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Abstract
Since the discovery of insulin over 100 years ago, the focus of research in the 
management of type 1 diabetes (T1D) has centered around glycemic control and 
management of complications rather than the prevention of autoimmune destruc-
tion of pancreatic β cells. Fortunately, in recent years, there has been significant 
advancement in immune-targeted pharmacotherapy to halt the natural progres-
sion of T1D. The immune-targeted intervention aims to alter the underlying pa-
thogenesis of T1D by targeting different aspects of the immune system. The im-
munotherapy can either antagonize the immune mediators like T cells, B cells or 
cytokines (antibody-based therapy), or reinduce self-tolerance to pancreatic β cells 
(antigen-based therapy) or stem-cell treatment. Recently, the US Food and Drug 
Administration approved the first immunotherapy teplizumab to be used only in 
stage 2 of T1D. However, the window of opportunity to practically implement 
this approved molecule in the selected target population is limited. In this Edito-
rial, we briefly discuss the various promising recent developments in the field of 
immunotherapy research in T1D. However, further studies of these newer thera-
peutic agents are needed to explore their true potential for prevention or cure of 
T1D.

Key Words: Type 1 diabetes; Immunotherapy; Teplizumab; Antigen based therapy; Stem 
cell immunotherapy
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Core tip: There has been a paradigm shift in research on type 1 diabetes (T1D) in the last decade. From managing the 
consequences of β cell death to prevention of β cell destruction, immunotherapy is showing the path forward. Recent 
regulatory approval of teplizumab in stage 2 of T1D marks the first significant advance in research of immunotherapy. In 
this Editorial, we briefly explore the recent developments and prospects in the field of immunotherapy in T1D encompassing 
antibody-based therapy, antigen-based therapy, and stem-cell-based immunotherapy.

Citation: Ray S, Palui R. Immunotherapy in type 1 diabetes: Novel pathway to the future ahead. World J Diabetes 2024; 15(10): 2022-
2035
URL: https://www.wjgnet.com/1948-9358/full/v15/i10/2022.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i10.2022

INTRODUCTION
The basic pathophysiology behind the development of type 1 diabetes (T1D) is immune-mediated destruction of insulin-
producing pancreatic β cells[1]. The insulin-producing capacity of the endocrine pancreas depends upon its functional β 
cell number and size, collectively known as β cell mass. The body’s aberrant immune system attacks and self-destroys the 
normal host tissue in autoimmune disease. Like any other autoimmune disease, progressive immune-mediated de-
struction of pancreatic β cells leads to a reduction of functional β cell mass in T1D. Once this β cell mass falls below the 
critical level, the onset of T1D ensues. However, the treatment of T1D primarily focuses on the exogenous replacement of 
insulin. Recently, studies have focused on exploring the possibilities of immune modulating therapy in T1D to protect 
pancreatic β cell mass from autoimmune destruction. Various molecules targeting mediators like T cells, B cells, cytokines 
and antigen-based therapies are now being evaluated to prevent or delay β cell destruction in T1D. Initial results in a few 
studies were encouraging in maintaining β cell function (as measured by c-peptide level) when used in the early stages of 
disease development[2]. In this Editorial, we briefly explore the potential of these novel immunomodulatory therapies in 
managing patients with T1D.

IMMUNOTHERAPY IN T1D
The pathophysiological stages of development of T1D are now being classified into three distinct stages: stage 1-positive 
antibody status with normoglycemia; stage 2-positive antibody status with dysglycemia or prediabetes; and stage 3-
positive antibody status with frank diabetes or overt hyperglycemia[3]. Stage 3 of T1D development marks the onset of 
significant destruction of β cells. Stage 3 of disease development has been further subclassified into: stage 3a (not insulin 
requiring); stage 3b (insulin-requiring but with residual clinically relevant β cell mass); and stage 3c (insulin requiring 
without any clinically relevant β cell mass)[4]. The immune system plays a pivotal role in the de-velopment of T1D. 
Although it was classically thought that autoimmune destruction of β cells is mainly due to T cells, B cells also play a 
critical role[5]. Once self-tolerance is lost, and with subsequent environmental triggers, autoreactive T cells are developed. 
When the self-antigens from β cells are presented by antigen-presenting cells (APCs) to these autoreactive T cells, 
cytotoxic T cells are activated, destroying pancreatic β cells. The main target of immunotherapy in T1D is to either prevent 
or at least delay the immune-mediated destruction of β cells[6,7]. The immunotherapy in T1D can be either-antibody-
based therapy, antigen-based therapy, or stem cell therapy. In the following sections, we will briefly discuss the recent 
status of immunotherapy in T1D.

