Contents

FIELD OF VISION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2053</td>
<td>Personalized treatment - which interaction ingredients should be focused to capture the unconscious</td>
<td>Steinmair D, Löffler-Stastka H</td>
</tr>
</tbody>
</table>

MINIREVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2063</td>
<td>Patterns of liver profile disturbance in patients with COVID-19</td>
<td>Shousha HI, Ramadan A, Lithy R, El-Kassas M</td>
</tr>
</tbody>
</table>

ORIGINAL ARTICLE

Clinical and Translational Research

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2072</td>
<td>Prognostic and biological role of the N-Myc downstream-regulated gene family in hepatocellular carcinoma</td>
<td>Yin X, Yu H, He XK, Yan SX</td>
</tr>
</tbody>
</table>

Case Control Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2087</td>
<td>Usefulness of the acromioclavicular joint cross-sectional area as a diagnostic image parameter of acromioclavicular osteoarthritis</td>
<td>Joo Y, Moon JY, Han JY, Bang YS, Kang KN, Lim YS, Choi YS, Kim YU</td>
</tr>
</tbody>
</table>

Retrospective Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

Clinical Trials Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106</td>
<td>Postoperative adverse cardiac events in acute myocardial infarction with high thrombus load and best time for stent implantation</td>
<td>Zhuo MF, Zhang KL, Shen XB, Lin WC, Hu B, Cui HP, Huang G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2115</td>
<td>Develop a nomogram to predict overall survival of patients with borderline ovarian tumors</td>
<td>Gong XQ, Zhang Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
Contents

Observational Study

2147
Association of types of diabetes and insulin dependency on birth outcomes
Xaverius PK, Howard SW, Kiel D, Thurman JE, Wankum E, Carter C, Fang C, Carriere R

2159
Pathological pattern of endometrial abnormalities in postmenopausal women with bleeding or thickened endometrium
Xue H, Shen WJ, Zhang Y

2166
In vitro maturation of human oocytes maintaining good development potential for rescue intracytoplasmic sperm injection with fresh sperm
Dong YQ, Chen CQ, Huang YQ, Liu D, Zhang XQ, Liu FH

2174
Ultrasound-guided paravertebral nerve block anesthesia on the stress response and hemodynamics among lung cancer patients
Zhen SQ, Jin M, Chen YX, Li JH, Wang H, Chen HX

META-ANALYSIS

2184
Prognostic value of YKL-40 in colorectal carcinoma patients: A meta-analysis
Wang J, Qi S, Zhu YB, Ding L

2194
Prognostic value of neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte ratios and Glasgow prognostic score in osteosarcoma: A meta-analysis
Peng LP, Li J, Li XF

CASE REPORT

2206
Endovascular stent-graft treatment for aortoesophageal fistula induced by an esophageal fishbone: Two cases report

2216
Quetiapine-related acute lung injury: A case report
Huang YX, He GX, Zhang WJ, Li BW, Weng HX, Luo WC

2222
Primary hepatic neuroendocrine neoplasm diagnosed by somatostatin receptor scintigraphy: A case report
Akabane M, Kobayashi Y, Kinowaki K, Okubo S, Shindoh J, Hashimoto M

2229
Multidisciplinary non-surgical treatment of advanced periodontitis: A case report
Li LJ, Yan X, Yu Q, Yan FH, Tan BC

2247
Flip-over of blood vessel intima caused by vascular closure device: A case report
Sun LX, Yang XS, Zhang DW, Zhao B, Li LL, Zhang Q, Hao QZ

2253
Huge gastric plexiform fibromyxoma presenting as pyemia by rupture of tumor: A case report
Zhang R, Xia LG, Huang KB, Chen ND

