EDITORIAL
8432 Evolution of World Journal of Clinical Cases over the past 5 years
Mathu S

OPINION REVIEW
8436 NF-κB: A novel therapeutic pathway for gastroesophageal reflux disease?
Zhang ML, Ran LQ, Wu MJ, Jia QC, Qin ZM, Peng YG

MINIREVIEWS
8443 Obligate aerobic, gram-positive, weak acid-fast, nonmotile bacilli, Tsukamurella tyrosinosolvens: Minireview of a rare opportunistic pathogen
8450 Diffusion tensor imaging pipeline measures of cerebral white matter integrity: An overview of recent advances and prospects
Safri AA, Nassir CMNCM, Iman IN, Mohd Taib NH, Achuthan A, Mustapha M
8463 Graft choices for anterolateral ligament knee reconstruction surgery: Current concepts
Chalidis B, Pitsilos C, Kitridis D, Givissis P
8474 Overview of the anterolateral complex of the knee
Garcia-Mansilla I, Zicaro JP, Martinez EF, Astoul J, Yacuzzi C, Costa-Paz M
8482 Complication of lengthening and the role of post-operative care, physical and psychological rehabilitation among fibula hemimelia
Salimi M, Sarallah R, Javadshir S, Mirghaderi SP, Salimi A, Khezazaeh S

ORIGINAL ARTICLE
Clinical and Translational Research
8490 Pyroptosis-related genes play a significant role in the prognosis of gastric cancer
Guan SH, Wang XY, Shang P, Du QC, Li MZ, Xing X, Yan B

Retrospective Study
8506 Effects of propofol combined with lidocaine on hemodynamics, serum adrenocorticotrophic hormone, interleukin-6, and cortisol in children
Shi S, Gan L, Jin CN, Liu RF
8514 Correlation analysis of national elite Chinese male table tennis players’ shoulder proprioception and muscle strength
Shang XD, Zhang EM, Chen ZL, Zhang L, Qian JH
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8525</td>
<td>Clinical value of contrast-enhanced ultrasound in early diagnosis of small hepatocellular carcinoma (≤ 2 cm)</td>
<td>Mei Q, Yu M, Chen Q</td>
</tr>
<tr>
<td>8547</td>
<td>Clinical significance of half-hepatic blood flow occlusion technology in patients with hepatocellular carcinoma with cirrhosis</td>
<td>Liu D, Fang JM, Chen XQ</td>
</tr>
<tr>
<td>8556</td>
<td>Which octogenarian patients are at higher risk after cholecystectomy for symptomatic gallstone disease? A single center cohort study</td>
<td>D’Acapito F, Solaini L, Di Pietrantonio D, Tauceri F, Mirarchi MT, Antelmi E, Flamini F, Amato A, Framarini M, Ercolani G</td>
</tr>
<tr>
<td>8568</td>
<td>Computed tomography combined with gastroscopy for assessment of pancreatic segmental portal hypertension</td>
<td>Wang YL, Zhang HW, Lin F</td>
</tr>
<tr>
<td>8578</td>
<td>Psychological needs of parents of children with complicated congenital heart disease after admitting to pediatric intensive care unit: A questionnaire study</td>
<td>Zhu JH, Jin CD, Tang XM</td>
</tr>
<tr>
<td>8599</td>
<td>Application of unified protocol as a transdiagnostic treatment for emotional disorders during COVID-19: An internet-delivered randomized controlled trial</td>
<td>Yan K, Yusufi MH, Nazari N</td>
</tr>
<tr>
<td>8615</td>
<td>High-flow nasal cannula oxygen therapy during anesthesia recovery for older orthopedic surgery patients: A prospective randomized controlled trial</td>
<td>Li XN, Zhou CC, Lin ZQ, Jia B, Li XY, Zhao GF, Ye F</td>
</tr>
<tr>
<td>8625</td>
<td>Assessment tools for differential diagnosis of neglect: Focusing on egocentric neglect and allocentric neglect</td>
<td>Lee SH, Lim BC, Jeong CY, Kim JH, Jang WH</td>
</tr>
</tbody>
</table>
CASE REPORT

