EDITORIAL
2269 Gastroesophageal reflux disease and morbid obesity: To sleeve or not to sleeve?
Rebecchi F, Allaix ME, Patti MG, Schlottmann F, Morino M

REVIEW
2276 Advanced pancreatic ductal adenocarcinoma - Complexities of treatment and emerging therapeutic options
Diwakarla C, Hannan K, Hein N, Yip D

MINIREVIEWS
2286 Indoleamine 2,3-dioxygenase: As a potential prognostic marker and immunotherapeutic target for hepatocellular carcinoma
Asghar K, Farooq A, Zulfiqar B, Rashid MU

ORIGINAL ARTICLE
Basic Study
2294 Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice
Sezaki T, Hirata Y, Hugiwara T, Kawamura Y, Okamura T, Takanashi R, Nakano K, Tamura-Nakano M, Burkly LC, Dohi T

2308 CMA down-regulates p53 expression through degradation of HMGB1 protein to inhibit irradiation-triggered apoptosis in hepatocellular carcinoma

2318 Cullin 4A is associated with epithelial to mesenchymal transition and poor prognosis in perihilar cholangiocarcinoma

2330 Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats
Wang Y, Shen RW, Han B, Li Z, Xiong L, Zhang FY, Cong BB, Zhang B

2337 MicroRNA-145 exerts tumor-suppressive and chemo-resistance lowering effects by targeting CD44 in gastric cancer
Zeng JF, Ma XQ, Wang LP, Wang W

Case Control Study
2346 Predictors for difficult cecal insertion in colonoscopy: The impact of obesity indices
Moon SY, Kim BC, Sohn DK, Han KS, Kim B, Hong CW, Park BJ, Ryu KH, Nam JH
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2355</td>
<td>Impact of interferon-free antiviral therapy on lipid profiles in patients with chronic hepatitis C genotype 1b</td>
<td>Endo D, Satoh K, Shimada N, Hokari A, Aizawa Y</td>
</tr>
<tr>
<td>2365</td>
<td>Transition after pediatric liver transplantation - Perceptions of adults, adolescents and parents</td>
<td>Junge N, Migal K, Goldschmidt J, Baumann U</td>
</tr>
<tr>
<td>2385</td>
<td>Clinical implication of FDG uptake of bone marrow on PET/CT in gastric cancer patients with surgical resection</td>
<td>Lee JW, Lee MS, Chung IK, Son MW, Cho YS, Lee SM</td>
</tr>
<tr>
<td>2404</td>
<td>Can mean platelet volume play a role in evaluating the severity of acute pancreatitis?</td>
<td>Lei JY, Zhou L, Liu Q, Xiong C, Xu CF</td>
</tr>
<tr>
<td>2414</td>
<td>Proposed criteria to differentiate heterogeneous eosinophilic gastrointestinal disorders of the esophagus, including eosinophilic esophageal myositis</td>
<td>Sato H, Nakajima N, Takahashi K, Hasegawa G, Mizuno K, Hashimoto S, Ikarashi S, Hayashi K, Honda Y, Yokoyama J, Sato Y, Terai S</td>
</tr>
<tr>
<td>2435</td>
<td>What is the quantitative risk of gastric cancer in the first-degree relatives of patients? A meta-analysis</td>
<td>Yaghoobi M, McNabb-Baltar J, Bijarchi R, Hunt RH</td>
</tr>
<tr>
<td>2443</td>
<td>Hepatic angiosarcoma with clinical and histological features of Kasabach-Merritt syndrome</td>
<td>Wadhwa S, Kim TH, Lin L, Kanel G, Saito T</td>
</tr>
</tbody>
</table>
LETTERS TO THE EDITOR

2448 Tumor biopsy and patient enrollment in clinical trials for advanced hepatocellular carcinoma

ABOUT COVER

Editorial board member of *World Journal of Gastroenterology*, Piero Luigi Almasio, MD, Associate Professor, Biomedical Department of Internal and Specialist Medicine, University of Palermo, Palermo 90127, Italy

AIMS AND SCOPE

World Journal of Gastroenterology (*WJG*), print ISSN 1007-9327, online ISSN 2219-2840, DOI: 10.3748) is a peer-reviewed open access journal. *WJG* was established on October 1, 1995. It is published weekly on the 7th, 14th, 21st, and 28th each month. The *WJG* Editorial Board consists of 1375 experts in gastroenterology and hepatology from 68 countries.

The primary task of *WJG* is to rapidly publish high-quality original articles, reviews, and commentaries in the fields of gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, hepatobiliary surgery, gastrointestinal oncology, gastrointestinal radiation oncology, gastrointestinal imaging, gastrointestinal interventional therapy, gastrointestinal infectious diseases, gastrointestinal pharmacology, gastrointestinal pathophysiology, gastrointestinal pathology, evidence-based medicine in gastroenterology, pancreatogastroenterology, gastrointestinal laboratory medicine, gastrointestinal molecular biology, gastrointestinal immunology, gastrointestinal microbiology, gastrointestinal genetics, gastrointestinal translational medicine, gastrointestinal diagnostics, and gastrointestinal therapeutics. *WJG* is dedicated to become an influential and prestigious journal in gastroenterology and hepatology, to promote the development of above disciplines, and to improve the diagnostic and therapeutic skill and expertise of clinicians.