2261
Intestinal intussusception caused by intestinal duplication and ectopic pancreas: A case report and review of literature
Wang TL, Gong XS, Wang J, Long CY
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2275</td>
<td>Y-shaped shunt for the treatment of Dandy-Walker malformation combined with giant arachnoid cysts: A case report</td>
<td>Dong ZQ, Jia YF, Gao ZS, Li Q, Niu L, Yang Q, Pan YW, Li Q</td>
</tr>
<tr>
<td>2281</td>
<td>Posterior reversible encephalopathy syndrome in a patient with metastatic breast cancer: A case report</td>
<td>Song CH, Lee SJ, Jeon HR</td>
</tr>
<tr>
<td>2286</td>
<td>Multiple skin abscesses associated with bacteremia caused by Burkholderia gladioli: A case report</td>
<td>Wang YT, Li XW, Xu PY, Yang C, Xu JC</td>
</tr>
<tr>
<td>2294</td>
<td>Giant infected hepatic cyst causing exclusion pancreatitis: A case report</td>
<td>Kenzaka T, Sato Y, Nishisaki H</td>
</tr>
<tr>
<td>2301</td>
<td>Cutaneous leishmaniasis presenting with painless ulcer on the right forearm: A case report</td>
<td>Zhuang L, Su J, Tu P</td>
</tr>
<tr>
<td>2315</td>
<td>Breast and dorsal spine relapse of granulocytic sarcoma after allogeneic stem cell transplantation for acute myelomonocytic leukemia: A case report</td>
<td>Li Y, Xie YD, He SJ, Hu JM, Li ZS, Qu SH</td>
</tr>
<tr>
<td>2322</td>
<td>Synchronous but separate neuroendocrine tumor and high-grade dysplasia/adenoma of the gall bladder: A case report</td>
<td>Hsiao TH, Wu CC, Tseng HH, Chen JH</td>
</tr>
<tr>
<td>2336</td>
<td>Acute esophageal obstruction after ingestion of psyllium seed husk powder: A case report</td>
<td>Shin S, Kim JH, Mun YH, Chung HS</td>
</tr>
<tr>
<td>2341</td>
<td>Spontaneous dissection of proximal left main coronary artery in a healthy adolescent presenting with syncope: A case report</td>
<td>Liu SF, Zhao YN, Jia CW, Ma TY, Cai SD, Gao F</td>
</tr>
</tbody>
</table>
AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (WJCC, *World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Lin-Yu Tong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Thrice Monthly

EDITORS-IN-CHIEF

Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Jai Hyeon Ku

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

March 6, 2022

COPYRIGHT

© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.f6publishing.com
Prognostic value of YKL-40 in colorectal carcinoma patients: A meta-analysis

Jian Wang, Shi Qi, Yu-Bing Zhu, Lei Ding

Abstract

BACKGROUND

In recent years, the predictive role of YKL-40 for long-term survival in colorectal cancer patients has been gradually investigated. However, whether it is a reliable and valuable prognostic indicator for patients with colorectal carcinoma has not been verified.

AIM

To identify the prognostic value of serum/plasma concentration of YKL-40 or expression status of YKL-40 in tumor cells in colorectal carcinoma patients.

METHODS

Several electronic databases including the PubMed, EMBASE, Web of Science, CNKI, VIP and WanFang were searched for relevant studies. The hazard ratios (HR) and 95% confidence intervals (CI) were combined and the primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS), respectively. All statistical analysis were conducted by STATA 15.0 software.

RESULTS

A total of nine studies involving 2545 patients were included. The pooled results indicated that YKL-40 was significantly associated with poor OS (HR = 1.80, 95%CI: 1.32-2.45, P < 0.001) and PFS (HR = 1.62, 95%CI: 1.22-2.16, P = 0.001). Subgroup analysis stratified by the treatment, tumor type and source of YKL-40 showed similar results.

CONCLUSION

Elevated serum/plasma concentration of YKL-40 or positive expression in tumor cells was related with worse prognosis of colorectal carcinoma patients. YKL-40...
might serve as a novel and reliable indicator for the evaluation of prognosis in colorectal cancer.

Key Words: YKL-40; Colorectal carcinoma; Prognosis; Meta-analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study demonstrated that YKL-40 was significantly associated with poor OS ($P < 0.001$) and PFS ($P = 0.001$). Subgroup analysis stratified by the treatment, tumor type and source of YKL-40 showed similar results. Elevated serum/plasma concentration of YKL-40 or positive expression in tumor cells was related with worse prognosis of colorectal carcinoma patients. YKL-40 might serve as a novel and reliable indicator for the evaluation of prognosis in colorectal cancer.

