNAS parameters described in this

article, as well as with the previously published results[7]. Several translationally

relevant results were found. Firstly, we found a negative correlation between

the average area and the percentage of normal cardiomyocytes with NAFLD

score. Complementary to this, histopathological NAFLD score correlated

positively with the percentage of atrophic cardiomyocytes. Considering

endothelial markers, monocyte chemoattractant protein (MCP)-1 and tissue

inhibitor of metalloproteinase (TIMP)-1 correlated negatively with the

percentage of normal cardiomyocytes and positively with the percentage of

atrophic cardiomyocytes. Furthermore, the average area of cardiomyocytes

correlated negatively with cardiovascular disease (CVD) risk factors and

metabolism of lipids (Castelli’s Risk Index-I, Castelli’s Risk Index-II and

atherogenic coefficient). miR-33a and miR-126 correlated negatively and

positively with the percentage of normal cardiomyocytes, respectively. Several

markers of systemic inflammation correlated negatively with the percentage of

normal cardiomyocytes, such as NOD-like receptor protein (NLRP)-3, caspase

(Casp)-1, interleukin (IL)-18, IL-1β and myeloid differentiation primary

response (Myd)-88, while the percentage of atrophic cardiomyocytes correlated

positively with Nlrp-3, toll-like receptor (TLR)-9, Tlr-4, IL-18, IL-1β and Myd-88.

Several anthropometric data associated with obesity correlated negatively with

the percentage of normal cardiomyocytes and averaged area of cardiomyocytes,

while correlating positively with the percentage of atrophic cardiomyocytes.

Finally, IL-10 hepatic levels correlated positively with the average area of

cardiomyocytes and negatively with the percentage of cardiomyocytes.

Corroborating this, an increased ratio of pro/anti-inflammatory cytokines in the

liver was positively associated with the percentage of atrophic cardiomyocytes

and negatively correlated with the average area of these cells.
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Supplementary Table 1 Probes identification

Assay name Assay ID

hsa-miR-33a-5p 002135

hsa-miR-126-3p 002228

mmu-miR-499-5p 001352

hsa-miR-186-5p 002285

hsa-miR-146a-5p 000468

cel-miR-39-3p 000200
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Supplementary Table 2 Correlation among variables of cardiomyocyte

morphometry and severity of liver disease progression and cardiovascular

risk markers.

Variables1 Statistical test % Normal

cardiomyocytes

Average area of

cardiomyocytes

% Atrophic

cardiomyocytes

NAFLD score Pearson

Correlation

-0.5193 -0.6302 0.7212

Sig. (2-tailed) 0.019 0.003 0.0027

Quantification of

collagen

(picrosirius)

Pearson

Correlation

-0.205 -0.312 0.238

Sig. (2-tailed) 0.385 0.181 0.312

IL-1β Pearson

Correlation

-.4373 -.393 .382

Sig. (2-tailed) 0.061 0.096 0.107

MCP-1 Pearson

Correlation

-.4903 -.390 .4983

Sig. (2-tailed) 0.028 0.090 0.025

TIMP-1 Pearson

Correlation

-.6942 -.405 .6072

Sig. (2-tailed) 0.001 0.076 0.005

PAI-1 Pearson

Correlation

-.317 .389 -.289

Sig. (2-tailed) 0.173 .090 0.216

CRI-I Pearson

Correlation

-.234 -.4593 .386

Sig. (2-tailed) 0.336 0.048 0.103

CRI-II Pearson

Correlation

-.399 -.4923 .5513

Sig. (2-tailed) 0.091 0.032 0.014

AC Pearson

Correlation

-.236 -.4573 .389



7

Sig. (2-tailed) 0.331 0.049 0.099

miR-33a Pearson

Correlation

-.7042 .038 .232

Sig. (2-tailed) 0.001 0.881 0.354

miR-126 Pearson

Correlation

.4593 .320 -.364

Sig. (2-tailed) 0.042 0.169 0.114

Ppar-α Pearson

Correlation

.205 .6162 -.6132

Sig. (2-tailed) 0.386 0.004 0.004

Nlrp-3 Pearson

Correlation

-.5543 -.278 .5493

Sig. (2-tailed) 0.011 0.236 0.012

Casp-1 Pearson

Correlation

-.6682 .020 .273

Sig. (2-tailed) 0.002 0.934 0.258

Tlr-9 Pearson

Correlation

-.371 -.339 .5583

Sig. (2-tailed) 0.129 0.169 0.016

Tlr-4 Pearson

Correlation

-.253 -.310 .4873

Sig. (2-tailed) 0.296 0.196 0.034

IL-18 Pearson

Correlation

-.6182 -.203 .4973

Sig. (2-tailed) 0.004 0.391 0.026

IL-1β Pearson

Correlation

-.6422 -.404 .7032

Sig. (2-tailed) 0.002 0.078 0.001

Myd-88 Pearson

Correlation

-.7462 -.258 .5243

Sig. (2-tailed) 0.002 0.273 0.018
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Abdominal

circumference

Pearson

Correlation

-.419 -.4803 .4913

Sig. (2-tailed) 0.066 0.032 0.028

Abdominal fat

tissue

Pearson

Correlation

-.6482 -.346 .438

Sig. (2-tailed) 0.003 0.147 0.061

∆ Weight Pearson

Correlation

-.6412 -.4493 .5083

Sig. (2-tailed) 0.002 0.047 0.022

Liver weight/body

weight ratio

Pearson

Correlation

-.5992 -.5922 .7122

Sig. (2-tailed) 0.005 0.006 0.000

Total cholesterol Pearson

Correlation

-.5573 -.154 .421

Sig. (2-tailed) 0.013 0.528 0.073

HDLc Pearson

Correlation

.074 .5543 -.441

Sig. (2-tailed) 0.757 0.011 0.051

IL-10 (pg/mg) Pearson

Correlation

.419 .6482 -.6812

Sig. (2-tailed) 0.066 0.002 0.001

TNF-α (pg/mg) Pearson

Correlation

-.120 -.5712 .5593

Sig. (2-tailed) 0.614 0.009 0.01

TNF-α/IL-10 Pearson

Correlation

-.194 -.6492 .6452

Sig. (2-tailed) 0.413 0.002 0.002

IL-1β/IL-10 Pearson

Correlation

-.241 -.6152 .4923

Sig. (2-tailed) 0.306 0.004 0.028

IL-6/IL-10 Pearson -.4903 -.4673 .6482
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Correlation

Sig. (2-tailed) 0.028 0.038 0.002

Nile red (Liver Fat

Deposition)

Pearson

Correlation

-.5253 -.5123 .5353

Sig. (2-tailed) 0.018 0.021 0.015
1Variables was represented for Spearman's correlation coefficient; 2Correlation

is significant at the 0.01 level; 3Correlation is significant at the 0.05 level. AC:

Atherogenic coefficient; Casp-1: Caspase-1, CRI: Castelli’s Risk Index; IL:

Interleukin; MCP: Monocyte chemoattractant protein; Myd-88: Myeloid

differentiation primary response-88; NAFLD: Non-alcoholic fatty liver disease;

NLRP: NOD-like receptor protein; PAI: Plasminogen activator inhibitor; PPAR:

Peroxisome proliferator-activated receptor; TIMP: Tissue inhibitor of

metalloproteinase; TLR: Toll-like receptor; TNF: Tumor necrosis factor.
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