Contents

REVIEW

331 Hemostatic system and COVID-19 crosstalk: A review of the available evidence

WiFi MN, Morad MA, El Sheemy R, Abdeen N, Afify S, Abdalgaber M, Abdellatef A, Zaghloul M, Alboraiie M, El-Kassas M

350 Syndemic aspects between COVID-19 pandemic and social inequalities

Apolonio JS, da Silva Júnior RT, Cazzuol BR, Araújo GRL, Marques HS, Barcelos IS, Santos LKS, Malheiro LH, Lima de Souza Gonçalves V, Freire de Melo F

MINIREVIEWS

365 COVID-19 neuropsychiatric repercussions: Current evidence on the subject

da Silva Júnior RT, Santos Apolonio J, Cazzuol BR, da Costa BT, Silva CS, Araújo GRL, Silva Luz M, Marques HS, Santos LKS, Pinheiro SLR, Lima de Souza Gonçalves V, Calmon MS, Freire de Melo F

381 Diagnosis and management of small bowel neuroendocrine tumors: A state-of-the-art

392 Pandemic control - do's and don'ts from a control theory perspective

Tomov L, Miteva D, Sekulovski M, Batseleva H, Velikova T

402 Non-medicalization of medical science: Rationalization for future

Mittal M, Jethwani P, Naik D, Garg MK

ORIGINAL ARTICLE

Observational Study

414 Migraine in physicians and final year medical students: A cross-sectional insight into prevalence, self-awareness, and knowledge from Pakistan

Choudry H, Ata F, Naveed Alam MN, Ruqaiya R, Suheb MK, Ikram MQ, Choudry MM, Muaz M

SYSTEMATIC REVIEWS

428 Role of the circulatory interleukin-6 in the pathogenesis of gliomas: A systematic review

Singh M, Raghav A, Gautam KA

438 Growth differentiation factor 15 as an emerging novel biomarker in SARS-CoV-2 infection

Parchwani D, Dholariya S, Katoch C, Singh R

META-ANALYSIS

448 Microvessel density in differentiated thyroid carcinoma: A systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>459</td>
<td>Radiological evaluation of patellofemoral instability and possible causes of assessment errors: Letter to the editor</td>
<td>Mesregah MK</td>
</tr>
<tr>
<td>461</td>
<td>Mouth shield to minimize airborne transmission risk of COVID-19 and other infectious diseases in the dental office</td>
<td>Dimashkieh MR, Nassani MZ, Talic YF, Algerban A, Demachkia AM</td>
</tr>
</tbody>
</table>
ABOUT COVER
Peer Reviewer of World Journal of Methodology, Angela I Dominguez C, DDS, Department of Orthodontics, Faculty of Dentistry, Unicoc-Cali. Calle. 13 Nte. #3N-13, Cali, Valle del Cauca, Colombia. angela.dominguezc@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Methodology (WJM, World J Methodol) is to provide scholars and readers from various fields of methodology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online.
WJM mainly publishes articles reporting research results obtained in the field of methodology and covering a wide range of topics including breath tests, cardiac imaging techniques, clinical laboratory techniques, diagnostic self-evaluation, cardiovascular diagnostic techniques, digestive system diagnostic techniques, endocrine diagnostic techniques, neurological diagnostic techniques, obstetrical and gynecological diagnostic techniques, ophthalmological diagnostic techniques, otological diagnostic techniques, radioisotope diagnostic techniques, respiratory system diagnostic techniques, surgical diagnostic techniques, etc.

INDEXING/ABSTRACTING
The WJM is now abstracted and indexed in PubMed, PubMed Central, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xiang-Di Zhang; Production Department Director: Xiang Li; Editorial Office Director: Ji-Hong Liu.

NAME OF JOURNAL
World Journal of Methodology

ISSN
ISSN 2222-0682 (online)

LAUNCH DATE
September 26, 2011

FREQUENCY
Bimonthly

EDITORS-IN-CHIEF
Bruno Megarbane

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2222-0682/editorialboard.htm

PUBLICATION DATE
September 20, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.sf6publishing.com
LETTER TO THE EDITOR

Mouth shield to minimize airborne transmission risk of COVID-19 and other infectious diseases in the dental office

Mohiddin R Dimashkieh, Mohammad Zakaria Nassani, Yousef Fouad Talic, Ali Alqerban, Amir M Demachkia

Specialty type: Medical laboratory technology
Provenance and peer review: Unsolicited article;Externally peer reviewed.
Peer-review model: Single blind
Peer-review report's scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Kalani M, Iran; Nalunkuma R, Uganda
Received: June 1, 2022
Peer-review started: June 1, 2022
First decision: June 27, 2022
Revised: July 4, 2022
Accepted: August 7, 2022
Article in press: August 7, 2022
Published online: September 20, 2022

Abstract
Transmission of coronavirus disease (COVID-19) and other infectious diseases is a significant risk during dental procedures because most dental interventions involve aerosols or droplets that could contaminate the surrounding environment. Current protection guidelines to address the high risk of droplets, aerosols, and airborne particle transmission of COVID-19 in the dental office recommend minimizing aerosol-generating procedures. In this paper, an innovative mouth shield is presented that should minimize water backsplash from the air-water syringe during dental treatment. The mouth shield can be added to the personal protective equipment to provide the dental team with extra protection. It can be made of different materials, is straightforward, inexpensive, and safe to fabricate, and is easy to use.