INTRODUCTION

Colorectal carcinoma is one of the most common cancers worldwide, although a slow decline of the overall risk of colorectal cancer is observed in recent years, especially in elderly population[1–3]. Despite of the great advances in the surgical, neoadjuvant and adjuvant treatments, colorectal cancer patients still suffer from poor prognosis[4]. Moreover, most of colorectal cancer patients received surgical treatment, even those with distant metastasis, but 30%-50% of stage II-III patients and 50% with stage IV patients who receive the surgery will develop a recurrence[5–7].

Up to now, the main predictor of prognosis is still the disease stage at the time of diagnosis. Unfortunately, patients in the same stage of tumor progression might undergo a different course of disease. Thus, it is still an urgent issue to identify more biomarkers to predict posttreatment survival accurately and contribute to the formulation of appropriate treatment strategies, which is crucial to reduce the mortality of colorectal carcinoma patients.

In recent years, a number of studies have indicated that Chitinase-3-like protein 1, also known YKL-40, might be a potential candidate biomarker and therapeutic target in cancers[8–10]. It has been reported that YKL-40 is a highly conserved glycoprotein binding to heparin that is produced by immune cells such as the macrophages, neutrophils, as well as the tumor cells and tumor-associated macrophages[8]. According to previous literatures, the encoding gene of YKL-40 is located on the chromosome 1q32.1 and its increasing expression is usually observed in normal cells with high proliferation, differentiation ability and cellular activity[9,10]. Besides, the overexpression of YKL-40 gene has been reported in several cancers such as the glioblastoma, melanoma, small cell lung cancer and colorectal carcinoma[11,12]. High tissue expression of YKL-40 protein detected by the immunohistochemistry in the glioblastoma is related with poor differentiation, advanced disease stage, poorer radiation response and also worse prognosis[13]. Furthermore, it is also reported that the serum concentration of YKL-40 is elevated in several tumors such as the breast cancer, melanoma, ovarian cancer and renal cell cancer and associated with poor response to therapies, advanced disease stage and poor survival[14–17]. Several investigators explored the clinical role of YKL-40 in colorectal carcinoma patients, especially its prognostic value[18–28]. However, inconsistent results have been reported in their studies.

Thus, the aim of the current meta-analysis was to identify the prognostic value of YKL-40 in colorectal carcinoma, which might help with evaluation of prognosis and formulation of treatment strategy for colorectal cancer patients.

MATERIALS AND METHODS

This systematic review and meta-analysis were conducted according to the Preferred reporting items for systematic reviews and meta-analyses guidelines[29].

Literature search

The PubMed, EMBASE, Web of Science, CNKI, VIP and WanFang databases were searched up to September 27, 2021. The following key words were used: YKL-40, colon, rectum, rectal, colorectal,
tumor, cancer, carcinoma, neoplasm, prognosis, survival and prognostic. Meanwhile, the references of included studies were also assessed for availability.

Inclusion and exclusion criteria
The following inclusion criteria were applied: (1) Patients were pathologically diagnosed with primary colorectal carcinoma; (2) Patients were divided into two groups (elevated vs normal serum/plasma concentration or positive vs negative expression in tumor cells) and the long-term survival of patients were compared between the two groups; (3) HR with corresponding 95% CI for OS or PFS were provided or could be calculated from the Kaplan-Meier survival curves; and (4) High-quality studies with the (Newcastle-Ottawa scale, NOS) score of 6 or higher[30].

The following exclusion criteria were applied: (1) Duplicated or overlapped data; and (2) Conference abstracts, case reports, letters or reviews.

Data extraction
The following information were collected from included studies: Author, publication year, sample size, gender, age, country, tumor stage, number of colon carcinoma patients, type of treatment (surgery vs non-surgery) and tumor, threshold of YKL-40 and endpoints with corresponding HR with 95% CI.

Quality assessment
The quality of included studies was evaluated according to the NOS score[30] and only high-quality studies with a NOS score of 6 or higher were included.