8634 Exome analysis for Cronkhite-Canada syndrome: A case report
 Li ZD, Rong L, He YJ, Ji YZ, Li X, Song FZ, Li XA

8641 Discrepancy between non-invasive prenatal testing result and fetal karyotype caused by rare confined placental mosaicism: A case report
 Li Z, Lai GR

8648 Paroxysmal speech disorder as the initial symptom in a young adult with anti-N-methyl-D-aspartate receptor encephalitis: A case report
 Hu CC, Pan XL, Zhang MX, Chen HF

8656 Anesthesics management of a renal angiomyolipoma using pulse pressure variation and non-invasive cardiac output monitoring: A case report
 Jeon WJ, Shin WJ, Yoon YJ, Park CW, Shim JH, Cho SY

8662 Traumatic giant cell tumor of rib: A case report
 Chen YS, Kao HW, Huang HY, Huang TW

8667 Analysis of two naval pilots' ejection injuries: Two case reports
 Zeng J, Liu XP, Yi JC, Lu X, Liu DD, Jiang YQ, Liu YB, Tian JQ

8673 Beware of the DeBakey type I aortic dissection hidden by ischemic stroke: Two case reports
 Chen SQ, Luo WL, Liu W, Wang LZ

8679 Unilateral lichen planus with Blaschko line distribution: A case report
 Dong S, Zhu WJ, Xu M, Zhao XQ, Mou Y

8686 Clinical features and progress of ischemic gastritis with high fatalities: Seven case reports

8695 Retinoblastoma in an older child with secondary glaucoma as the first clinical presenting symptom: A case report
 Zhang Y, Tang L

8703 Recurrent herpes zoster in a rheumatoid arthritis patient treated with tofacitinib: A case report and review of the literature
 Lin QX, Meng HJ, Pang YY, Qu Y

8709 Intra-abdominal ectopic bronchogenic cyst with a mucinous neoplasm harboring a GNAS mutation: A case report

8718 Effects of intravascular photobiomodulation on motor deficits and brain perfusion images in intractable myasthenia gravis: A case report
 Lan CH, Wu YC, Chiang CC, Chang ST
Contents

World Journal of Clinical Cases

Thrice Monthly Volume 10 Number 24 August 26, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8728</td>
<td>Spontaneous acute epidural hematoma secondary to skull and dural metastasis of hepatocellular carcinoma: A case report</td>
<td>Lv GZ, Li GC, Tang WT, Zhou D, Yang Y</td>
</tr>
<tr>
<td>8735</td>
<td>Malignant melanotic nerve sheath tumors in the spinal canal of psammomatous and non-psammomatous type: Two case reports</td>
<td>Yeom JA, Song YS, Lee IS, Han IH, Choi KU</td>
</tr>
<tr>
<td>8742</td>
<td>When should endovascular gastrointestinal anastomosis transection Glissonean pedicle not be used in hepatectomy? A case report</td>
<td>Zhao J, Dang YL</td>
</tr>
<tr>
<td>8749</td>
<td>VARS2 gene mutation leading to overall developmental delay in a child with epilepsy: A case report</td>
<td>Wu XH, Lin SZ, Zhou YQ, Wang WQ, Li JY, Chen QD</td>
</tr>
<tr>
<td>8755</td>
<td>Junctional bradycardia in a patient with COVID-19: A case report</td>
<td>Aedh AI</td>
</tr>
<tr>
<td>8768</td>
<td>High scored thyroid storm after stomach cancer perforation: A case report</td>
<td>Baik SM, Pae Y, Lee JM</td>
</tr>
<tr>
<td>8775</td>
<td>Cholecystitis-an uncommon complication following thoracic duct embolization for chylothorax: A case report</td>
<td>Dung LV, Hien MM, Tra My TT, Lai TT, Linh LT, Duc NM</td>
</tr>
<tr>
<td>8782</td>
<td>Endometrial squamous cell carcinoma originating from the cervix: A case report</td>
<td>Shu XY, Dai Z, Zhang S, Yang HX, Bi H</td>
</tr>
<tr>
<td>8788</td>
<td>Type 2 autoimmune pancreatitis associated with severe ulcerative colitis: Three case reports</td>
<td>Ghali M, Bensted K, Williams DB, Ghaly S</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8805</td>
<td>Comment on “Posterior reversible encephalopathy syndrome in a patient with metastatic breast cancer: A case report”</td>
<td>Kunić S, Ibrahimagić OĆ, Kojić B, Đesanović D</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial Board Member of World Journal of Clinical Cases, Ahmed Mohamed Ahmed Al-Emam, PhD, Associate Professor, Department of Pathology, King Khalid University, Abha 62521, Saudi Arabia. amalemam@kku.edu.sa