ANTIBODY-BASED IMMUNOTHERAPY
Antibody-based therapies against different target antigens have been tried to halt the autoimmune destruction of 
pancreatic β cells. These antibody-based therapies (monoclonal and polyclonal) are directed mainly against T cells or B 
cells or cytokine signaling (Figure 1). Most of these studies that evaluated antibody-based immunotherapies in T1D were 
done in stage 2 or early stage 3 of T1D. The details of the important antibody-based immunotherapies are given in the 
next section.

T-cell-directed antibody therapy
Teplizumab: Teplizumab is a humanized monoclonal antibody [immunoglobulin G (IgG) 1 kappa] directed against the 
CD3 portion of T-cell receptors[8]. This molecule is non-Fc binding, thus reducing the risk of cytokine release syndrome 
(CRS) compared to previous generations of anti-CD3 molecules. Teplizumab produces early suppression of cellular 
immune response by preventing the binding of CD4+ T helper cells to APCs by inhibiting CD3 of T-cell receptors. 
Prolonged and sustained binding of this molecule exerts a state of CD8+ T-cell exhaustion and thus induces chronic 
immunosuppression[9]. In 2022, teplizumab obtained US Food and Drug Administration (FDA) approval for delaying or 
prevention the onset of stage 3 of T1D in patients currently in stage 2 of T1D. It was approved for use in adults and 
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Figure 1 Outline of antibody-based immunotherapy in type 1 diabetes.

children aged > 8 years[10].
The landmark trials that evaluated the safety and efficacy of teplizumab are summarized in Table 1[11-15]. All of these 

studies are done in stage 3 of the T1D except the TrialNet study, which was done in stage 2 of T1D[12]. These trials 
showed a more favorable c-peptide response in teplizumab than in the placebo arm. In the meta-analysis by Kamrul-
Hasan et al[16], 834 subjects from six studies that evaluated the efficacy and safety of teplizumab as a disease-modifying 
therapy in T1D, were included. The authors reported greater preservation of area under the curve (AUC) of c-peptide in 
the teplizumab arm through 6-24 mo of follow-up [mean difference 0.07 nmol/L (95% confidence interval: 0.01-0.14, P = 
0.03)]. Moreover, fewer patients reported reduced c-peptide response after 2 years of follow-up in the teplizumab arm 
(odds ratio 0.12). However, the authors also reported an increased risk of grade 3 or higher adverse events, nausea, rash, 
lymphopenia, and discontinuation of the study drug in the teplizumab arm than placebo. Adverse events are commonly 
associated with any monoclonal-antibody-based therapy. In the case of teplizumab, most adverse drug reactions occurred 
during the treatment period and were mild to moderate and manageable. Similarly, other recent meta-analyses also 
reported that patients in the teplizumab arm had higher AUC of c-peptide and lower exogenous insulin requirement but 
similar glycosylated hemoglobin (HbA1c) levels in comparison to placebo[17,18]. In another meta-analysis, Liu et al[19] 
included both the anti-CD3 monoclonal antibodies, teplizumab (seven studies) and otelixizumab (five studies). The 
authors also reported greater AUC of c-peptide and decreased exogenous insulin requirement in the anti-CD3 antibody 
arm. They found no significant difference in HbA1c and serious adverse events between the study and placebo arm[19]. 
Moreover, in the follow-up study of the AbATE trial, prolonged immunological response was reported even after 7 years 
of diagnosis of T1D in patients who initially responded to teplizumab[20].

Predictors of therapeutic response: The studies done with teplizumab also tried to find out possible predictors of 
response to therapy. If we can establish predictors for therapeutic response for this expensive therapy, it can be used cost-
effectively in selective patients who are more likely to respond. The authors of the Protégé Trial reported that the recently 
diagnosed patients (< 6 wk) had the highest response. Moreover, patients living in the USA, patients with lower HbA1c, 
higher c-peptide, and lower insulin requirement at baseline were more likely to respond[14]. As younger patients exhibit 
stronger immune reactions than adult patients, they have a higher chance to respond[14,15]. Better glycemic control as 
measured by lower HbA1c level was also reported as a favorable predictor in trials done in stage 3 T1D[15,21]. This may 
be due to higher preserved β cell mass or increased insulin sensitivity in the treatment responders. The relationship of 
treatment outcome with baseline β cell reserve as measured by AUC of c-peptide is heterogeneous and may be related to 
the stage of T1D. Patients in stage 2 T1D are likely to respond when the baseline c-peptide level is lower, whereas a 
higher baseline c-peptide is a response predictor for patients in early stage 3 disease[12,14,21]. This paradoxical finding 
can be explained by the hypothesis that prior to significant immune mediated destruction in early stage of disease (stage 
2), patients with stronger immune reaction are more likely to respond to immunomodulatory therapy. On the contrary, in 
patients with a later stage of disease (stage 3), when immune-mediated destruction is already significant, patients with 
higher residual functioning β cell mass respond better to therapy. The TrialNet study group also reported that patients 
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Table 1 Major studies evaluating the efficacy and safety of teplizumab