INDEXING/ABSTRACTING

World Journal of Gastroenterology (*WJG*) is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, Digital Object Identifier, and Directory of Open Access Journals. The 2015 edition of Journal Citation Reports® released by Thomson Reuters (ISI) cites the 2015 impact factor for *WJG* as 2.787 (5-year impact factor: 2.848), ranking *WJG* as 38 among 78 journals in gastroenterology and hepatology (quartile in category Q2).

FLYLEAF

1-IX

Editorial Board

EDITION-IN-CHIEF

Damian Garcia-Olmo, MD, PhD, Doctor, Professor, Surgeon, Department of Surgery, Universidad Autonoma de Madrid; Department of General Surgery, Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain

Stephen C Strom, PhD, Professor, Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm 141-86, Sweden

Andrzej S Tarnawski, MD, PhD, DSc (Med), Professor of Medicine, Chief Gastroenterology, VA Long Beach Health Care System, University of California, Irvine, CA, 9001 E. Seventh Str., Long Beach, CA 90822, United States

EDITORS IN CHIEF

Jin-Lei Wang, Director

Ze-Mao Gong, Vice Director

Yuan Qi, Vice Director

Baishideng Publishing Group Inc 8226 Regency Drive, Pleasanton, CA 94588, USA Telephone: +1-925-2238242 Fax: +1-925-2238243 E-mail: editorialoffice@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk

PUBLISHER

Baishideng Publishing Group Inc 8226 Regency Drive, Pleasanton, CA 94588, USA Telephone: +1-925-2238242 Fax: +1-925-2238243 E-mail: bpgoffice@wjgnet.com Help Desk: http://www.f6publishing.com/helpdesk

INSTRUCTIONS TO AUTHORS

Full instructions are available online at http://www.wjgnet.com/bpg/guidelines/204

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non-commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

PRIVATE POLICY

This journal is committed to the principles of the Committee on Publication Ethics (COPE). All authors are expected to follow the guidelines for research and reporting. The journal follows the Committee on Publication Ethics (COPE) guidelines to handle all complaints of research and publication ethics. All articles published in this journal are monitored by the journal’s editorial office and the publisher.

RESPONSIBLE FOR ADVERTISEMENTS

The Publisher, 8226 Regency Drive, Pleasanton, CA 94588, USA

Tel: +1-925-2238242 Fax: +1-925-2238243

E-mail: bpgoffice@wjgnet.com

http://www.f6publishing.com/helpdesk

CONTACT INFORMATION

For general inquiries concerning the journal, please contact the Help Desk: http://www.f6publishing.com/helpdesk

www.wjgnet.com
Basic Study

Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice

Takuhito Sezaki, Yuki Hirata, Teruki Hagiwara, Yuki I Kawamura, Tadashi Okamura, Rieko Takanashi, Kenta Nakano, Miwa Tamura-Nakano, Linda C Burkly, Taeko Dohi

Takuhito Sezaki, Teruki Hagiwara, Yuki I Kawamura, Taeko Dohi, Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan

Yuki Hirata, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba 272-8516, Japan

Yuki Hirata, 2nd Department of Internal Medicine, Osaka Medical College, Osaka 569-8686, Japan

Tadashi Okamura, Rieko Takanashi, Kenta Nakano, Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan

Miwa Tamura-Nakano, Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo 162-0855, Japan

Linda C Burkly, Biogen, Cambridge, MA 02142, United States

Author contributions: Sezaki T the majority of experiments, including acquisition of data, study concept and design, analysis and interpretation of data, and drafting the manuscript; Hirata Y, Hagiwara T, Kawamura YI, Okamura T, Nakano K and Tamura-Nakano M acquisition of data; Kawamura YI acquisition of data, analysis and interpretation of data, and obtained funding; Burkly LC study concept and design, analysis and interpretation of data, and drafting the manuscript; Dohi T acquisition of data, study concept and design, analysis and interpretation of data, drafting the manuscript, and obtained funding.

Institutional review board statement: This study was reviewed and approved by the Institutional Review Board of Research Institute, National Center for Global Health and Medicine, Japan.

Institutional animal care and use committee statement: All experimental protocols were approved by the institutional animal care and use committee of the National Center for Global Health and Medicine, Japan (#16086).

Conflict-of-interest statement: Sezaki T, Hirata Y, Hagiwara T, Kawamura YI, Okamura T, Takanashi R, Nakano K, Tamura-Nakano M and Dohi T have no conflicts of interest to disclose. Burkly LC is an employee and stockholder of Biogen

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Dr. Taeko Dohi, Director, Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, 1-7-1 Kohodai, Ichikawa, Chiba 272-8516, Japan. dohi@ri.ncgm.go.jp
Telephone: +81-4-73754754
Fax: +81-4-73754766

Received: November 28, 2016
Peer-review started: November 29, 2016
First decision: January 10, 2017
Revised: February 6, 2017
Accepted: March 2, 2017
Article in press: March 2, 2017
Published online: April 7, 2017
Abstract

AIM
To clarify the roles of TWEAK and its receptor Fn14 in 5-fluorouracil (5-FU)-induced diarrhea.