The literature retrieval, selection, data extraction and quality assessment were all conducted by two authors independently (Jian Wang and Yu-Bing Zhu) and any differences were resolved by team discussion.

Statistical analysis
All statistical analyses were performed by STATA 15.0 software. The HR with corresponding 95% CI were combined to assess the association between YKL-40 and prognosis of colorectal carcinoma patients. If the HRs with 95% CI were not provided in articles directly, then they would be calculated from the Kaplan-Meier survival curves[31]. The heterogeneity among included studies was evaluated by F statistics and Q test. When obvious heterogeneity was observed presenting as the $P > 50\%$ or (and) $P < 0.1$, the random effect model was used; otherwise, the fix effect model was used[32]. The sensitivity analysis and subgroup analysis based on the treatment (surgery vs no-surgery), tumor type (colorectal carcinoma vs rectal carcinoma vs colon carcinoma) and source of YKL-40 (serum/plasma vs tissue) were performed to detect the source of heterogeneity and evaluated the stability of pooled results. Besides, the Begg’s funnel plot and Egger’s test were conducted to detect publication bias[33]. Significant publication bias was defined as $P < 0.05$.

RESULTS

Literature retrieval process
Initially, 159 records from the six electronic databases were identified and then 42 duplicated records were removed. Eight-six irrelevant publications and 14 unavailable records were excluded after reading the titles and abstracts. Then eight studies were excluded because of the insufficient data (n = 2) and nine studies were included into this meta-analysis finally[20-28] (Figure 1).

Basic characteristics of included studies
All included studies were retrospective and a total of 2545 patients were enrolled. Among these 2545 patients, 1480 patients were male. Most of them were from Eastern countries, applied the tumor-node-metastasis (TNM) stage system for tumor staging evaluation, focused on the colorectal carcinoma and detected the serum/plasma concentration of YKL-40. Besides, except for the study conducted by Tarpgaard et al[27], all the other studies only enrolled operated patients. The detailed information was presented in the Table 1.

Association between YKL-40 and OS of colorectal carcinoma patients
Eight studies involving 2459 patients investigated the predictive role of YKL-40 for OS of colorectal cancer patients[20-23,25-28]. The pooled results demonstrated that YKL-40 was significantly associated with OS of colorectal carcinoma patients (HR = 1.80, 95% CI: 1.32-2.45, $P < 0.001$; $I^2\% = 90.3\%$, $P < 0.001$) (Figure 2). Furthermore, subgroup analysis stratified by the treatment (surgery vs non-surgery), tumor type (colorectal carcinoma vs rectal carcinoma vs colon carcinoma) and source of YKL-40 (serum/plasma vs tissue) were performed. The subgroup analysis showed similar results, except for the insignificant relationship of YKL-40 with OS in rectal carcinoma patients (HR = 0.69, 95% CI: 0.04-11.5, $P = 0.796$) (Table 2).
Table 1 Basic characteristics of included studies