Ref. Study 
design Intervention Population Major outcome

Ramos et al
[11], 2023

PROTECT 
study

Phase 3, randomized, placebo-
controlled trial with teplizumab 
or placebo for two 12-day courses

The 328 participants, stage 
3 T1D, age 8-17 years, 
within 6 weeks of diagnosis

Higher stimulated c-peptide levels (teplizumab vs placebo) 
(least squares mean difference, 0.13 pmol per mL; 95%CI: 
0.09-0.17; P < 0.001); no significant difference in HbA1c level, 
insulin requirement or hypoglycemia; ADR: headache, 
gastrointestinal symptoms, rash, lymphopenia, and mild 
cytokine release syndrome

Herold et al
[12], 2019

TrialNet 
study

Phase 2, randomized, placebo-
controlled, double-blind trial of 
teplizumab (single 14-day course)

The 76 participants, 
relatives of T1D, stage 2, 
age > 8 years

Low-risk diagnosis of T1D (teplizumab vs placebo) (hazard 
ratio 0.41; 95%CI: 0.22-0.78; P = 0.006); longer median time to 
diagnose T1D (teplizumab vs placebo) (48.4 months vs 24.4 
months); ADR of lymphopenia and rash

Herold et al
[13], 2013

AbATE 
Study

An open-label, randomized, 
controlled trial with teplizumab 
(two of 14-day course, one year 
apart)

The 83 participants, stage 3 
T1D, age 8-30 years, within 
8 weeks of diagnosis

Reduced decline in c-peptide at 2 years (-0.28 nmol/L; 
95%CI: 0.36-0.20) vs control (-0.46 nmol/L; 95%CI: 0.57-0.35; 
P = 0.002); ADR: Rash, transient upper respiratory infections, 
headache, and nausea

Hagopian 
et al[14], 
2013

Protégé 
study

Phase 3, randomized, double-
blind, parallel, placebo-controlled 
2-years with teplizumab (3 
dosing regimens, two of 14 days 
course, 26 weeks apart)

The 462 of 516 participants 
completed 2 years follow 
up, stage 3 T1D, age 8-35 
years, within 12 weeks of 
diagnosis

Reduced the loss of area under curve mean c-peptide at 2 
years (teplizumab vs placebo) (P = 0.027); ADR: 
lymphopenia; no differences in adverse events or serious 
adverse events among groups at 2 years

Herold et al
[15], 2013

Randomized placebo-controlled 
trial

The 63 participants, stage 3 
T1D, within 4-12 months of 
diagnosis

The 21.7% higher c-peptide response (teplizumab vs placebo) 
[0.45 vs 0.371; difference, 0.059 nmol/L (95%CI: 0.006-0.115 
nmol/L)] (P = 0.03); the teplizumab group required less 
exogenous insulin (P < 0.001) with no significant difference 
in HbA1c level; ADR: rash, lymphopenia and nausea

ADR: Adverse drug reaction; CI: Confidence interval; HbA1c: Glycosylated hemoglobin; T1D: Type 1 diabetes.

who were anti-zinc transporter 8 (ZnT8) antibody negative, HLA-DR3 negative, and HLA-DR4 positive responded better 
to teplizumab than placebo[12]. Increased CD8+ T cell (cytotoxic and memory) and decreased CD4+ T cell (helper and 
memory) cells were observed in treatment responders in different trials[12,13,15,22]. However, none of these metabolic or 
immunologic predictors were consistently reported across all the studies and thus needed further validation in future 
studies.

Cost-effectiveness: One of the significant limitations of the broader use of this novel molecule is its premium cost. 
Teplizumab costs around $193000 for a single course of 14 d therapy. Mital et al[23] tried to analyze the cost-effectiveness 
of teplizumab depending on the HLA-DR3, HLA-DR4, and ZnT8 antibody status. They predicted if the cost of therapy is 
more than $100000, treating only a quarter of the patients at risk will be cost-effective. If we consider current annual cost 
of management of T1D patients and cost of teplizumab therapy, it may be cost-effective only if the prospective patient 
fulfills all the favorable criteria of therapeutic response- HLA-DR3 negative, HLA-DR4 positive and negative anti ZnT8 
antibody status[23,24]. However, cost cannot be the sole deciding factor for restricting the benefit of this drug to whom it 
can be effective. We hope that in future this drug will be more affordable for the larger number of T1D patients. 
Guidelines for practical clinical use, screening, and proper patient selection for this molecule are now being formulated
[25].