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, Current Contents®/Clinical Medicine, PubMed, PubMed Central, Scopus, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports® cites the 2021 impact factor (IF) for WJCC as 1.534; IF without journal self cites: 1.491; 5-year IF: 1.599; Journal Citation Indicator: 0.28; Ranking: 135 among 172 journals in medicine, general and internal; and Quartile category: Q4. The WJCC’s CiteScore for 2021 is 1.2 and Scopus CiteScore rank 2021: General Medicine is 443/826.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ying-Yi Yuan; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.
Discrepancy between non-invasive prenatal testing result and fetal karyotype caused by rare confined placental mosaicism: A case report

Zhen Li, Guang-Rui Lai

Specialty type: Medicine, research and experimental

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
- Grade A (Excellent): A
- Grade B (Very good): B
- Grade C (Good): 0
- Grade D (Fair): 0
- Grade E (Poor): 0

P-Reviewer: Gislinge JIP, Denmark; Tolunay HE, Turkey

Received: December 14, 2021
Peer-review started: December 14, 2021
First decision: May 30, 2022
Revised: June 1, 2022
Accepted: July 18, 2022
Article in press: July 18, 2022
Published online: August 26, 2022

Abstract

BACKGROUND
Confinned placental mosaicism (CPM) is one of the major reasons for discrepancies between the results of non-invasive prenatal testing (NIPT) and fetal karyotype analysis.

CASE SUMMARY
We encountered a primiparous singleton pregnant woman with a rare CPM consisting of 47,XY,+21; 47,XXY; and 46,XY, who obtained a false-positive result on NIPT with a high risk for trisomy 21. Copy-number variation sequencing on amniotic fluid cells, fetal tissue, and placental biopsies showed that the fetal karyotype was 47,XXY, while the placenta was a rare mosaic of 47,XY,+21; 47,XXY; and 46,XY.

CONCLUSION
The patient had a rare CPM consisting of 47,XY,+21; 47,XXY; and 46,XY, which caused a discrepancy between the result of NIPT and the actual fetal karyotype. It is important to remember that NIPT is a screening test, not a diagnostic test. Any positive result should be confirmed with invasive testing, and routine ultrasound examination is still necessary after a negative result.

Key Words: Non-invasive prenatal testing; Confined placental mosaicism; Copy-number variation sequencing; Karyotype analysis; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: We identified that the patient had a rare confined placental mosaicism consisting of 47,XY,+21; 47,XXY; and 46,XY, which caused a discrepancy between non-invasive prenatal testing (NIPT) and fetal karyotype. Although NIPT has high sensitivity and specificity, false negatives and false positives are still possible. It is important to remember that NIPT is just a screening test, and any positive results need to be confirmed with invasive testing. Patients with negative NIPT results still require follow-up ultrasound examination.