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Sample size</th>
<th>Gender (male)</th>
<th>Age (median, range), years</th>
<th>Country</th>
<th>Stage</th>
<th>Number of colorectal carcinoma</th>
<th>Treatment</th>
<th>Tumor type</th>
<th>Threshold</th>
<th>Endpoints</th>
<th>NOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cintin et al [20], 1999 603</td>
<td>355</td>
<td>69 (33-91)</td>
<td>Denmark</td>
<td>Duke A-D</td>
<td>355</td>
<td>Surgery</td>
<td>CRC</td>
<td>247 ug/L (upper 95th percentile)</td>
<td>OS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cintin et al [21], 2002 324</td>
<td>192</td>
<td>68 (37-90)</td>
<td>Denmark</td>
<td>Duke A-D</td>
<td>197</td>
<td>Surgery</td>
<td>CRC</td>
<td>247 ug/L (upper 95th percentile)</td>
<td>OS, PFS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Liu et al [24], 2014 86</td>
<td>48</td>
<td>60 (38-76)</td>
<td>China</td>
<td>TNM I-IV</td>
<td>34</td>
<td>Surgery</td>
<td>CRC</td>
<td>216 ng/mL (median)</td>
<td>PFS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Tarpgaard et al [27], 2014 510</td>
<td>301</td>
<td>NR</td>
<td>Denmark</td>
<td>TNM IV</td>
<td>302</td>
<td>Non-surgery</td>
<td>CRC</td>
<td>155 ug/L (upper 95th percentile)</td>
<td>OS, PFS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Fukkiewicz et al [22], 2018 83</td>
<td>59</td>
<td>65 (25-82)</td>
<td>Poland</td>
<td>TNM I-III</td>
<td>NR</td>
<td>Surgery</td>
<td>RC</td>
<td>44.6 pg/mL (upper 95th percentile)</td>
<td>OS, PFS</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Hermenun et al [23], 2020 147</td>
<td>75</td>
<td>60 (31-76)</td>
<td>Finland</td>
<td>TNM II-IV</td>
<td>87</td>
<td>Surgery</td>
<td>CRC</td>
<td>70.7 ng/mL (maximum Youden’s index)</td>
<td>OS, PFS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Peltonen et al [24], 2020 441</td>
<td>260</td>
<td>64.9 (33-84)</td>
<td>Denmark</td>
<td>TNM IV</td>
<td>258</td>
<td>Surgery (liver resection)</td>
<td>CRC</td>
<td>34.8 ng/mL (upper 95th percentile)</td>
<td>OS, PFS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Oh et al [25], 2021 265</td>
<td>134</td>
<td>NR</td>
<td>Korea</td>
<td>TNM I-IV</td>
<td>NR</td>
<td>Surgery</td>
<td>CRC</td>
<td>Positive in tumor cells</td>
<td>OS, PFS</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Yang et al [28], 2021 86</td>
<td>56</td>
<td>60.12 ± 7.32 (mean ± SD)</td>
<td>China</td>
<td>TNM I-IV</td>
<td>86</td>
<td>Surgery</td>
<td>CC</td>
<td>Positive in tumor cells</td>
<td>OS</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

TNM: Tumor-node-metastasis; CRC: Colorectal cancer; RC: Rectal cancer; CC: Colon cancer; OS: Overall survival; PFS: Progression-free survival; NOS: Newcastle-Ottawa scale; NR: Not reported.

Association between YKL-40 and PFS of colorectal carcinoma patients

Seven relevant studies involving 1856 participants explored the predictive role of YKL-40 for PFS [21-27]. The pooled results also manifested significant association between YKL-40 and PFS of colorectal carcinoma patients (HR = 1.62, 95th CI: 1.21-2.16, \(P = 0.001 \); HR = 2.83, 95th CI: 1.05-7.50, \(P = 0.038 \) \(I^2 \) = 88.3\%). (Figure 3). Then, subgroup analysis based on the treatment (surgery vs non-surgery), tumor type (colorectal carcinoma vs rectal carcinoma) and source of YKL-40 (serum/plasma vs tissue) were further conducted. No significant association of YKL-40 with PFS in patients who did not receive surgery (HR = 1.00, 95th CI: 0.91-1.09, \(P = 0.001 \) vs 0.109) or with rectal cancer (HR = 1.32, 95th CI: 0.39-4.46, \(P = 0.655 \)) (Table 2).

In overall, YKL-40 was supposed to be an important prognostic indicator in colorectal carcinoma patients based on above results.

Sensitivity analysis and publication bias

The sensitivity analysis and publication bias analysis for OS were further conducted to assess the stability and reliability of the pooled results. The sensitivity analysis showed that the results of this meta-analysis was stable and none of included studies had a significant impact on the results (Figure 4). Begg’s funnel plot was basically symmetrical (Figure 5) and the \(P \) value of Egger’s test was 0.109, which indicated that no potentially unpublished articles existed.

DISCUSSION

The current meta-analysis demonstrated that YKL-40 was a relatively reliable and valuable prognostic indicator for colorectal carcinoma patients after including nine relevant studies. However, whether the YKL-40 shows high prognostic value in all groups of colorectal carcinoma patients is still needed to be further verified.