Otelixizumab: Otelixizumab is another anti-CD3 monoclonal chimeric and humanized antibody that had been evaluated 
in T1D. In a dose-finding, safety, and tolerability assessment randomized control trial (RCT), a 6-d course of otelixizumab 
in four different dosages was given to 30 T1D patients within 32 d of diagnosis[26]. A sustained metabolic response of 
preserved c-peptide level was found for up to 18 mo following a 9 mg dose of otelixizumab. However, not all the studies 
showed significant improvement in c-peptide level when compared to placebo, specifically when it is used in lower 
dosage[27,28]. The presence of a positive insulin autoantibody is reported to be a predictor of therapeutic response[29].

Alefacept: Alefacept is a fusion protein that antagonizes CD2 costimulatory receptors, inhibiting T cell proliferation and 
action. In T1DAL RCT, two 12-d courses of alefacept were given at 12 wk apart in 49 newly diagnosed (< 100 d) T1D 
patients[30]. After 24 mo, patients in the alefacept arm showed significantly higher AUC for c-peptide response for 2 and 
4 h (P = 0.015 and P = 0.002, respectively). There was also a significant reduction of exogenous insulin requirement and 
hypoglycemia event in the alefacept arm. Alefacept also induced favorable immunological response by depleting CD4+ 
and CD8+ T cells[30]. However, at 12 mo follow-up, there was no significant difference in c-peptide AUC compared to the 
placebo[31].

Abatacept: Abatacept is a fusion protein of the Fc portion of IgG1 and cytotoxic T-lymphocyte-associated antigen 4, 
which blocks the costimulatory signal by blocking the CD28 T-cell receptor. In a multicenter RCT, 112 newly diagnosed 
T1D patients (between 6 and 45 years of age) were included and intravenous abatacept was given for 27 infusions over 2 
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years. The authors reported significant preservation of β cell function as measured by higher AUC of c-peptide at 2 years 
of follow-up in patients who received abatacept (P = 0.0029)[32]. In the follow-up study, the authors also reported 
persistent beneficial effects in the abatacept arm even after 1 year of cessation of treatment (P = 0.046)[33]. However, in a 
phase 2 RCT where 101 participants of stage 1 T1D patients were included, monthly infusion of abatacept for one year 
failed to significantly delay the progression of T1D (P = 0.11)[34].

Antithymocyte globulin: Anti-thymocyte globulin (ATG) is a rabbit polyclonal IgG antibody that acts against multiple T-
cell antigens. It may act through various mechanisms like T-cell depletion, induction of anergy in T cells, and selective 
induction of regulatory T (Treg) cells[35]. In the START trial, high-dose ATG (6.5 mg/kg) failed to show any significant 
preservation of c-peptide response in recent onset T1D patients[36]. ATG showed acute T-cell depletion sparing effector 
memory T cells. Higher adverse events, including CRS, were reported in the ATG arm. To decrease the risk of these 
adverse events, later studies used a lower dosage of ATG. In the TrialNet ATG-granulocyte colony-stimulating factor (G-
CSF) study, low-dose ATG (2.5 mg/kg) or low-dose ATG with pegylated G-CSF were studied in recent onset (< 100 d) 
T1D patients[37]. The authors reported significant HbA1c reduction and slowing of c-peptide decline after 1 year of 
follow-up in the low-dose ATG group without any extra benefit with the addition of GCSF. In the 2-year follow-up of the 
same trial, although reduction in HbA1c and T-cell depletion with preservation of Treg cells were reported in both ATG 
as well as ATG with G-CSF arm, higher AUC of c-peptide in comparison to placebo was seen only in the low-dose ATG 
arm but not in the ATG with G-CSF arm[38]. However, low-dose ATG with GSF had been reported to preserve the AUC 
of c-peptide following mixed meal tolerance tests in other studies[39,40]. In a cost-effectiveness analysis study, low-dose 
ATG was found to be more cost-effective than other immunotherapies (including teplizumab) or no therapy in patients 
with recent onset T1D[41].