Citation: Li Z, Lai GR. Discrepancy between non-invasive prenatal testing result and fetal karyotype caused by rare confined placental mosaicism: A case report. *World J Clin Cases* 2022; 10(24): 8641-8647

URL: https://www.wjgnet.com/2307-8960/full/v10/i24/8641.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i24.8641

INTRODUCTION

Currently, non-invasive prenatal testing (NIPT) using next-generation sequencing on a sample of cell-free fetal DNA (cffDNA) from maternal plasma is widely used as a screening test for common fetal aneuploidies (e.g., trisomy 21, 18, and 13; sex chromosome aneuploidies)[1]. This method of aneuploidy screening is not only non-invasive, but also highly accurate, with the sensitivity and specificity for pooled common aneuploidies as high as 99%[1,2]. NIPT offers higher accuracy when compared with serologic screening tests[3], thereby reducing the use of invasive diagnostic procedures that may result in miscarriage or intrauterine infection. However, NIPT is still a screening test and not a diagnostic test. As the cffDNA in maternal plasma originates from apoptotic placental trophoblast cells, it mainly consists of placental DNA[4,5], and the results may not represent the actual fetal karyotype. One of the most common reasons for false results on NIPT is a confined placental mosaicism (CPM)[6]. We report our experience with a patient whose NIPT result indicated a high risk for trisomy 21, but in whom the actual fetal karyotype was 47,XXY. The reason for this discrepancy was the presence of a CPM; the placenta was a rare mosaic of 47,XY,+21; 47,XXY; and 46,XY.

CASE PRESENTATION

Chief complaints
The patient was a 26-year-old primiparous woman with a singleton pregnancy. At 15 + 1 wk, the second-trimester serologic screening showed an elevated risk for Down’s syndrome, at 1 in 146 [alpha-fetoprotein: 0.67 multiples of the median (MoM); free β human chorionic gonadotropin: 3.18 MoM; unconjugated estradiol: 0.76 MoM]. The patient requested further testing.

History of present illness
The patient has no present illness.

History of past illness
The patient has no past illness.

Personal and family history
The patient denied any personal or family history.

Physical examination
The patient’s basic vital signs were within normal limits. She requested NIPT before amniocentesis.

Laboratory examinations
Maternal plasma was collected for NIPT at 15 + 3 wk. We followed the standard method for performing NIPT, which has been described previously[7]. The NIPT results showed a high risk for trisomy 21, with a Z-score of 16.21 for chromosome 21; however, there was a low risk for sex chromosome aneuploidy (the Z-score of chromosome X and Y was -12.88 and 79.64, respectively).

To confirm the positive NIPT results, amniocentesis was performed at 19 + 2 wk. Copy-number variation sequencing (CNV-seq) and karyotype analysis performed on amniotic fluid cells suggested that the fetal karyotype was XXX, as shown in Figures 1 and 2 and Table 1. The patient underwent genetic counseling and decided to terminate her pregnancy. After written informed consent for the procedure and further testing was obtained, she underwent an induced abortion at 22 + 5 wk. Samples
Table 1 Results of copy-number variation sequencing

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Sample</th>
<th>Result of CNV-seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amniotic fluid</td>
<td>Amniotic fluid cells</td>
<td>47,XXY</td>
</tr>
<tr>
<td>Fetal tissue</td>
<td>Fetal muscle tissue</td>
<td>47,XXY</td>
</tr>
<tr>
<td>Umbilical cord</td>
<td>Middle segment of umbilical cord</td>
<td>47,XXY</td>
</tr>
<tr>
<td>Placenta</td>
<td>Center of fetal face</td>
<td>47,XY,+21[65%]/46,XY[35%]</td>
</tr>
<tr>
<td></td>
<td>Margin of fetal face</td>
<td>47,XY,+21[65%]/46,XY[35%]</td>
</tr>
<tr>
<td></td>
<td>Margin of maternal face</td>
<td>47,XY,+21[65%]/46,XY[35%]</td>
</tr>
<tr>
<td></td>
<td>Center of maternal face</td>
<td>47,XY,+21[60%]/47,XXY[20%]/46,XY[20%]</td>
</tr>
<tr>
<td></td>
<td>Placental center</td>
<td>47,XY,+21[65%]/47,XXY[10%]/46,XY[25%]</td>
</tr>
</tbody>
</table>

CNV-seq: Copy-number variation sequencing.