METHODS
Diarrhea was induced in wild-type (WT), Fn14 knockout (KO), and IL-13 receptor (IL-13R)α1 KO BALB/c mice using a single injection of 5-FU. Histological analysis, cytokine analysis, and flow cytometry was performed on ileal tissues and cells. Murine colon carcinoma-bearing mice were co-treated with an anti-TWEAK antibody and 5-FU. Embryonic fibroblast response to cytokines was also analyzed.

RESULTS
5-FU induced high Fn14 expression in epithelial cells. The severity of 5-FU-induced diarrhea was lower in Fn14 KO mice compared with WT mice. Administration of anti-TWEAK antibody reduced 5-FU-induced diarrhea without affecting the antitumor effects of 5-FU in vivo. 5-FU-induced expression of IL-13, IL-17A, TNF-α, and IFN-γ in the ileum was Fn14 dependent. The severity of 5-FU-induced diarrhea was lower in IL-13Rα1 KO mice, indicating major role for IL-13 signaling via IL-13Rα1 in pathogenesis. We found that IL-13Rα2, an IL-13 neutralizing/cell protective receptor, was strongly induced by IL-33 in vitro and in vivo. IL-13Rα2 was upregulated in the ileum of 5-FU-treated Fn14 KO mice. Thus, the deletion of Fn14 upregulated IL-13Rα2 expression, which reduced IL-13 expression and activity.

CONCLUSION
Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways, including those associated with IL-13, IL-33, and IL-13Rα2, to attenuate 5-FU-induced intestinal side effects.

Key words: Cancer chemotherapy; Interleukin-13; Interleukin-33; Interleukin-13 receptor α2

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: IL-13 signaling via IL-13 receptor (IL-13R)α1 plays a central role in developing diarrhea, a major side effect of 5-fluorouracil (5-FU). Disruption of the TWEAK/Fn14 pathway alleviated diarrhea by downregulating expression of IL-13 and upregulating expression of IL-13Rα2, a decoy IL-13 receptor. The IL-13Rα2 was induced by IL-33 in mesenchymal cells of 5-FU-treated intestines in vivo and fibroblasts in vitro. IL-33 expression was independent of TWEAK/Fn14 signaling, and its cell protective function in 5-FU-treated mice was enhanced in the absence of Fn14. Disruption of the TWEAK/Fn14 pathway affects several interconnected pathways to attenuate 5-FU-induced intestinal side effects.
key mechanism in the development of fibrosis\cite{6}. In the context of γ-irradiation-induced injury, both TWEAK and Fn14 KO mice had more regenerating microcolonies in intestinal crypts than wild-type (WT) mice\cite{7}. However, to our knowledge, no studies have addressed if TWEAK/Fn14 is involved in chemotherapy-induced damage of normal intestinal mucosa.

IL-33 is a member of the IL-1 family\cite{77}. It is expressed constitutively in ECs of healthy intestine and is localized to the nucleus. Nucleus-localized IL-33 functions as a transcription factor\cite{8,9}, where it contributes to mucosal protection in various colitis models\cite{10-13}. After EC injury or death, IL-33 undergoes cleavage and is released into the extracellular space\cite{14}. Released IL-33 induces the expression of T helper 2 cytokines, such as IL-5 and IL-13, in various cells, including T helper 2 cells, group 2 innate lymphoid cells, eosinophils, and basophils\cite{15}. These responses play major roles in parasite clearance and allergic reactions. The mechanisms behind the dual role of IL-33 as a protector of mucosal barriers and an alarmin\cite{15,16} are not fully understood.

In this report, we investigated the effect of blocking TWEAK/Fn14 signaling on chemotherapy-induced intestinal side effects. Disruption of the TWEAK/Fn14 pathway using genetic or pharmacological approaches reduced 5-FU-induced diarrhea without impacting the antitumor effect of 5-FU. We also propose a novel protective mechanism for IL-33 in mucosal tissues.

MATERIALS AND METHODS

Mice
Male BALB/c mice and Fn14 KO mice\cite{16} with a BALB/c background that were 8-12-wk-old were purchased from Clea Japan, Inc. (Tokyo, Japan). IL-13 receptor (IL-13R) α1 KO mice were generated from BALB/c mice in our facility using a CRISPR/Cas9-mediated genome-editing system. All experimental protocols were approved by the institutional animal care and use committee of the National Center for Global Health and Medicine, Japan (#16086).

Treatment with chemotherapeutic agents and diarrhea scores
An intraperitoneal injection of 5-FU (250 mg/kg body weight, Sigma, Tokyo, Japan) in phosphate-buffered saline pH 7.4 (PBS, Nacalai tesque, Kyoto, Japan) was administered to mice on day 0. The mice were monitored for diarrhea once a day. To assess diarrhea severity, individual mice were photographed during defecation and scoring of the photos was performed blindly to guarantee the objectivity of the scoring system (Figure 1A). Severity was scored as follows: 0, normal; 1, wet and unformed stool; 2, watery stool.

