Retrospective Study

A simple model established by blood markers predicting overall survival after radical resection of type II and type III AEG

A model predicting overall survival

zhijian wei, Yating Qiao, baichuan zhou, Abigail N Rankine, lixiang zhang, yezhou su, aman xu, wenxiu han, panquan luo
Abstract

BACKGROUND

In recent years, the incidence of type II and type III Adenocarcinoma of esophagogastric junction (AEG) has shown an obvious upward trend worldwide. The prognostic prediction after radical resection of AEG has not been well established.

AIM

We aim to establish a prognostic model for AEG (type II and III) based on routine markers.

METHODS

355 patients who underwent curative AEG at The First affiliated Hospital of Anhui Medical University from January 2014 to June 2015 were retrospectively included in this study. Univariate and multivariate analysis were used to screen for the independent risk factors. The construction of the nomogram was based on Cox proportional-hazards models. The new score models were analyzed by C index and Calibration curves. The ROC (Receiver Operating Characteristic) curve was used to compare the predictive accuracy of the scoring system and TNM stage. Overall Survival (OS) was calculated using the Kaplan-Meier curve amongst different risk AEG patients.

RESULTS

Multivariate analysis showed that TNM stage (HR = 2.286, p = 0.008), NLR (HR = 2.979, p = 0.001) and BMI (HR = 0.626, p = 0.026) were independent prognostic factors. The new score system had a higher C-index (0.697), and the calibration curves of the nomogram were reliable. The AUC (Area Under the Curve) of ROC curve of the new score model (3-year: 0.725, 95%CI = 0.676-0.777; 5-year: 0.758, 95%CI = 0.708-0.807) was larger than TNM stage (3-year: 0.630, 95%CI = 0.585-0.684; 5-year: 0.665, 95%CI = 0.616-0.715).

CONCLUSION
Based on the serum markers and other clinical indicators, we developed a precise model to predict the prognosis of patients with AEG (type II and III). The new prognostic nomogram could effectively enhance the predictive value of the TNM stage system. This score system can be advantageous and helpful for surgeons and patients.

Key Words: Adenocarcinomas of the esophagogastric junction; Neutrophils to lymphocytes ratio; Platelets to lymphocytes ratio; Prognosis

Core Tip: Based on the serum markers and other clinical indicators, we developed a precise model to predict the prognosis of patients with AEG (type II and III). This score system can be advantageous for surgeons and patients.

INTRODUCTION

Adenocarcinomas of the esophagogastric junction (AEG), which are located within 5 cm of the esophagogastric junction, are classified into three subgroups: type I, II, and III. Type I AEG (adenocarcinoma of the distal esophagus) is most prevalent in Western countries; type II and III AEG are more prevalent than type I in Asia and are mostly treated as gastric cancer[1,2]. The incidence rate of AEG has significantly increased over the past two decades and is increasing more rapidly than any other type of neoplasm[3,4].

Surgery is considered the only curative treatment for patients with AEG[5]; however, the survival rate is not good even with surgery.

At present, many studies are exploring non-invasive and sensitive biomarkers that can accurately predict the prognosis of patients with AEG. Among these, carcinoembryonic antigen (CEA) has been used for the early diagnosis of cancer[6].
Cancer-related systemic inflammatory responses, such as the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), play an important role in the progression and outcome of tumors\(^\text{[7,8]}\). Furthermore, patients with a high NLR have a poor prognosis\(^\text{[9]}\). Malnutrition is also related with the prognosis of patients\(^\text{[10]}\), however, a few studies have assessed the prediction of inflammatory, nutritional, and blood tumor markers for overall survival (OS) in patients with AEG (type II and III). So this research established a nomogram to explore the value of blood markers.

MATERIALS AND METHODS

We collected blood and clinical data of patients with AEG (type II and III) who were hospitalized at the First Affiliated Hospital of Anhui Medical University between January 2014 and June 2015. Patients were analyzed retrospectively according to the inclusion and exclusion criteria. The inclusion criteria were as follows: 1) all patients confirmed with AEG (type II and III) by pathological diagnosis, 2) radical resection of the tumor, 3) absence of heart diseases or organ failure, and 4) peripheral blood test results obtained within 1 week before surgery. The exclusion criteria were as follows: 1) previous untreated malignancy; 2) previously accepted radiation treatment or chemotherapy before the treatment; 3) presence of certain diseases, such as infection, which could influence the peripheral blood cell counts; 4) patients who died within 30 days after surgery because of sudden accidents, such as pulmonary embolism; and 5) patients with incomplete data. In accordance with the inclusion criteria, 440 patients with AEG were included in the study. Finally, a cohort of 355 patients was analyzed based on the exclusion criteria.

The patient admission process is shown in additional Figure1. This study conforms to the TRIPOD guidelines. This study included 355 patients and the testing group, including 120 patients, who were hospitalized at the First Affiliated Hospital of Anhui Medical University between January 2018 and June 2018.