Anti-interleukin 21 and liraglutide: Researchers have also explored the role of combination therapy in immunomodu-
latory therapy for T1D. Anti-interleukin (IL)-21 antibody antagonizes IL-21-mediated autoreactive T-cell trafficking to 
pancreatic islets as well as proliferation of effector and follicular helper T cells[42,43]. Glucagon-like peptide-1 agonists 
like liraglutide have been reported to improve β cell survival[44,45]. In the proof of concept animal study in the T1D 
mouse model, Rydén et al[46] reported that the combined anti-IL-21 and liraglutide therapy can reverse diabetes. In a 
phase 2, multicenter, parallel-group, placebo-controlled RCT, 308 T1D patients were randomized to four arms – anti-IL-21 
only, liraglutide only, combined anti-IL-21 with liraglutide, or placebo. The decline of post-mixed meal tolerance test c-
peptide level at 52 wk was significantly smaller (P = 0.0017) in the combined group in comparison to the placebo, but not 
in the anti-IL-21 only (P = 0.093) or liraglutide only (P = 0.38) groups[47]. Although the authors also reported a reasonable 
safety profile for this combination therapy, it should be further confirmed in future phase 3 trials.

B-cell-directed antibody therapy
Rituximab: Like various T-cell depletion therapies, depletion of B cells using anti-CD20 monoclonal antibody rituximab 
has also been studied in T1D. In a placebo-controlled RCT (TrialNet Anti-CD20), 87 recently diagnosed T1D patients were 
randomized to four different dosage infusions of rituximab or placebo[48]. The patients in the rituximab arm showed 
significantly higher AUC of c-peptide than placebo during the mixed meal tolerance test at 1-year follow-up. The patients 
in rituximab also had lower HbA1c and required less exogenous insulin. Patients who responded to rituximab showed 
greater T-cell proliferative response to islet cell antigens[49]. However, at 30 mo follow-up of the same study, there was 
no significant difference in the AUC of c-peptide between the rituximab and placebo arms[50]. The effect on B-cell 
depletion by rituximab also weaned off by 18 mo. The authors concluded that although rituximab can delay the decline of 
c-peptide in T1D, it cannot prevent the inevitable β cell loss[50]. In a recent RCT, combined therapy of autologous CD4+ 
CD25highCD127- Treg cells and rituximab was found to be superior in maintaining remission in recently diagnosed T1D 
patients in comparison to either the monotherapy or control[51].

Antibody therapy against cytokine signaling
Golimumab: The proinflammatory cytokine, tumor necrosis factor (TNF)-α plays an essential role in the pathogenesis of 
various autoimmune diseases[52]. In animal model studies, antagonizing TNF-α has been shown to prevent the 
development of autoimmune diabetes[53,54]. In the phase 2 T1GER study, the efficacy and safety of golimumab (anti 
TNF-α monoclonal antibody) were evaluated in recently diagnosed T1D patients (stage 3 of T1D)[55]. Patients were 
randomized to every fortnightly subcutaneous injection of golimumab (56 patients) or placebo (28 patients) for 52 wk. 
The authors reported higher 4-h mixed meal tolerance test AUC of c-peptide (0.64 pmol/mL vs 0.43 pmol/mL, P < 0.001) 
and lower exogenous insulin requirement (0.51 U/kg/day vs 0.69 U/kg/day) in golimumab arm than placebo. In the 2-
year follow-up study (52 wk of therapy and 52 wk of off-therapy) of the same trial, patients in the golimumab arm 
showed persistently lower reductions in AUC of c- peptide at 78 and 104 wk compared to placebo[56]. The adverse events 
were reported to be similar in both arms of the study.

Etanercept: Etanercept, the recombinant soluble TNF-α receptor protein, blocks the activity of proinflammatory cytokine 
TNF-α and thus can be helpful in autoimmune diseases. In a pilot RCT, 18 patients with recently diagnosed T1D were 
given subcutaneous twice weekly etanercept or placebo for 24 wk[57]. The patients in the etanercept arm showed better 
HbA1C levels (5.9% vs 6.8%; P < 0.05) and AUC of c-peptide (+ 39% vs -20%; P < 0.05) than placebo, suggesting β cell 
preservation. In a recent study, etanercept was combined with glutamic acid decarboxylase (GAD-alum) and vitamin D 
(etanercept diamyd combination regimen) to evaluate the efficacy in newly diagnosed anti-GAD antibody-positive T1D 
patients[58]. However, this combination failed to show any significant beneficial effect in this trial.
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Baricitinib: Baricitinib is a Janus kinase (JAK1 and JAK2) cytokine inhibitor which had been used successfully in au-
toimmune disorders[59,60]. In the phase 2 multicenter RCT (BANDIT study), 91 recently diagnosed T1D patients were 
randomized to either oral baricitinib (4 mg/d) or placebo for 48 wk[61]. Following the mixed meal tolerance test, the c-
peptide level was significantly higher in the baricitinib group than placebo (P = 0.001) at 48 wk follow-up. Exogenous 
insulin requirement was also considerably low in the baricitinib group, with no significant difference in HbA1C level 
compared to the placebo. The adverse events were reported to be similar in both groups.