Actually, the specific mechanisms by which YKL-40 affects the disease progression, therapeutic effect and long-term survival are still not very clear now. The study conducted by Faibish et al [34] manifested that YKL-40 could affect the invasion of tumor cells through the regulation of matrixmetallo proteinase-
Table 2 Results of meta-analysis

<table>
<thead>
<tr>
<th>No. of studies</th>
<th>HR</th>
<th>95%CI</th>
<th>P value</th>
<th>I² (%)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td>8</td>
<td>1.80</td>
<td><0.001</td>
<td>90.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>7</td>
<td>1.99</td>
<td>0.003</td>
<td>90.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Non-surgery</td>
<td>1</td>
<td>1.17</td>
<td>0.004</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tumor type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td>6</td>
<td>1.83</td>
<td><0.001</td>
<td>92.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Rectal carcinoma</td>
<td>1</td>
<td>0.69</td>
<td>0.796</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Colon carcinoma</td>
<td>1</td>
<td>1.81</td>
<td>0.013</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Source of YKL-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>6</td>
<td>1.83</td>
<td>0.001</td>
<td>92.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Tissue</td>
<td>2</td>
<td>1.74</td>
<td><0.001</td>
<td>0.0</td>
<td>0.816</td>
</tr>
<tr>
<td>Progression-free survival</td>
<td>7</td>
<td>1.62</td>
<td>0.001</td>
<td>88.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>6</td>
<td>1.93</td>
<td>.005</td>
<td>87.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Non-surgery</td>
<td>1</td>
<td>1.00</td>
<td>1.000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tumor type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal carcinoma</td>
<td>6</td>
<td>1.64</td>
<td>0.001</td>
<td>90.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Rectal carcinoma</td>
<td>1</td>
<td>1.32</td>
<td>0.655</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Source of YKL-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>6</td>
<td>1.54</td>
<td>0.004</td>
<td>88.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Tissue</td>
<td>1</td>
<td>2.00</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

HR: Hazard ratio; CI: Confidence interval.

YKL-40, a member of the family of high-molecular-weight serine proteases, was first identified as a secreted protein induced by tumor necrosis factor (TNF) and has been shown to play a role in tumor growth, metastasis, and angiogenesis. Wang et al. [5] demonstrated that YKL-40 expression is associated with poor prognosis in various types of cancer. The expression of YKL-40 in colorectal carcinoma has been found to be associated with clinicopathological parameters such as tumor size, lymph node metastasis, and stage [5]. Moreover, a meta-analysis by Bian et al. [37] including 41 publications involving a total of 7762 patients with solid cancers demonstrated that elevated serum/plasma YKL-40 was significantly associated with worse OS (HR = 1.44, 95%CI: 1.33-1.56). Actually, in addition to the predictive role for prognosis, YKL-40 might also play an important role in the diagnosis of colorectal cancer. Fuksiewicz et al. [22] indicated that YKL-40 Levels were more valuable in diagnosing rectal cancer [area under the Receiver Operating Characteristic (ROC) curve: 769] than CEA (area under the ROC curve: 0.728) in early stage patients. Besides, YKL-40 showed a much higher value in predicting the recurrence of Chinese colorectal cancer (area under the ROC curve: 0.907, comparing with the 0.714 of CEA and 0.759 of CA199) [38]. Therefore, more investigation about the diagnostic role of YKL-40 is still valuable.

Although we demonstrated that YKL-40 was predictive for OS and PFS in colorectal carcinoma patients in overall, whether it could be applied as a reliable prognostic indicator in all colorectal cancer patients is still needed to further explored by more high-quality studies. According to the subgroup analysis, YKL-40 was not related with OS (P = 0.796) or PFS (P = 0.655) in rectal cancer patients. However, in the study conducted by Fuksiewicz et al. [22], the Kaplan-Meier survival curves showed obvious differences of OS (P = 0.040) and PFS (P = 0.044) between patients with elevated (> 44.6 ng/mL) and normal serum concentration (≤ 44.6 ng/mL)of YKL-40. After calculating the HR with 95%CI according to the survival curves using the method introduced by Tierney et al. [31], different results were observed, which might be explained by the bias caused by the statistical method and small sample size. Besides, Tarpgaard et al. [27] manifested negative association between plasma YKL-40 and PFS according to the multivariate Cox analysis, but the positive results were observed in the univariate Cox analysis (HR = 1.11, 95%CI: 1.03-1.20, P = 0.006). Thus, based on the original data presented in the articles, we...
still believe that YKL-40 might show high prognostic value in these subgroups of colorectal cancer patients. However, more prospective studies with high-quality are needed to verify this conjecture.