Real-time polymerase chain reaction
Total RNA of whole ileum was prepared using RNA-Bee RNA isolation solvent (Tel-Tests, Inc, Friendswood, TX). RNA from purified lamina propria cells (LPCs) or ECs was extracted using the RNeasy micro kit (QIAGEN, Tokyo, Japan). Complementary DNA (cDNA) was synthesized from the RNA using High Capacity cDNA Reverse Transcription Kits (Life Technologies). The resulting cDNA samples were used to perform quantitative real-time PCR reactions using a 7900HT Fast Real-Time PCR System (Applied Biosystems, Warrington, England). Primers and probes for murine genes were purchased from Applied Biosystems. The following TaqMan Gene Expression Assays were used in this study: TWEAK (Mm02583406_s), Fn14 (Mm00489103_m1), IL-33 (Mm00505403_m1), IL-13Rα1 (Mm00446726_m1), IL-13Rα2 (Mm00515166_m1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (4352932E). All experiments were performed according to their respective manufacturer’s protocols unless otherwise indicated. Results were normalized to GAPDH mRNA as an internal control. Threshold cycle numbers (Ct) were determined using Sequence Detector Software (version 2.3; Applied Biosystems) and transformed using the ΔCt/ΔΔCt method as described by the manufacturer.

Histological analysis
Ileum tissues (the distal third of the small intestine) were opened longitudinally on filter paper and fixed overnight with Mildform (WAKO, Osaka, Japan). Tissues were rolled and embedded in paraffin. Paraffin-embedded tissues were sliced into 4-μm thick sections and stained with hematoxylin and eosin. To detect proliferating cells, sections were autoclaved at 121 °C for 5 min in 10 mmol/L citrate (pH 6.0) and stained with anti-Ki67 antibody (Vector Laboratories, Burlingame, CA, United States) and Envision+ dual Link System -HRP (DAKO, Glostrup, Denmark). To detect apoptotic cells, Tdt-mediated dUTP nick end labeling was applied using DeadEndTM Colorimetric TUNEL System (Promega, Tokyo, Japan). For IL-33 and IL-13Rα2 staining, acetone-fixed frozen sections were used. Sections were incubated with anti-IL-33 antibody (1:20 dilution, R&D Systems) or anti-IL-13Rα2 antibody (1:50, R&D Systems) then incubated with FITC-conjugated anti-goat IgG antibody (1:200) or Alexa Fluor 488-conjugated anti-rat IgG antibody (1:300, Life Technologies), respectively. Zonula occludens-1 (ZO-1) immunohistochemistry was performed as described previously\cite{4}. Briefly, cryosections were fixed with 4% paraformaldehyde, incubated with anti-ZO-1 antibody (1:25, Invitrogen, Yokohama, Japan) for 2h at RT, then incubated with FITC-conjugated anti-rabbit antibody (1:100, Santa Cruz Biotechnology, TX, United States) Images were collected using a BX50 fluorescence microscope (Olympus, Tokyo) with a DP72-cellSens Standard image capture system (Olympus, Tokyo). Sections were counterstained with 4',6-diamidino-2-phenylindole (DAPI, Sigma). When
cells for each experimental condition when more than 50 cells were observed.

Administration of anti-TWEAK antibody
Mice were inoculated subcutaneously in the left flank with 1×10^7 CT26 murine colon carcinoma cells 7 d prior to day 0. Tumor volume (calculated as volume = $0.52 \times \text{length} \times \text{width}^2$) was monitored throughout the experiment. Starting at 3 d prior to day 0, treatment with murine anti-TWEAK antibody (10 mg/kg; P2D10; Biogen, Cambridge, MA, United States) or control antibody (10 mg/kg, anti-hen egg lysozyme, mIgG2a, Biogen) was initiated. Antibodies were intraperitoneally injected every other day throughout the study.
period. On day 0, 250 mg/kg 5-FU was injected intra-peritoneally.

Cell culture
The murine colon carcinoma cell line CT26 was obtained from American Type Culture Collection. CT26 cells were maintained in RPMI1640 medium (Sigma, Tokyo, Japan) with 10% fetal bovine serum. Mouse embryonic fibroblasts (MEFs) were cultured from WT BALB/c mice. MEFs were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. For IL-13Rα2 induction in MEFs, 8-well chamber slides (Matsunami glass, Kishiwada, Japan) were inoculated with 3 × 10^5 cells per well and cultured with IL-13 (40 ng/mL, R&D Systems, Minneapolis, MN) or IL-33 (20 ng/mL, R&D Systems) for 3 d. Cells were fixed with methanol at -20 °C for 20 min, blocked with BLOCKACE (DS Pharma Biomedical, Osaka, Japan), incubated with anti-IL-13Rα2 antibody (R&D Systems, Minneapolis, MN) for 1 h, then incubated with Alexa Fluor 488-conjugated anti-rabbit IgG antibody (Life Technologies, Tokyo, Japan) for 1 h. Nuclei were visualized using DAPI staining. Images were collected using a BX50 fluorescent microscope (OLYMPUS, Tokyo, Japan).

