MINIREVIEWS

4688 Relationship between non-alcoholic fatty liver disease and coronary heart disease
 Arslan U, Yenerçağ M

ORIGINAL ARTICLE

Retrospective Cohort Study

4700 Remission of hepatotoxicity in chronic pulmonary aspergillosis patients after lowering trough concentration of voriconazole
 Teng GJ, Bai XR, Zhang L, Liu HJ, Nie XH

Retrospective Study

4708 Endoscopic submucosal dissection as alternative to surgery for complicated gastric heterotopic pancreas
 Noh JH, Kim DH, Kim SW, Park YS, Na HK, Ahn JY, Jung KW, Lee JH, Choi KD, Song HJ, Lee GH, Jung HY

4719 Observation of the effects of three methods for reducing perineal swelling in children with developmental hip dislocation

4726 Predictive value of serum cystatin C for risk of mortality in severe and critically ill patients with COVID-19
 Li Y, Yang S, Peng D, Zhu HM, Li BY, Yang X, Sun XL, Zhang M

4735 Sleep quality of patients with postoperative glioma at home
 Huang Y, Jiang ZJ, Deng J, Qi YJ

4743 Early complications of preoperative external traction fixation in the staged treatment of tibial fractures: A series of 402 cases
 Yang JZ, Zhu WB, Li LB, Dong QR

4753 Retroperitoneal vs transperitoneal laparoscopic lithotripsy of 20-40 mm renal stones within horseshoe kidneys

4763 Undifferentiated embryonal sarcoma of the liver: Clinical characteristics and outcomes
 Zhang C, Jia CJ, Xu C, Sheng QJ, Dou XG, Ding Y

4773 Cerebral infarct secondary to traumatic internal carotid artery dissection
 Wang GM, Xue H, Guo ZJ, Yu JL

4785 Home-based nursing for improvement of quality of life and depression in patients with postpartum depression
 Zhuang CY, Lin SY, Cheng CJ, Chen XJ, Shi HL, Sun H, Zhang HY, Fu MA
Contents

Observational Study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4793</td>
<td>Cost-effectiveness of lutetium (177Lu) oxodotreotide vs everolimus in gastroenteropancreatic neuroendocrine tumors in Norway and Sweden</td>
<td>Palmer J, Leeuwenkamp OR</td>
</tr>
</tbody>
</table>

META-ANALYSIS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4826</td>
<td>Underwater vs conventional endoscopic mucosal resection in treatment of colorectal polyps: A meta-analysis</td>
<td>Ni DQ, Lu YP, Liu XQ, Gao LY, Huang X</td>
</tr>
</tbody>
</table>