Key Words: Mouth shield; Transmission; Dentistry; COVID-19; Airborne; Droplets; Aerosols; Infectious diseases

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: This letter to the editor presents an innovative mouth shield to increase the protection of the dental team against the water backspash of aerosols, droplets, and airborne particles during dental procedures.

Citation: Dimashkieh MR, Nassani MZ, Talic YF, Alqerban A, Demachkia AM. Mouth shield to minimize airborne transmission risk of COVID-19 and other infectious diseases in the dental office. World J Methodol 2022; 12(5): 461-464
DOI: https://dx.doi.org/10.5662/wjm.v12.i5.461

TO THE EDITOR

The coronavirus disease (COVID-19) pandemic has spread fear and anxiety across the globe because of its high death toll[1]. Various strategies have been introduced to combat the transmission of COVID-19 and reduce its severity, including the expedited development and approval of vaccines[2]. The risk of transmission of COVID-19 in the dental office has led to specific treatment guidelines and protocols, including the minimal use of aerosol- or droplet-generating procedures[3-6]. However, most dental interventions produce aerosols and droplets, contaminating the surrounding environment and leaving dental personnel at risk of acquiring COVID-19 from infected patients. Although non-emergency dental services were halted at the outset of the pandemic, the long duration of the pandemic has required dental practices to resume their services, but with additional precautions and careful triage of patients [7]. Strict adherence to preventive and protective measures became the mantra for oral care services to maintain an active dental practice at the era of COVID-19[8,9]. The aim of this paper is to introduce an innovative, straightforward, and inexpensive personal protection device that minimizes water backspash from air-water syringes during cavity washing and drying. The goal was to develop a special mouth shield that should minimize the transmission risk of COVID-19 and other infectious diseases via airborne droplets or aerosols in the dental office.

MOUTH SHIELD

The mouth shield attaches to the air-water syringe tip and consists of a transparent shield made from the plastic lid of a conventional, disposable, crystal clear plastic cup. The center of the lid is perforated with a 3.5-mm-diameter twist drill to produce a frictional fit with the tip of an air-water syringe and form a disposable mouth shield (Figures 1A and B). The mouth shield can be positioned to maintain light contact with the patient’s lips (Figure 1C). It can be used with most air-water syringes during various dental procedures. Different size lids made from disposable, crystal clear polyethylene terephthalate plastic or polystyrene can be selected to accommodate patients with varying degrees of mouth opening. The front surface of the shield can be relined with a water absorbent liner to capture scattered droplets. The mouth shield can also be easily adjusted forward and backward along the tip (nozzle) of the air-water syringe for convenience (video).

DISCUSSION

The COVID-19 pandemic and the increased risk of infection prompted the authors to develop a cost-effective disposable mouth shield to provide protection against back splashes of aerosols, droplets, and airborne particles during dental treatment. An air-water syringe is essential for dental procedures such as etching, bonding, cavity cleansing, and impression making. Contamination from the aerosol could be a major source of infection[10]. The association between aerosols, droplets, and splatter and the transmission of COVID-19 has been emphasized, and recommendations have been made to reduce their generation during the coronavirus pandemic[4,11-13]. Furthermore, emphasis has been placed on the role of personal protective equipment such as medical masks, protective face shields, and goggles in preventing and minimizing airborne transmission of COVID-19[14,15]. Despite the use of personal protective equipment, transmission of the viral infection is still possible, and additional preventive precautions are advised. For example, while wearing magnifying loops, it is not feasible to wear a face shield, leaving the face of the operator exposed to contamination. The described mouth shield provides additional protection at minimal cost. It is designed to prevent water backspash out of the oral cavity during mouth/tooth washing and drying, minimizing contamination of the surrounding environment and dental personnel. Being transparent, the shield will allow light to reach the field of operation and
Figure 1 Crystal clear plastic cup lid mouth shield. A: Traditional, disposable, crystal clear plastic cup lid perforated in the center using a 3.5-mm-diameter twist drill and a disposable air-water syringe tip; B: The air water syringe tip is inserted with a friction fit through the central hole of the plastic cover to form a mouth shield; C: The mouth shield rests lightly on the patient’s lips, sealing the mouth during water/air spray.

allow the operator to easily see into the patient’s mouth. The described mouth shield has been successfully implemented and evaluated in our dental practice. Nevertheless, the effectiveness of the mouth shield in minimizing the airborne aerosols and droplets spread during dental treatment should be investigated, and its role in protecting against infectious diseases, with a comparison of the load of produced aerosols, droplets and airborne particles with and without this shield, should be examined before this shield can be adopted for global use.

ACKNOWLEDGEMENTS

The authors would like to thank the Deanship of Graduate Studies and Scientific Research at Dar Al Uloom University for supporting the publication of this paper.

FOOTNOTES

Author contributions: Dimashkieh MR proposed the topic of the paper; Dimashkieh MR and Nassani MZ prepared the original draft; Talic YF, Alqerban A and Demachkia AM reviewed and revised the original draft; all authors discussed and agreed the final draft.

Conflict-of-interest statement: All authors declare no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Saudi Arabia

ORCID number: Mohammad Zakaria Nassani 0000-0003-0927-895X.

Corresponding Author’s Membership in Professional Societies: Syrian Dental Association, 1503.

S-Editor: Wang LL
L-Editor: A
P-Editor: Wang LL

REFERENCES

Dimashkieh MR et al. Mouth shield to minimize transmission risk of infectious diseases

2419-2438 [PMID: 32778950 DOI: 10.1007/s00705-020-04768-3]