Separation of ECs, intraepithelial lymphocytes, and LPCs
To dissociate ECs, ileal tissues were rinsed with PBS, suspended in 2 mmol/L EDTA in PBS, and stirred for 20 min at 37 °C. Single cell suspensions were stained using phycoerythrin (PE)-conjugated anti-EpCAM antibody (BioLegend, San Diego, CA, United States) and PE-Cy7-conjugated anti-CD45 antibody (BioLegend). Cells were sorted using a MoFlo XDP cell sorter (Beckman Coulter, Tokyo, Japan). ECs were EpCAM^+ CD45^-, and intraepithelial lymphocytes (IELs) were EpCAM^+ CD45^+. To prepare LPCs, ileal tissues were rinsed with PBS, suspended in 2 mmol/L EDTA in PBS, and stirred for 20 min at 37 °C to dissociate the ECs. The non-dissociated cells were digested with a Lamina propria dissociation kit (Miltenyi Biotec, Tokyo, Japan) according to the manufacturer’s protocol to obtain LPCs.

Immunoblotting
Cells were washed with PBS and lysed in 1% sodium dodecyl sulfate (Sigma) with a proteinase inhibitor cocktail (GE Healthcare, Little Chalfont, United Kingdom) and imaged using a LAS 4000 analyzer (FUJIFILM, Tokyo, Japan).

Measurement of cytokines
Ileum was collected on day 0 (naive tissue) and days 3, 5, and 8 after the administration of 5-FU or PBS. Tissues were homogenized with a Bio-Plex cell lysis kit (BIO-RAD, Hercules, CA, United States) and stored at -80°C until needed. Cytokines were quantified with the Bio-Plex Pro Mouse Cytokine 23-Plex and Bio-Plex Pro Mouse Th17 panels using a Bio-Plex 3D Suspension Array System (BIO-RAD) according to the manufacturer's instructions.

Detection of IL-13-positive cells and flow cytometry
Ileum-derived LPCs (1 × 10^5 cells/assay) were incubated for 44 h in RPMI1640 with 5% fetal bovine serum and IL-33 (40 ng/mL, R&D Systems) or vehicle (PBS). Protein Transport Inhibitor (0.33 μL, BD GolgiStop™, BD Biosciences, NJ) was added, and the cells were incubated for an additional 4 h. Cells were incubated with allopurinol (APC)-conjugated anti-lineage antibody cocktail (BD Biosciences). Following surface marker labeling, cells were treated with a Fixation/Permeabilization Solution Kit (BD Biosciences) and incubated with PE-conjugated anti-IL-13 antibody (eBioscience). Labeled cells were analyzed using the MoFlo XDP cell sorter.

Preparation of ileum homogenate and depletion of IL-33
Ileum tissue was collected from WT or Fn14 KO mice two days after 5-FU administration, and 28 mg was minced in 1 mL of MEF culture medium (described above) with Antibiotic-Antimycotic Mixed Solution (Nacalai tesque, Kyoto, Japan). The sample was centrifuged at 300 × g for 5 min. The supernatant fraction was collected as ileum homogenate. The homogenate was mixed in a 1:9 ratio with MEF culture medium. IL-33 was depleted from the homogenate by adding 2 μg of anti-IL-33 antibody or total goat IgG (Jackson Immunoresearch, West Grove, PA, United States) to 1 mL of homogenate and incubating for 1 hour at 4 °C. Antibodies were removed by adding 20 μL of Protein G PLUS-Agarose (resuspended volume, Santa Cruz biotechnology) and incubating for 1 h at 4 °C. After centrifugation, the supernatant fraction (i.e., the IL-33-depleted homogenate) was used for cell culture.

Statistical analysis
All statistical analyses were performed in the Prism 5 software for Mac OS X, version 5.0d. The data were expressed as the mean ± SD. P < 0.05 was considered to be statistically significant. Results of diarrhea score, cytokine measurement and IL-13Rα2 protein expression in time course experiments were analyzed with Two-way ANOVA adjusted with
Bonferroni correction. IL-13Rα2 protein expression after stimulation with IL-33 in vivo and in vitro in comparison of WT and Fn14 KO was analyzed with Mann Whitney U test. IL-13Rα2 protein expression in various conditions of in vitro culture was compared with one-way ANOVA adjusted with Bonferroni correction.

RESULTS

Fn14 KO mice are resistant to the side effects of 5-FU
All WT mice developed severe diarrhea on day 3 after 5-FU administration, and it persisted throughout the study period. By contrast, Fn14 KO mice developed milder diarrhea than WT mice (Figure 1A and B). Despite the difference in diarrhea severity between WT and Fn14 KO mice, histological analysis showed no difference in the small and large intestine between the two groups. Both mouse groups showed decreased numbers and height of ileal villi (Figure 1C), and there was no difference in the number of apoptotic or proliferating cells in the ileum and colon (Supplementary Figure 1). To investigate the mechanism for developing diarrhea, we measured the expression of transporter genes related to diarrhea, such as cystic fibrosis transmembrane conductance regulator (CFTR), Na-K-Cl cotransporter 1 (NKCC1), and downregulated in adenoma (DRA) (Supplementary Figure 2). 5-FU decreased CFTR expression and increased NKCC1 and DRA expression up to 3-fold; however, there were no differences between gene expression in WT and Fn14 KO mice. We concluded that expression of these molecules did not play a major role in 5-FU-induced diarrhea and hypothesized that the diarrhea was related to epithelial cell damage. On day 8 after 5-FU administration, both mouse groups had villi shortening. However, expression of ZO-1, a tight junction protein, persisted at days 5 and 8 in the villi of Fn14 KO mice, whereas its expression decreased in the villi of WT mice, especially in the upper part (Figure 1D). Thus, ZO-1 expression in the villi was parallel to diarrhea score. These results suggested that 5-FU can damage tight junctions and the epithelial cell barrier, which increases paracellular permeability and results in diarrhea.