CASE REPORT

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4844</td>
<td>Intracranial malignant solitary fibrous tumor metastasized to the chest wall: A case report and review of literature</td>
<td>Usuda D, Yamada S, Izumida T, Sangen R, Higashikawa T, Nakagawa K, Iguchi M, Kasamaki Y</td>
</tr>
<tr>
<td>4853</td>
<td>End-of-life home care of an interstitial pneumonia patient supported by high-flow nasal cannula therapy: A case report</td>
<td>Goda K, Kenzaka T, Kuriyama K, Hoshijima M, Akita H</td>
</tr>
<tr>
<td>4858</td>
<td>Rupture of carotid artery pseudoaneurysm in the modern era of definitive chemoradiation for head and neck cancer: Two case reports</td>
<td>Kim M, Hong JH, Park SK, Kim SJ, Lee JH, Byun J, Ko YH</td>
</tr>
<tr>
<td>4876</td>
<td>Paliperidone palmitate-induced facial angioedema: A case report</td>
<td>Srifuengfung M, Sukakul T, Liangcheep C, Viravan N</td>
</tr>
<tr>
<td>4883</td>
<td>Improvement of lenvatinib-induced nephrotic syndrome after adaptation to sorafenib in thyroid cancer: A case report</td>
<td>Yang CH, Chen KT, Lin YS, Hsu CY, Ou YC, Tung MC</td>
</tr>
<tr>
<td>4895</td>
<td>Adult metaplastic hutch diverticulum with robotic-assisted diverticulectomy and reconstruction: A case report</td>
<td>Yang CH, Lin YS, Ou YC, Weng WC, Huang LH, Lu CH, Hsu CY, Tung MC</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4902</td>
<td>Thrombus straddling a patent foramen ovale and pulmonary embolism: A case report</td>
<td>Huang YX, Chen Y, Cao Y, Qiu YG, Zheng JY, Li TC</td>
</tr>
<tr>
<td>4917</td>
<td>Woven coronary artery: A case report</td>
<td>Wei W, Zhang Q, Gao LM</td>
</tr>
<tr>
<td>4922</td>
<td>Idiopathic multicentric Castleman disease with pulmonary and cutaneous lesions treated with tocilizumab: A case report</td>
<td>Han PY, Chi HH, Su YT</td>
</tr>
<tr>
<td>4930</td>
<td>Perianorectal abscesses and fistula due to ingested jujube pit in infant: Two case reports</td>
<td>Liu YH, Lv ZB, Liu JB, Sheng QF</td>
</tr>
<tr>
<td>4946</td>
<td>Systemic autoimmune abnormalities complicated by cytomegalovirus-induced hemophagocytic lymphohistiocytosis: A case report</td>
<td>Miao SX, Wu ZQ, Xu HG</td>
</tr>
<tr>
<td>4953</td>
<td>Nasal mucosa pyoderma vegetans associated with ulcerative colitis: A case report</td>
<td>Yu SX, Cheng XK, Li B, Hao JH</td>
</tr>
<tr>
<td>4958</td>
<td>Amiodarone-induced hepatotoxicity — quantitative measurement of iodine density in the liver using dual-energy computed tomography: Three case reports</td>
<td>Lv HJ, Zhao HW</td>
</tr>
<tr>
<td>4966</td>
<td>Multisystem involvement Langerhans cell histiocytosis in an adult: A case report</td>
<td>Wang BB, Ye JR, Li YL, Jin Y, Chen ZW, Li JM, Li YP</td>
</tr>
<tr>
<td>4981</td>
<td>Catastrophic vertebral artery and subclavian artery pseudoaneurysms caused by a fishbone: A case report</td>
<td>Huang W, Zhang GQ, Wu JJ, Li B, Han SG, Chao M, Jin K</td>
</tr>
</tbody>
</table>
Contents

World Journal of Clinical Cases

Semimonthly Volume 8 Number 20 October 26, 2020

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5007</td>
<td>Gastrointestinal stromal tumor metastasis at the site of a totally implantable venous access port insertion: A</td>
<td>Yin XN, Yin Y, Wang J, Shen CY, Chen X, Zhao Z, Cai ZL, Zhang B</td>
</tr>
<tr>
<td></td>
<td>rare case report</td>
<td></td>
</tr>
<tr>
<td>5013</td>
<td>Massive gastrointestinal bleeding caused by a Dieulafoy’s lesion in a duodenal diverticulum: A case report</td>
<td>He ZW, Zhong L, Xu H, Shi H, Wang YM, Liu XC</td>
</tr>
<tr>
<td>5019</td>
<td>Plastic bronchitis associated with Botrytis cinerea infection in a child: A case report</td>
<td>Liu YR, Ai T</td>
</tr>
<tr>
<td>5025</td>
<td>Chest, pericardium, abdomen, and thigh penetrating injury by a steel rebar: A case report</td>
<td>Yang XW, Wang WT</td>
</tr>
<tr>
<td>5030</td>
<td>Monocular posterior scleritis presenting as acute conjunctivitis: A case report</td>
<td>Li YZ, Qin XH, Lu JM, Wang YP</td>
</tr>
<tr>
<td>5036</td>
<td>Choriocarcinoma with lumbar muscle metastases: A case report</td>
<td>Pang L, Ma XX</td>
</tr>
<tr>
<td>5042</td>
<td>Primary chondrosarcoma of the liver: A case report</td>
<td>Liu ZY, Jin XM, Yan GH, Jin GY</td>
</tr>
<tr>
<td>5057</td>
<td>Rare imaging findings of hypersensitivity pneumonitis: A case report</td>
<td>Wang HJ, Chen XJ, Fan LX, Qi QL, Chen QZ</td>
</tr>
<tr>
<td>5062</td>
<td>Effective administration of cranial drilling therapy in the treatment of fourth degree temporal, facial and upper</td>
<td>Shen CM, Li Y, Liu Z, Qi YZ</td>
</tr>
<tr>
<td></td>
<td>limb burns at high altitude: A case report</td>
<td></td>
</tr>
</tbody>
</table>
ABOUT COVER