Imatinib: The role of small tyrosine kinase inhibitors like imatinib also had been evaluated in T1D. In a nonobese diabetic 
mouse study, imatinib had been reported to induce durable remission[62]. Imatinib has been postulated to act through 
both immunological and metabolic pathways involving endoplasmic reticulum stress in β cells[63]. In a phase 2 mul-
ticenter RCT, patients with recent onset T1D were randomized to receive either oral imatinib (400 mg/d) or placebo for 26 
wk[64]. The patients in the imatinib arm showed higher AUC of c-peptide compared to the placebo at 12 mo (P = 0.048) 
follow-up. However, the effect was not sustainable at 24 mo. Future studies are needed to find the ideal dose and dura-
tion as well as to monitor the adverse effects of this exploratory therapy.

Apart from the pharmaceutical agents mentioned above, other molecules like verapamil, ladarixin, canakinumab and 
anakinra were also studied in recent onset T1D with variable success[65-67]. In a recent meta-analysis, which evaluated 
the effect of monoclonal antibody-based immunotherapy on c-peptide level in patients with recent onset T1D, 11 studies 
of four antibody-based immunotherapy (teplizumab, rituximab, otelixizumab and abatacept) were included[68]. The 
authors reported favorable c-peptide response in favor of β cell protection with all these four molecules. In a comparative 
study, the results (AUC of c-peptide response) from the primary studies of various immunotherapies (teplizumab, 
alefacept, abatacept, rituximab, high dose ATG, and low dose ATG ± G-CSF) in T1D were evaluated to rank them 
according to their effectiveness[69]. The authors reported that low-dose ATG and teplizumab showed maximum impact 
in preserving β cell function among the molecules studied. However, when these immunotherapies are used, we must be 
careful about the potential risk of adverse events like lymphopenia, viral infections, and CRS.

We should also remember that the sole FDA-approved immunotherapy, teplizumab, is indicated to be used only in 
stage 2 of T1D and thus practically has minimal application unless the disease is diagnosed early in the dysglycemia 
stage. More widespread screening programs like TrialNET, ASK, Sanford Population-Level Estimation of T1D Risk 
GEnes in Children, and T1 Detect JDRF are needed to find suitable candidates who are at the window of opportunity for 
this therapy[70]. The durability of the immunotherapies and frequency of dosage to maintain a state of disease remission 
should also be evaluated in longitudinal follow-up studies. Another concern is the safety of the long-term use of these 
immunomodulatory therapies due to the risk of CRS, reactivation of viral infections, etc. Thus, further well-designed 
RCTs with longer follow-up are needed to evaluate the efficacy, durability of therapeutic response, and safety of these 
immunotherapies in T1D. Moreover, the drugs should be affordable and cost-effective to ensure the access of newer 
therapies to the target populations.

ANTIGEN-BASED IMMUNOTHERAPY
Although several nonspecific approaches of immunoregulation have been trialed for T1D, antigen-based immunotherapy 
is thought to be a more favorable approach owing to its specificity and possible long-lived effects, without broad 
immunosuppression being needed[71]. The basis of antigen-specific immunotherapy is either inactivation of the 
pathogenic effector T (Teff) cells functionally, transforming them into Treg cells, or both. An ideal antigen-based 
immunotherapy could be administered multiple times (nonimmunogenic by itself) and would induce Treg cells that 
could repress islet-specific Teff cells of various specificities and lead to long-standing tolerance[72]. However, many 
questions are to be considered, along with the duration of the treatment and cost when designing antigen-specific 
immunotherapy.

Antigen targets and delivery strategies
For antigen-based immunotherapy to be fruitful, the subject getting treatment must have a T-cell population specific for 
the therapy-delivered antigen. Therefore, when developing an immunotherapy for individuals with T1D, the major 
specificities of circulating autoreactive T cells are essential factors to consider. In T1D individuals, the isolated CD4+ and 
CD8+ T-cell clones with specificity for a range of autoantigens have been identified. These include insulin, pre-proinsulin, 
GAD, islet antigen-2, islet glucose-6-phosphatase catalytic subunit related protein, and chromogranin A. Recently, 
proinsulin (c-peptide region) has been a hotspot for responsiveness of T cells in patients with T1D[73,74]. Furthermore, 
islet inflammation along with endoplasmic reticulum stress can cause further islet-derived antigen release, thereby 
inducing epitope spreading, post-translational modification of peptides, and fusion of peptide fragments originating from 
different proteins with subsequent generation of hybrid peptides[75]. Therefore, an in-depth knowledge of the critical 
antigenic targets and their kinetics during the progression of disease is crucial for choosing the most fitting targets for 
antigen-based therapy. Disease heterogeneity adds to the complexity of antigen-specific immunotherapy in T1D because 
of a subgroup of patients depending on their HLA alleles or disease endotypes[76]. Heterogeneity and HLA haplotype 
can influence the presentation of epitopes from islet antigens to the autoreactive T cells as well as the response of T cells
[77,78]. Considerations and requirements for antigen-based immunotherapy in T1D are illustrated in Figure 2. Experts 
have used different delivery strategies for antigen-specific immunotherapy, for example, proteins and peptides, plasmid 
DNA, cell-based strategies, antigen-loaded nanoparticles, and liposome-based approaches (Table 2). The key question is 
which approach is more likely to restore β cell tolerance?
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Table 2 Antigen-specific immunotherapies- strengths and weaknesses