Next, we measured Fn14 expression in the ileum. In WT mice, 5-FU administration strongly induced Fn14 mRNA expression in the ileum by day 2 (Figure 1E). 5-FU-induced Fn14 mRNA expression was observed in ECs but not IELs or LPC (Figure 1F). Collectively, these results indicate that Fn14 expression in ECs increases chemotherapeutic-induced diarrhea and disruption of the TWEAK/Fn14 pathway could potentially prevent 5-FU-induced diarrhea.
Then, we treated CT26-tumor-bearing α2 expression in mRNA levels were elevated in ECs of Fn14 KO mice by day 3 (Figure 5A). IL-33 was sustained at high expression in the ileum of both WT and Fn14 KO mice dependent. However, 5-FU induced IL-33 protein Because IL-33 is a potent inducer of IL-13, we initially KO mice Abrogation of IL-33-induced IL-13 expression in Fn14 its impact peaks around days 5-6. major mediator of 5-FU-induced severe diarrhea, and mice (Figure 4). These results indicate that IL-13 is a between the diarrhea score of IL-13Rα2, IFN-γ, and IL-17A protein levels tended to increase on day 5 after 5-FU administration in WT mice compared with naïve ileum. These levels were higher than those in Fn14 KO mice (Figure 3). Previously, we showed that IL-13 is a pivotal mediator of intestinal epithelia damage following γ-irradiation. Additionally, we showed that IL-13 works in concert with TNF-α to induce apoptosis in intestinal ECs in an Fn14-dependent manner. To assess the role of IL-13 in 5-FU-induced diarrhea, we disrupted the IL-13Rα1 gene to generate IL-13Rα1 KO mice (Figure 4). Similar to the phenotype observed in Fn14 KO mice, the diarrhea score following 5-FU injection was lower in IL-13Rα1 KO mice through day 6. However, on days 7 and 8, there were no significant differences between the diarrhea score of IL-13Rα1 KO and WT mice (Figure 4). These results indicate that IL-13 is a major mediator of 5-FU-induced severe diarrhea, and its impact peaks around days 5-6.

Abrogation of IL-33-induced IL-13 expression in Fn14 KO mice Because IL-33 is a potent inducer of IL-13, we initially hypothesized that IL-33 expression in ECs was Fn14 dependent. However, 5-FU induced IL-33 protein expression in the ileum of both WT and Fn14 KO mice by day 3 (Figure 5A). IL-33 was sustained at high levels in Fn14 KO ileum on day 5 (Figure 5A). IL-33 mRNA levels were elevated in ECs of Fn14 KO mice but not detected in LPCs, which is consistent with our observations of IL-33 protein levels (Figure 5B). Immunostaining with anti–IL-33 antibody confirmed that the number of IL-33-positive ileal ECs in Fn14 KO mice was greater than that in WT mice on day 5 after 5-FU administration (Figure 5C). IL-33 localized to the cytosol in WT mice but was found in both the cytosol and nucleus in Fn14 KO mice on day 5. The IL-33 staining pattern remained the same in Fn14 KO mice on day 8 (Figure 5C). These results indicate that 5-FU induced IL-33 in both WT and Fn14 KO mice but at much higher levels and with different subcellular localization in Fn14 KO mouse.

Because IL-13 expression in Fn14 KO mice was low compared with that in WT mice despite higher IL-33 expression (Figure 3A), we investigated whether IL-33-induced IL-13 expression was impaired in Fn14 KO LPCs. In vitro stimulation of WT LPCs with recombinant IL-33 induced IL-13 expression in lineage-negative (Lin-) fractions as expected. By contrast, this induction was attenuated in Fn14 KO LPCs (Figure 5D). These results indicate that IL-33-induced expression of IL-13 is dependent on an Fn14-mediated signal pathway. However, WT LPCs do not express Fn14 (Figure 1F).

Enhancement of 5-FU-induced IL-13Rα2 expression in Fn14 KO mice We observed that IL-13 expression was higher in WT mice than Fn14 KO mice on day 5. However, when comparing WT mice at day 5 following 5-FU administration with naïve mice (Day 0), induction of IL-13 expression was modest (Figure 3). Therefore, we hypothesized that there was an additional mechanism to reduce IL-13 activity in the absence of Fn14. This mechanism could potentially explain the dramatic diarrhea reduction in Fn14 KO mice. Previously, we showed that expression of IL-13Rα2, the IL-13 neutralizing receptor, promoted intestinal EC regeneration following γ-irradiation. Thus, we hypothesized that IL-13Rα2 expression increased in Fn14 KO mice and contributed to the reduction of IL-13-induced diarrhea. As expected, on day 5 following 5-FU administration, IL-13Rα2 mRNA expression transiently increased 5-fold in the ileum of Fn14 KO mice but not WT mice (Figure 6A). IL-13Rα1 was not upregulated in either the WT or Fn14 KO ileum (Figure 6A). Consistent with the mRNA expression, immunostaining for IL-13Rα2 confirmed a transient but strong upregulation of protein expression in mesenchymal cells of Fn14 KO mice on day 5 but not in those of WT mice (Figure 6B and C). These results indicate that increased IL-13Rα2 expression in Fn14 KO mice may efficiently neutralize IL-13. Reduced
IL-13 expression by Fn14-deficient cells combined with IL-13 neutralization through IL-13Rα2 could account for the attenuated diarrhea observed in 5-FU-treated KO mice.