Data on patients' demographic and clinicopathological features were gathered from the medical records of our hospital, including age, gender, body mass index.
(BMI), tumor size, differentiation grade, tumor-node-metastasis (TNM) stage, tumor location, surgery time, cancerous node, smoking, and comorbidities. The pathological tumor stage was categorized according to the 7th edition of the American Joint Committee on Cancer TNM staging system. The routine laboratory data evaluated were as follows: neutrophil, lymphocyte, and platelet counts; prealbumin, albumin, hemoglobin, CEA, CA199, and fibrinogen levels.

Peripheral blood tests were performed within 1 wk before surgery, and the following indices were determined: NLR, PLR, and prognostic nutritional index (PNI). The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count, and the PLR was calculated by dividing the absolute platelet count by the absolute lymphocyte count. The PNI was calculated using the following formula: serum albumin (g/L)+5×total lymphocyte count (10^9/L)^13. The NLR, PLR, and PNI were grouped into low and high groups according to the Youden index (maximum [sensitivity+specificity-1])^12. The BMI (kg/m^2) was divided into the following three groups: <18.5 (low group), 18.5-24.9 (normal group), and ≥25 (high group). The CEA, CA199, albumin and prealbumin levels were grouped based on their normal values.

All patients with Siewert type II/III AEG underwent radical surgery with celiac and mediastinal lymphadenectomy. All the patients underwent radical D2 Lymphadenectomy. They received four to six cycles of first-line adjuvant combination chemotherapy after surgery with oxaliplatin plus 5-fluorouracil/Leucovorin or a prodrug of 5-fluorouracil (capecitabine; CapeOX).

Statistical analyses

Multivariate and univariate survival analyses were performed using the Cox proportional hazard pattern. Harrell’s concordance index (C-index) was used in the nomogram to evaluate the model performance for the prognosis of patients with AEG. Calibration and receiver operating characteristic (ROC) curves were used to verify the accuracy of the new scoring system. Survival analysis was compared using Kaplan-Meier method, the nomogram was constructed using the R package “rms,”
"Hmisc," “lattice,” “Formula,” and “foreign.” The data are presented using the Statistical Package for the Social Sciences software (16.0 version) and RStudio software (version 1.1.447- 2009–2018; RStudio, Inc.). The P-value <0.05 was considered statistically significant.

RESULTS

The The baseline characteristics of 355 patients are presented in Table 1. Overall, 281 (79.1%) male and 74 (20.9%) female patients were included. The median age of the patients was 65 years (range, 29–85 years). The median follow-up period was 52 mo (range, 1.5–72 mo).

Table 2 shows the results of univariate risk factors. Age, prealbumin, TNM stage, tumor size, histological type, CEA, PNI, PLR, NLR, BMI, hemoglobin, and cancerous nodes were significant indicators. The P-values of variables <0.05, as determined by the univariate analysis, were included in the multivariate analysis. Among them, TNM stage (hazard ratio [HR]=2.286, \(p=0.008 \)), NLR (HR=2.979, \(p=0.001 \)), and BMI (HR=0.626, \(p=0.026 \)) were independent prognostic factors (Table 3).

A model was constructed to predict OS of AEG patients based on the cox analysis (Figure 1). Each subgroup variable was assigned a score. A point system was used to assign a score to each variable (Table 4). To apply the nomogram, a vertical line was delineated to the indicate the row to assign point values for each variable. Subsequently, the corresponding points were summed to obtain the total points. Finally, a vertical line from the total points was drawn to obtain the 3-year and 5-year survival probability.

Calibration curves were used to verify the performance of the model in predicting OS of patients with AEG (Figure 2 and Figure 3). and the results showed that the actual OS curve of the nomogram fits the predicted OS curve. Besides, the 3-year of Calibration curves in the testing group is also great(Figure 4), and the C-index of the model was 0.697 (95% confidence interval [CI]=0.660–0.734), indicating that this model was reliable. Besides, the area under the curve (AUC) of the ROC curve of the new score model (3-
In addition, we divided the patients into two groups according to the total nomogram score (low-risk: <58 and high-risk: ≥58) (Figure 7). The results showed that high-risk patients with AEG had a poor prognosis. The Kaplan-Meier curves indicated excellent prediction results in the nomogram predicting survival.

DISCUSSION

Early detection of AEG is often difficult, owing to the limitations of diagnostic techniques, resulting in a poor prognosis. At present, the 5-year survival rate of patients with AEG is less than 30%[13]. The epidemiology, genetics, spread pattern, and prognosis of neoplasms in the esophagus, esophagogastric junction, and stomach remain unclear. The process of tumor development is complex. Gastroesophageal reflux disease and *Helicobacter pylori* have been reported as risk factors for AEG[14,15]. Therefore, many researchers have made significant contributions to improve the prognosis of AEG. Lymph node metastasis, tumor size, differentiation grade, and TNM stage have been defined as prognostic factors[16,17]. However, these prognostic factors are difficult to judge before surgery; therefore, research on prognostic serum markers has been widely conducted in recent years. To the best of our knowledge, this study is the first attempt to develop a prognostic nomogram that combines serum markers (including inflammatory markers, nutritional indices, and tumor markers) and clinicopathological characteristics to estimate the 3-year and 5-year survival probability and showed a highly accurate prediction for the prognosis of patients with AEG (type II and III).