There are several limitations in the current meta-analysis. First, all included studies are retrospective and the overall sample size is relatively small, which might cause some bias. Second, due to the lack of specific data, we failed to conduct more subgroup analysis based on other important parameters such as the disease stage, age and thresholds of serum/plasma concentration of YKL-40. Third, the comparison of expression status in tissues and serum/plasma levels in predicting long-term survival of colorectal carcinoma patients was not performed.
CONCLUSION

In overall, elevated serum/plasma concentration of YKL-40 or positive expression in tumor cells was related with poor survival of colorectal carcinoma patients. YKL-40 might serve as a novel and reliable indicator for the evaluation of prognosis in colorectal cancer.
ARTICLE HIGHLIGHTS

Research background
The predictive role of YKL-40 for long-term survival in colorectal cancer patients has been gradually investigated in recent years.

Research motivation
Whether it is a reliable and valuable prognostic indicator in patients with colorectal carcinoma has not been certified.

Research objectives
To verify the prognostic value of serum/plasma concentration of YKL-40 or expression status of YKL-40 in tumor cells in colorectal carcinoma.

Research methods
Several electronic databases were searched to identify relevant articles. The hazard ratio with 95% confidence interval was combined to evaluate the association between YKL-40 and overall survival (OS) and progression-free survival (PFS).

Research results
YKL-40 was significantly associated with poor OS ($P < 0.001$) and PFS ($P = 0.001$). Subgroup analysis stratified by the treatment, tumor type and source of YKL-40 showed similar results.

Research conclusions
Elevated serum/plasma concentration of YKL-40 or positive expression in tumor cells was related with worse prognosis of colorectal carcinoma patients.

Research perspectives
YKL-40 might serve as a novel and reliable indicator for the evaluation of prognosis in colorectal cancer.

FOOTNOTES

Author contributions: Ding L made the substantial contributions to the conception and design of the work; Wang J and Qi S searched, selected materials and extracted data, wrote this manuscript; Zhu YB revised the paper carefully and also contributed to the statistical analysis; Wang J and Qi S contributed equally to this work; all authors have read and approved the final manuscript.

Conflict-of-interest statement: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
PRISMA 2009 Checklist statement: This systematic review and meta-analysis were conducted according to the Preferred reporting items for systematic reviews and meta-analyses guidelines[29].

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number:

REFERENCES

with CEA in Chinese colorectal cancer patients. A meta-analysis of 41 cohort studies.

Kawada M \[PMID: 31390838\]

Bian B \[PMID: 31809695\]

meta-analysis positively regulates invasion and migration of PCa cells.

10.1530/ERC-14-0267

10.1158/1535-7163.MCT-10-0868

Treatment of Breast Cancer: A Systematic Review and Two Meta-Analyses Based on Four Million Cases.

Higgins JP \[PMID: 23747074\]

meta-analyses.

Tierney JF \[PMID: 22496715\]

10.1142/S0192415X20500639

Herbal Medicines 2020 (PRISMA-CHM 2020).

Lyu A, Bian Z. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Extension for Chinese

Zhang X \[PMID: 32375483\]

Yang F \[PMID: 32690589\]

10.1158/0008-5472.CAN-11-1543

Cancers (Basel) 2021; 13 \[PMID: 34359706\] DOI: 10.3390/cancers13153892

10.1038/sj.bjc.6690238

10.1097/IGC.0000000000000798

10.1038/10.1002/cncr.10644

10.1038/onc.2011.498

10.1038/10.1002/ijc.2469719

Wang J et al. YKL-40 in colorectal carcinoma