Peer-reviewer of World Journal of Clinical Cases, Dr. Aleem Ahmed Khan is a Distinguished Scientist and Head of The Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad (India). Dr. Aleem completed his Doctorate from Osmania University, Hyderabad in 1998 and has since performed pioneering work in the treatment of acute liver failure and decompensated cirrhosis using hepatic stem cell transplantation. During his extensive research career he supervised 10 PhD students and published > 150 research articles, 7 book chapters, and 2 patents. His ongoing research involves developing innovative technologies for organ regeneration and management of advanced cancers. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Ji-Hong Liu; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Semimonthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

October 26, 2020

COPYRIGHT

© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.bpnpublishing.com
Observational Study

Intraoperative systemic vascular resistance is associated with postoperative nausea and vomiting after laparoscopic hysterectomy

Meng-Di Qu, Meng-Yuan Zhang, Gong-Ming Wang, Zhun Wang, Xu Wang

ORCID number: Meng-Di Qu 0000-0003-1111-7602; Meng-Yuan Zhang 0000-0001-6224-931X; Gong-Ming Wang 0000-0002-8423-4306; Zhun Wang 0000-0003-1871-8166; Xu Wang 0000-0002-8465-5228.

Author contributions: Qu MD and Zhang MY contributed to all aspects of this manuscript, including study conception and design, collection and analysis of data, drafting and revising this manuscript; Wang GM contributed to the study conception and design, and drafting this manuscript; Wang Z contributed to the collection and analysis of data; Wang X was involved in drafting the manuscript and revising it for important intellectual content; all authors read and approved the final manuscript.

Institutional review board statement: The study was approved by the Ethics Committee of Shandong Provincial Hospital Affiliated to Shandong First Medical University (NO.2018-052).

Informed consent statement: Both verbal and written informed consents were obtained from patients before surgery.

Conflict-of-interest statement: The authors of this manuscript have no conflicts of interest to disclose.

Abstract

BACKGROUND
The incidence of postoperative nausea and vomiting (PONV) in patients undergoing laparoscopic hysterectomy is very high compared with other surgeries, even when many prophylactic measures have been taken. However, the pathogenesis of PONV is multifactorial. Female sex, a history of motion sickness or PONV, nonsmokers, and perioperative opioid use are the most closely related factors. Among the multiple risk factors, suboptimal gastrointestinal (GI) perfusion may be attributed to some cases of PONV, and increased systemic vascular resistance (SVR) may lead to GI ischemia. The hypothesis of this research was that SVR is related to PONV.

AIM
To investigate the relationship between SVR and PONV in patients undergoing laparoscopic hysterectomy.

METHODS
A total of 228 patients who underwent elective laparoscopic hysterectomy were included in this prospective observational study. SVR was monitored using a noninvasive hemodynamic monitoring system. Four indices of SVR, the baseline, mean, area under the curve (AUC), and weighted AUC, were used for analysis. The incidence and severity of nausea and vomiting were evaluated while patients were awake and throughout the intervals from 0 to 2 h, 2 to 6 h, and 6 to 24 h starting upon arrival at the post-anesthesia care unit. The associations between various SVR indices and PONV were investigated by logistic regression. \(P < 0.05 \) was considered statistically significant.