Figure 1 The fetal karyotype performed on cultured amniotic fluid cells.

from the fetus were collected after delivery - including fetal muscle tissue, the middle segment of the umbilical cord, and placental tissue - and sent for CNV-seq. The placental samples included a mid-thickness section from the center of the placenta and samples from the center and margin of the maternal face, and the center and margin of the fetal face. As shown in Table 1 and Figure 2, the fetal muscle tissue and umbilical cord tissue had a karyotype of 47,XXY - matching that of the amniotic fluid cells. However, the center and margin samples from the fetal face and the margin of the maternal face of the placenta had a mosaic karyotype of 47,XY,+21 (65%) and 46,XY (35%), respectively. The mid-thickness sample from the placental center and the sample from the center of the maternal face of the placenta demonstrated a mosaic of 47,XY,+21; 47,XXY; and 46,XY with different proportions in each sample. In brief, the placenta was a mosaic of 47,XY,+21; 47,XXY; and 46,XY.

Imaging examinations
No obvious abnormality was detected upon fetal ultrasonography.

FINAL DIAGNOSIS
The fetal karyotype was 47,XXY; whereas the placenta was a mosaic of 47,XY,+21; 47,XXY; and 46,XY.

TREATMENT
Amniocentesis was used to determine the karyotype of the fetus. A placental sample was collected
Figure 2 The copy-number variation sequencing results in different samples. A: Amniotic fluid cells, fetal muscle and umbilical cord suggested the fetal karyotype was 47,XXY; B: The placenta of fetal face (both center and margin) and margin of maternal face showed a 47,XY,+21/46,XY mosaic; C and D: The
following induced abortion and was tested to determine the cause of the discrepancy between the NIPT results and the fetal karyotype.

OUTCOME AND FOLLOW-UP

The patient underwent an induced abortion after genetic counseling. The timeline is shown in Table 2.

DISCUSSION

The patient had a rare CPM consisting of 47,XY,+21; 47,XXY; and 46,XY, which caused a discrepancy between the results of NIPT and the actual fetal karyotype. The cfDNA in maternal blood has a dominant peak size of 143 base pairs, which is shorter than the free DNA fragments typically found in maternal plasma (around 166 base pairs)[8]. cfDNA can be detected as early as 4.5 wk of pregnancy[9], is present throughout pregnancy, and disappears from the maternal circulation within hours after delivery[10]. The proportion of cfDNA to total free DNA (fetal and maternal) is referred to as the fetal fraction, and it increases throughout pregnancy. At 10-20 wk of gestation, the average fetal fraction in maternal plasma is 10%-15%; however, it may range from less than 3% to over 30%[11].

The introduction of NIPT in the late 2000s was revolutionary for aneuploidy screening, and it is now a commonly used screening method. The sensitivity and positive predictive value of serologic screening for trisomy 21 is only about 80% and 5%, respectively[3]; while the sensitivity of NIPT can reach up to 99%, with a positive predictive value of 94.5%[1]. Thus, the expanded use of NIPT can greatly reduce the use of invasive diagnostic procedures, thereby avoiding the resulting complications of miscarriage or intrauterine infection. The sensitivity and specificity of NIPT for other common aneuploidies, including trisomy 18, trisomy 13, and sex chromosome aneuploidy, are as high as 99%[1]. However, false positive and false negative results for NIPT occur at a rate of 0.3% and 1.1%, respectively[1]. There are four factors that affect the results of NIPT: (1) A low fetal fraction, which can be present in overweight mothers, usually leading to a false negative result[12]; (2) Maternal conditions, such as the presence of a tumor, mosaicism, or chromosomal abnormalities, are often associated with false-positive results[13]; (3) Fetal chimerism and vanishing twin syndrome can affect the results[14]; and (4) CPM, which is also a very common cause of incorrect results[6,15]. In our patient with CPM, the results of NIPT were falsely positive for trisomy 21 and falsely negative for 47,XXY.