Strategies Immunological 
target Advantages Disadvantages

Autoantigenic peptides and 
proteins

APCs Biocompatible; possibility to conjugate to a vehicle Short half-life; adjuvant required

Autoantigen-encoding plasmid 
DNA

APCs Long-lived effect Gene therapy

Antigen-loaded cell-based 
strategies

Autoreactive T cells Powerful immunoregulatory effect Leukapheresis required; person-
alized medicine

Antigen-loaded nanoparticles and 
liposomes

APCs and T cells Customizable; powerful immunoregulatory effect; 
might act by biomimicry

Synthetic; preclinical developmental 
phase

APCs: Antigen-presenting cells.

Preclinical and human studies
The antigen-specific approach involves the delivery of β cell autoantigens through a route and regimen that induces 
immune tolerance. Several antigen-specific approaches have entered into trials in the last decade to explore their safety, 
feasibility, and efficacy using different delivery strategies[79]. Recently completed and ongoing immunotherapy trials 
using antigen-specific strategies in T1D are reviewed elsewhere[80]. Single-peptide immunotherapy using a proinsulin 
sequence showed hints of efficacy and immunomodulation and was well tolerated[81]. Gibson et al[82] used a preclinical, 
humanized model of peptide immunotherapy. They showed that combining numerous different β cell peptides into a 
single injectable may produce a significantly increased effect compared with a single peptide in generating immune 
regulation. A recent study has addressed whether therapies delivering several antigens concurrently are efficacious and 
any safety issues that can arise from administration of multiple antigens. A mixture of six β cell peptides from two islet 
autoantigens was administered to patients with recent-onset T1D[83]. Multiple-peptide immunotherapy showed the 
potential to rectify immune regulatory defects central to the pathobiology of T1D in this first-in-human study. No serious 
adverse effects were observed in groups that received drug treatment. Together with the observations in pre-clinical 
models that delivery of multiple peptides from more than one antigen may have more impact than a monopeptide[82], 
these recent findings justify future well-designed clinical trials.

The last decade has seen the knowledge translated into definite antigen-based immunotherapies, promising to restore 
the breach of immunological tolerance to β cell autoantigens selectively. However, in both prevention and reversion trials 
in T1D, suboptimal effects have been obtained so far. Consequently, there is still a need to optimize those immuno-
therapies and their associated factors, such as patient and disease heterogeneity; choice of antigen (peptide or whole 
molecule, conventional or unconventional, single antigen or cocktail); posology; administration patterns, route, timing 
and use of adjuvants; biomarkers for stratification and therapeutic outcome[80].

STEM-CELL-BASED IMMUNOTHERAPY
T1D can be reversed by transplantation of pancreas or islet cells, which serves as proof of principle for cell-based therapy
[84]. However, several issues limit its widespread use, particularly the insufficient supply of highly functional β cells. Yet, 
the sourcing problem could be circumvented by differentiating stem cells (SCs) into insulin-producing cells, and it has 
garnered the most enthusiasm for creating functional β cells[85,86]. These SC-derived islets could be derived from a 
single-cell source using a standardized process. The resulting cell product could be well characterized, allowing for more 
predictable transplant outcomes.

SCs [embryonic SCs (ESCs), induced pluripotent SCs (iPSCs)], and adult SCs are being widely explored for T1D 
therapeutics[87]. In preclinical studies, ESC-derived β cells have shown favorable results by insulin production in 
response to glucose stimulation and restoration of normoglycemia[87]. iPSCs offer a practical alternative to ESCs. They 
can be derived from adult somatic cells, thus eliminating ethical concerns. In diabetic mouse models, iPSC-derived β cells 
have also exhibited the ability to secrete insulin and restore normoglycemia. Besides iPSCs, adult SCs, including 
mesenchymal SCs and hematopoietic SCs, have been investigated for T1D as well[88].