RESULTS
The incidence of PONV in the study was 56.14% (128/228), and PONV tended to appear within 6 h after surgery. Five variables were significant in univariate
analyses, however, only SVR mean [odds ratio (OR) = 1.015, 95%CI: 1.005-1.109, \(P = 0.047 \)] and duration of surgery (OR = 1.316, 95%CI: 1.003-2.030, \(P = 0.012 \)) were associated with PONV after logistic regression analysis. Furthermore, patients with high SVR mean were more likely to suffer from PONV after laparoscopic hysterectomy. On average, patients who developed PONV needed more time to tolerate diet and demonstrated poorer sleep quality on the first night after surgery.

CONCLUSION

In this study, PONV was a common complication after laparoscopic hysterectomy. SVR was associated with PONV, and high SVR mean was associated with a significantly increased risk of PONV.

Key Words: Postoperative nausea and vomiting; Systemic vascular resistance; Gastrointestinal perfusion; Laparoscopic hysterectomy; Prospective observational study; Pneumoperitoneum

Core Tip: We performed a prospective observational study of the risk factors for postoperative nausea and vomiting (PONV) after laparoscopic hysterectomy in a single institution. We analyzed the relationship between systemic vascular resistance (SVR) indices and the occurrence of PONV and found that higher SVR mean was associated with increased risk of PONV after laparoscopic hysterectomy.

INTRODUCTION

Postoperative nausea and vomiting (PONV) is defined as nausea, retching or vomiting that occurs within 24 h after an operation, remaining prevalent despite the utilization of various antiemetic measures. The incidence of PONV after general anesthesia is approximately 30%\(^1\) and can be as high as 80% after gynecological laparoscopic surgery\(^2\). The consequences of PONV include patient discomfort, additional postoperative complications, prolonged hospitalization, and increased health care costs\(^3\). The pathogenesis of PONV is multifactorial, and its etiology and pathogenesis are not clear.

Suboptimal gastrointestinal (GI) perfusion may be responsible for some cases of PONV\(^4\). Insufficient GI perfusion leads to an increase in serotonin release in the GI tract, which induces PONV by stimulating the chemoreceptor trigger zone adjacent to the vomiting center\(^5\). However, currently, GI perfusion cannot be easily and continuously monitored in patients. Optimal systemic vascular resistance (SVR) is essential for the perfusion of any metabolically active tissue bed, such as the GI tract\(^6\). Increased SVR is related to suboptimal GI perfusion, and reducing SVR can significantly improve GI perfusion\(^7\). We used intraoperative SVR values to reflect GI perfusion in this study.

The aim of this prospective observational study was to observe the associations between SVR and PONV in patients undergoing laparoscopic hysterectomy in order to provide new ideas for the treatment of PONV. We chose laparoscopic hysterectomy because patients undergoing this operation demonstrate a higher incidence of PONV\(^8\). We excluded patients with a history of smoking and motion sickness or PONV, since these are the main factors affecting PONV\(^8\). Furthermore, there were risk factors for suboptimal GI perfusion and increased SVR in our study population, including surgical stress, body tilting\(^8\), pneumoperitoneum\(^9\) and vasopressor use\(^9\). The hypothesis was that SVR is related to PONV.
MATERIALS AND METHODS

This was a prospective, observational, single-cohort study. The study was approved by the Ethics Committee of Shandong Provincial Hospital Affiliated to Shandong First Medical University (NO. 2018-052). Both verbal and written informed consents were obtained from patients before surgery.

Patients

A total of 304 patients aged between 18 and 65 years who underwent elective laparoscopic hysterectomy (American Society of Anesthesiologists status I–II) from February 2018 to June 2019 at the Shandong Provincial Hospital participated in this study. The exclusion criteria were as follows: (1) Patient refusal; (2) Emergency surgery; (3) History of smoking; (4) Prior history of PONV or history of motion sickness; (5) Vaginal or abdominal (open) hysterectomy; (6) Concurrent GI surgery; (7) Chemotherapy or radiotherapy before surgery; (8) Antiemetic medication administered in the hospital within 24 h before surgery; (9) Intensive care unit admission after surgery; and (10) Significant cardiovascular, neurologic, psychiatric, pulmonary, or hepatic diseases.