Fn14-independent induction of IL-13Rα2 expression by IL-33

IL-13 is known to induce IL-13Rα2 expression; however, IL-13 protein levels did not increase in Fn14 KO mice following 5-FU administration. Because IL-33 was highly expressed in Fn14 KO mice after 5-FU administration, we investigated if IL-33 induces IL-13Rα2 expression. Administration of recombinant IL-33 to mesenchymal cells of the ileum induced IL-13Rα2 expression at a similar level in both WT and Fn14 KO mice (Figure 6D and E). Therefore, the high levels of IL-33 produced by ECs of Fn14 KO mice following 5-FU administration could have induced IL-13Rα2 upregulation. This mechanism was confirmed with in vitro assays using MEFs. In vitro stimulation of MEFs showed that recombinant IL-33 alone and in combination with recombinant IL-13 induced IL-13Rα2 expression in both WT and Fn14 KO cells (Figure 7A). To confirm that IL-33 was active in 5-FU-treated tissue, WT MEFs were cultured with ileal tissue homogenate from WT or Fn14 KO mice collected 2 d after 5-FU treatment. At this time point, WT and Fn14 KO mice have similar IL-33 levels in their tissues. Both

Figure 3 5-FU induced inflammatory cytokines in the ileum and the role of IL-13 in 5-FU-induced diarrhea. A-D: Cytokine levels were measured from homogenate of the ileum following injection of 5-FU. Open bar, WT mice; solid bar, Fn14 KO mice (n = 4 mice per time point). Data are shown as mean ± SD (P < 0.05).

Figure 4 Lack of response to IL-4 and IL-13 in IL-13Rα1 KO mice. A: Bone marrow cells from WT or IL-13Rα1 KO mice were stimulated with IL-4 or IL-13 for 30 min, and phosphorylated (p)-STAT6 was detected using western blotting. GAPDH was used as a loading control. B: Diarrhea scores of WT (n > 8, at each time point), Fn14 KO (n > 9), and IL-13Rα1 KO mice (n > 5) after injection of 5-FU. Number of mice was about 5-44 at each time point. Results of mouse groups of different observation-time points and endpoints were accumulated and summarized (P < 0.05).
WT and Fn14 KO ileum homogenate induced IL-13Rα2 expression in WT MEFs; however, this induction was not observed when MEFs were treated with IL-33-depleted homogenate (Figure 7B and C). These data suggest that IL-33 was responsible for the induction. Overall, these results indicate that IL-33 expression, which is enhanced in the absence of Fn14, could upregulate IL-13Rα2 expression, neutralize IL-13.
signal, and ameliorate 5-FU-induced diarrhea.

DISCUSSION

Blocking the TWEAK/Fn14 pathway suppressed 5-FU-induced diarrhea, but did not affect tumor growth in the CT26 tumor-bearing model or the antitumor effects of 5-FU. In our mechanistic studies, we found that 5-FU-induced diarrhea was associated with IL-13, and its expression was Fn14-dependent. IL-13Rα2, the IL-13 neutralizing receptor, was induced by IL-33, which was upregulated in the absence of Fn14. Thus, an Fn14 deficit limited both IL-13 expression and activity. The TWEAK/Fn14 pathway coordinates these factors, thereby contributing to 5-FU-induced diarrhea.

Fn14 is often upregulated in malignant tumors, and high Fn14 levels are related to higher tumor grades and poor prognosis in esophageal[18] and gastric...
Previous studies reported that TWEAK/Fn14 signaling promotes invasion, migration, and survival in many types of cancer cells, including glioblastoma, neuroblastoma, and breast cancer cells[20-22]. One study demonstrated therapeutic benefits when using a TWEAK-blocking antibody for cancer therapy[23]. These reports indicated that TWEAK/Fn14 signaling relates to tumor progression and blocking the TWEAK/Fn14 pathway could be beneficial in cancer treatment. Another recent report showed that anti-Fn14 antibody treatment prevented cancer-induced cachexia and prolonged survival[26]. By contrast, some reports show that TWEAK/Fn14 signaling has an antitumorigenic function[25]. Therefore, role of TWEAK/Fn14 signaling in cancer seems to be cell-type dependent. Careful investigation of the effects of blocking TWEAK/Fn14 signaling on each cancer cell type is needed.