Recent technological advances have made human clinical trials utilizing SC-derived pancreatic endoderm cells (PECs) 
possible. An initial 2014 human clinical trial used the ViaCyte Inc. device (VC-01) to immunoprotect the cells using a cell-
impermeable membrane entirely. Although some endocrine cells were found, fibrosis around the capsule led to graft loss, 
and insulin secretion was not detected from the device[89,90]. To circumvent this issue, a clinical trial (NCT03163511) was 
initiated in 2017 to evaluate the newer PEC-Direct device (PEC-01 cells implanted subcutaneously in VC-02 devices) that 
contained membrane openings allowing vascularization to develop nutrient exchange and promote survival of cells. 
Total immunosuppression was required after transplantation. In 63% of units, insulin expression within β cells was 
observed at 3-12 mo post-transplantation, with a preponderance of α cells reflecting the immature graft state. The recently 
published reports from this ongoing trial demonstrated detectable levels of c-peptide in peripheral blood by 6-9 mo post-
transplantation[91,92]. Vertex pharmaceuticals embarked on a clinical trial with T1D patients in 2021, where an ESC-
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Figure 2 Considerations and requirements for successful immunotherapy using antigen-specific approaches in type 1 diabetes. If the 
antigen-specific therapy is administered before the clinical diagnosis of type 1 diabetes (T1D) (stage 1 and 2), the development of T1D could be revoked; otherwise, if 
T1D has already been diagnosed (stage 3), the intervention should be accompanied by a β cell regenerative agent to restore the β cell mass and its functionality. 
One should consider the genetic risk susceptibility of the patient, age and age at T1D onset, autoreactivity profile and T1D endotype, metabolic and immunologic 
biomarkers, and ideal antigen-specific therapy time point for the treatment to be as personalized as possible. On this basis, the partial remission (PR) – when β cell 
tolerance is thought to be restored transiently – and exploring subsequent but milder PR phases could be of value as immune intervention checkpoints (in stage 3a 
and 3b). In addition, the antigen-specific immunotherapy should enforce the generation of tolerogenic dendritic cells, M2 macrophages, regulatory T (Treg) cells and 
regulatory B cells, thus reeducating the immune response against β cell autoantigens and re-establishing β cell immunological tolerance.

derived islet, VX-880, was transplanted without an immunoprotective device under immunosuppressive coverage. Initial 
findings seem promising[93]. An ongoing Vertex trial (NCT04786262) will determine whether the success can be rep-
licated and investigate the safety of implantation of SC-derived islets in a site such as the liver. In addition to these critical 
advances, several organizations intend to conduct clinical trials of functional SC-derived islets[94]. It is important to note 
that although freed from reliance on exogenous insulin, the Vertex result presently is based on a single patient and that 
ViaCyte’s strategy, established on differentiation of PEC to adequate numbers of functional β cells within porous devices, 
has not yet been shown to work. The requirement for long-term immunosuppression may restrict the clinical application 
of both the ViaCyte and Vertex approaches.

As things stand, the clinical trial results highlight the great promise SC-islets hold for treating T1D. The last few years 
have been notable for game-changing early progress in clinical trials with SC-based therapies for T1D[95]. Nevertheless, 
several remaining challenges need to be addressed before this SC therapy can be converted into a routine procedure. The 
central pillars of a successful SC-islet therapy for T1D are illustrated in Figure 3.

CONCLUSION
T1D involves the autoimmune destruction of insulin-producing β cells in the pancreas. Over 100 years since the discovery 
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Figure 3 Key components of successful stem cell derived islet therapy for treating type 1 diabetes.

of insulin, there is still no cure for T1D. However, therapeutic options for T1D are again at a turning point. Years of effort 
to develop immune interventions are ultimately starting to pay off, with hints of progress in both new onset and 
preventative settings. We discussed the recently completed and ongoing clinical trials that have studied the efficacy and 
safety of several immunotherapeutic strategies targeting various mechanisms of autoimmunity, which are considered 
significant in disease pathogenesis. While more targeted immunotherapies with potentially fewer adverse effects get 
closer to the translation into clinical practice, new challenges may need to be faced. A better understanding of disease 
endotypes may facilitate the stratification of individuals to different treatment options. While moving forward, success 
lies in selecting which interventions are best suitable for which stage of the disease. Therefore, the timing and benefit/risk 
profile of candidate approaches should be considered carefully. It is also essential to conduct more clinical trials at T1D 
diagnosis to compare interventions. With the increasing interest in combination approaches, immunotherapeutic 
strategies targeting different aspects of the immune system are likely to be essential contributors to the future therapeutic 
landscape, together with the practice of individualized patient-tailored approaches, a change towards early intervention, 
and an emphasis on outcome measures.
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