The multivariate analysis revealed that TNM stage, NLR, and BMI were important factors. Therefore, a model was built by these markers, moreover, the calibration and ROC curves show that the nomogram is reliable and precise.
In recent years, nomograms have been used to predict the prognosis of many cancers[18,19]. This model has been identified as a new standard that can integrate multiple predictive variables in a weighted manner and intuitively show the influence of variables on individual predictive values. Similar conclusions were obtained in our study. The AUC of the nomogram was larger than that of TNM stage; therefore, the nomogram and TNM staging system can help in predicting the survival of patients with AEG. Furthermore, this nomogram can be applied in clinical practice to help surgeons evaluate the prognosis of patients and choose appropriate treatment.

Our nomogram contained three variables, previous studies[9,20] also got to the same conclusion. Inflammatory indexes were related to the prognosis of gastrointestinal cancer patients[21]. This research found that NLR was an independent risk factor, the possible mechanism is that systemic inflammation caused by tumors can release a large number of pro-inflammatory mediators, such as C-reactive protein, fibrinogen, vascular endothelial growth factor, and transforming growth factor-\(\alpha\). These factors stimulate the process of tumors[22]. Meanwhile, neutrophils could prevent natural killer cells and T cells in the system contacting and killing the tumor cells[23,24]. Therefore, the NLR should be included in the regular assessment index of patients with AEG.

As an independent prognostic indicator of tumor-related diseases, BMI has raised increasing concerns for researchers in recent years. The BMI is related to the prognosis of breast carcinoma, non-small-cell lung cancer, and colorectal cancer, among others[25-27]. In this study, we found that BMI was significantly correlated with the prognosis of patients with AEG. However, the underlying mechanism remains unclear. Patients with AEG with a low BMI may have poor nutritional status and immune function[28]. This may have an adverse effect on disease progression; therefore, these patients may have a shorter OS.

Our research has a two potential limitations. First, this study was a single-center study that did not include a sufficient number of cases to verify the results. Second, the
included patients who underwent surgical resection for AEG cannot account for all patients with AEG.

CONCLUSION

The TNM stage, NLR, and BMI were risk factors for the prognosis of patients with AEG. The novel nomogram accurately and reliably predicted the OS after radical resection of patients with AEG (type II and III). This may help clinicians formulate personalized treatment plans.

ARTICLE HIGHLIGHTS

Research background
gastric cancer

Research motivation
serum markers

Research objectives
nomogram

Research methods
R and SPSS

Research results
nomogram

Research conclusions

The TNM stage, NLR, and BMI were risk factors for the prognosis of patients with AEG. The novel nomogram accurately and reliably predicted the OS after radical resection of patients with AEG (type II and III). This may help clinicians formulate personalized treatment plans.
Research perspectives

In recent years, the incidence of type II and type III Adenocarcinoma of esophagogastric junction (AEG) has shown an obvious upward trend worldwide. The prognostic prediction after radical resection of AEG has not been well established.
<table>
<thead>
<tr>
<th>1</th>
<th>Li-xiang Zhang, Zhi-jian Wei, Wen-xiu Han, A-Man Xu. "A simple model established by blood markers predicting overall survival after radical resection of gastric cancer", Research Square, 2019</th>
<th>83 words — 3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>journals.lww.com</td>
<td>49 words — 2%</td>
</tr>
<tr>
<td>4</td>
<td>Xiaoling Shang, Jianxiang Shi, Xiaohui Wang, Chenglong Zhao, Haining Yu, Haiyong Wang. "A clinical variable-based nomogram could predict the survival for advanced NSCLC patients receiving second-line atezolizumab", Cancer Medicine, 2021</td>
<td>35 words — 1%</td>
</tr>
<tr>
<td>5</td>
<td>www.frontiersin.org</td>
<td>32 words — 1%</td>
</tr>
<tr>
<td>6</td>
<td>link.springer.com</td>
<td>25 words — 1%</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Panquan Luo, Lixiang Zhang, Bocheng Ding, Lei Chen, Baichuan Zhou, Zhijian Wei, Aman Xu. "Prognostic Factors of Disease-Free Survival in Postoperative Patients with Hepatocellular Carcinoma", Research Square Platform LLC, 2020</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>atm.amegroups.com</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Li-xiang Zhang, Chuan-hong Li, Jun Ma, Lei Chen, Zhi-jian Wei, A-Man Xu, Wenxiu Han. "Efficacy and Outcomes of Intraoperative Extensive Lavage Plus Surgery Versus Surgery Alone in Patients with Advanced Gastric Cancer: A Multicenter Randomized Controlled Trial", Research Square Platform LLC, 2021</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>www.science.gov</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>www.researchgate.net</td>
</tr>
</tbody>
</table>