In Fn14 KO mice, IL-13, TNF-α, IFN-γ, and IL-17A levels were low after 5-FU administration compared with WT mice. All these cytokines are involved in intestinal epithelial cell damage and diarrhea. Specifically, IL-13 is an important mediator of allergen-induced diarrhea[26]. This study demonstrated the critical role that IL-13 plays in 5-FU-induced diarrhea using IL-13Rα1 KO mice. IL-13 disrupts tight junctions, which affects intestinal barrier function[27,28]. In this study, ZO-1 expression levels in 5-FU-treated WT mice appeared to coincide with diarrhea score. Our previous study showed that IL-13 combined with TNF-α induced damage of tight junctions and intestinal EC death in an Fn14-dependent manner[4]. All these results support our hypothesis that 5-FU-induced diarrhea is primarily mediated by the IL-13 pathway, which affects the barrier function of ECs.

We hypothesized that IL-33 was responsible for induction of IL-13 in 5-FU-induced diarrhea. IL-13-producing cells were induced when WT LPCs were stimulated with IL-33. By contrast, IL-33 failed to induce IL-13 expression in Fn14 KO LPCs both in vitro and in vivo despite exposure to sustained high levels of IL-33. This observation indicates that IL-33-stimulated IL-13 expression is Fn14 dependent; however, LPCs did not express Fn14. This result suggests that the expression of IL-13 by LPCs in response to IL-33 requires some indirect priming, likely through soluble factors, by Fn14-expressing cells, such as ECs. In this situation, IL-33 functions as an alarmin in WT mice to induce IL-13 expression and diarrhea. In an Fn14-deficient microenvironment, LPCs could not induce IL-13 expression in response to IL-33. This result...
could be explained by IL-33 having a different function depending on the presence or absence of Fn14.

Previous studies reported that IL-33 is synthesized as a full-length protein that is localized in the nucleus of cells in epithelial barrier tissue. Full-length IL-33 is not fully bioactive with respect to IL-13 receptor binding and NF-κB activation potential until it undergoes cleavage by caspase-1. Full-length IL-33 can also be cleaved by inflammatory proteases from neutrophils, such as cathepsin and elastase. This cleavage results in IL-13 expression or IL-6 secretion. The nuclear localization sequence is located in the N-terminus of IL-33 and is removed following cleavage. Therefore, IL-33 leaves the nucleus after cleavage. In this study, IL-33 localized to the cytosol on day 5 of 5-FU treatment in WT ECs, whereas IL-33 was highly expressed and localized to both the nucleus and cytosol in Fn14 KO ECs on day 5. This observation could indicate that in WT mice, IL-33 was fully cleaved and bioactive (i.e., capable of inducing IL-13 expression in LPCs) but in Fn14 KO mice, the nuclear-localized IL-33 was in a different molecular form that served some other function with respect to IL-13 expression. Further studies are needed to investigate IL-33 processing, cellular localization, and function.

In addition to reducing IL-13 secretion, we found that upregulation of IL-33 in Fn14 KO mice actively protected ECs from damage. We demonstrated for the first time that IL-33 potently induced IL-13Rα2, an IL-13 neutralizing receptor. IL-13Rα2 plays an important protective role in cases of mucosal damage, such as oxazolone-induced colitis, and EC damage after γ-irradiation. In these cases, IL-13Rα2 expression or IL-13 neutralization prevents damage in the intestine. Recently, IL-13Rα2 was reported to bind chitinase-like protein chitinase 3-like 1 and regulate antioxidant, inflammatory, and antibacterial responses. This mechanism may also contribute to the protective effect of the IL-33-IL-13Rα2 axis in 5-FU-induced damage of the epithelial barrier. In contrast to IL-13 expression, recombinant IL-33-induced IL-13Rα2 expression seems to be similar between WT and Fn14 KO mice. Therefore, sustained exposure to high levels of IL-33 could explain the enhanced induction of IL-13Rα2 expression in Fn14 KO mice. Collectively, these results indicate that induction of IL-13Rα2 expression by IL-33 is an important mechanism to ameliorate 5-FU-induced diarrhea and intestinal damage in Fn14 KO mice.

In our study, blocking the TWEAK/Fn14 pathway did not affect tumor growth in the CT26 tumor-bearing model or the antitumor effects of 5-FU. Our results demonstrated that disrupting TWEAK/Fn14 signaling alters multiple processes in various cell types, including expression of IL-33 and tight junction proteins in ECs, induction of IL-13 expression in LPCs, and the induction of IL-13Rα2 expression in mesenchymal cells. These changes affected the sensitivity of normal intestinal cells to chemotherapeutic agents and ameliorated 5-FU-induced diarrhea. Therefore, we believe that disrupting the TWEAK/Fn14 pathway could reduce the side effects of 5-FU, thereby making chemotherapy more effective.

REFERENCES

Sezaki T et al. Flt14 promotes 5-FU-induced diarrhea

I

Monticelli LA, Osborne LC, Noti M, Tran SV, Zais D, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA 2015; 112: 10762-10767 [PMID: 26243875 DOI: 10.1073/pnas.1509701112]

Cayrol C, Girard JP. IL-17 cytokine and a local alarmin. J Biol Chem 2017; 292: 858-867 [PMID: 28099588 DOI: 10.1016/j.jbc.2015.08.031]

Lefrancis E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP. Central domain of IL-33 is cleaved by mast cell

32 Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002; 17: 326-335 [PMID: 12433369]

P- Reviewer: Peluso I, Sguinzi R S- Editor: Qi Y L- Editor: A E- Editor: Zhang FF