The mosaicism involved in CPM occurs only in the placenta, not in the fetus. In most situations, the fetal outcome is normal if the fetal chromosomes are normal[16]. However, 10% of pregnancies that involve a placenta with CPM are affected by fetal growth restriction, even after constitutional fetal chromosomal abnormalities are excluded[17,18]. According to a large-scale evaluation of chorionic villus sampling, the prevalence of CPM is about 0.6% to 1.0%[18,19]. Although the genetic makeup of placental and fetal tissue is usually identical, clinicians should be mindful of the possibility of CPM, especially as it accounts for a high proportion of incorrect results on NIPT[6]. Wu et al[20] found that CPM was present in 6 of 10 placentas from pregnancies in which there was a false-positive result on NIPT[20]. Our group identified three false negative NIPT results in a total of 34311 pregnancies, and all fetuses had structural abnormalities detected on follow-up ultrasound screening. Placental biopsies were collected from 2 of the 3 patients with false-negative NIPT results; both were confirmed to have CPM. One was the patient described in this report, and the other patient had a fetus with trisomy 21 and a placental mosaic of 47,XY,+21 and 46,XY.

There are two key elements that should be noted for NIPT. While its sensitivity and specificity are high, the positive predictive value varies from 94.5% for trisomy 21[21], to 82.1% for trisomy 18, 46.2% for trisomy 13, and 46.7% for sex chromosome aneuploidies[1]. A positive result on NIPT should always be confirmed with invasive testing (e.g., amniocentesis, umbilical cord blood sampling, chorionic villus sampling) before any irreversible procedure is performed, as the results on NIPT may not correlate with the true fetal genotype[16]. The other key element is that false-negative results on NIPT are associated with more serious consequences than false-positive results and cause more stress to pregnant women and their families. Majorly, the false-negative result can be proven when abnormalities are detected on routine follow-up ultrasound screening which is still necessary, even when the results of NIPT are normal. Attention should also be paid to low fetal fractions. The quality threshold for the fetal fraction is commonly accepted as 4%, and samples with values below this are often reported as having inconclusive results[11].
Table 2 Timeline for the care

<table>
<thead>
<tr>
<th>Gestational age (wk)</th>
<th>Examination items</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 + 1</td>
<td>Serum Down’s screening</td>
<td>High risk for trisomy 21</td>
</tr>
<tr>
<td>15 + 3</td>
<td>NIPT</td>
<td>High risk for trisomy 21, low risk for sex chromosome aneuploidy</td>
</tr>
<tr>
<td>19 + 2</td>
<td>Amniocentesis (CNV-seq and karyotype analysis)</td>
<td>47,XXY</td>
</tr>
<tr>
<td>22 + 5</td>
<td>Abortion, collected fetal muscle tissue, umbilical cord and placental samples</td>
<td>Fetal muscle tissue and umbilical cord: 47,XXY; placenta: A mosaic of 47,XY,+21; 47,XXY; and 46,XY</td>
</tr>
</tbody>
</table>

NIPT: Noninvasive prenatal testing; CNV-seq: Copy-number variation sequencing.

CONCLUSION

We describe our experience with a rare discrepancy between NIPT and karyotype testing. It is important to remember that NIPT is just a screening test, and any positive result should be confirmed with invasive testing. Patients with negative results on NIPT still require follow-up ultrasound examination.

ACKNOWLEDGEMENTS

Thanks for the patients’ family participation.

FOOTNOTES

Author contributions: Li Z provided obstetrical service, collected samples and wrote the paper; Lai GR did the examinations, genetic consult and revised the paper.

Supported by the 345 Talent Project of Shengjing Hospital, No. M0298.

Informed consent statement: All participants were fully informed of the study with written consent obtained from each participant. They gave consent for their de-identified personal or clinical details to be published in this study.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Zhen Li 0000-0002-5261-5846; Guang-Rui Lai 0000-0002-2241-1092.

S-Editor: Wang JJ

L-Editor: A

P-Editor: Wang JJ

REFERENCES