Anesthesia

In the operating room, following the establishment of standard monitoring including electrocardiography, pulse oximetry, and noninvasive blood pressure, continuous noninvasive arterial blood pressure measurement was established using the noninvasive hemodynamic monitoring system LiDCO (LiDCO Ltd., Cambridge, United Kingdom). Anesthesia was then induced using intravenous dexamethasone, lidocaine, sufentanil, and propofol, and a tracheal tube was placed facilitated by cisatracurium administration. Anesthesia was typically maintained by total intravenous anesthesia using an intravenous infusion of propofol and remifentanil, avoiding inhalation anesthetics. Bispectral index monitoring was used to control the depth of anesthesia to prevent intraoperative awareness. All patients received intravenous ondansetron (4 mg) for PONV prophylaxis towards the end of surgery, and a patient-controlled venous analgesia (PCVA) device was connected to the patient before entering the post-anesthesia care unit. For PCVA, we utilized sufentanil instead of butorphanol and ondansetron based on our clinical experience.

SVR monitoring

SVR was monitored using the LiDCO rapid monitor. Monitoring and data recording started before anesthesia induction and stopped at the end of surgery. The monitor was positioned at the back of the anesthesia machine, blinded to the anesthesia team. The SVR data were captured every 2 s by a research computer. The average minute values of the measurements were used for SVR index derivation. Four indices of SVR were derived, the baseline (the patient was awake and breathing room air), mean, area under the curve (AUC), and weighted AUC values. The AUC was the sum of the differences between the baseline and the data point of every minute that was higher than the baseline (Figure 1). The weighted AUC was calculated by dividing the AUC by the time of the recording.

Postoperative nausea and vomiting

Nausea was defined as a subjective unpleasant sensation associated with the urge to vomit. Retching was defined as the labored, spastic, and rhythmic contraction of the chest and abdominal muscles without expulsion of gastric contents. Vomiting was defined as the forceful expulsion of gastric contents from the mouth. Patients subjected to any of the signs and symptoms of nausea, retching, or vomiting within 24 h after surgery were diagnosed with PONV in this study. The incidence and severity of nausea and vomiting were evaluated while patients were awake and throughout the intervals from 0 to 2 h, 2 to 6 h, and 6 to 24 h starting upon arrival at the post-anesthesia care unit. Nausea severity was evaluated using the nausea visual analog scale.

Statistical analysis

Logistic regression requires adequate sample content. Generally, an effective sample size is 10 to 15 times the number of covariates. Sixteen covariates were included in this study, and the required sample size was at least $16 \times 15 = 240$. Considering the incidence of PONV, we decided to recruit 300 patients. Continuous variables are presented as the mean ± SD or median and interquartile range (P25, P75). Data were
Figure 1 Systemic vascular resistance trace from one patient. SVR: Systemic vascular resistance.

Results compared with the use of independent samples t-tests or Mann-Whitney U tests. Categorical variables are presented as the number of patients (percentage). Data were compared with the use of the \(\chi^2 \) test. We used log transformation to adjust the AUC and weighted AUC. The effect of SVR on the occurrence of PONV was assessed with the use of binary logistic regression analysis. Initially, SVR indices and perioperative variables were evaluated for univariate association with PONV. After the collinearity test, variables that were significant in univariate analyses (\(P < 0.1 \)) were included in a binary logistic regression model. We chose \(P < 0.1 \) to analyze more variables in subsequent analysis. \(P < 0.05 \) was considered statistically significant. All statistical analyses were performed with the SPSS statistical package, version 24.0, Chicago, IL, United States.

RESULTS

A total of 304 patients underwent elective laparoscopic hysterectomy during the study period and matched the selection criteria. Among the eligible patients, 228 gave written consent and were enrolled in the final analysis (Figure 2). The perioperative variables of all enrolled patients are listed in Table 1.

A total of 128 patients developed PONV after surgery, resulting in an overall PONV rate of 56.14%. Among patients who developed PONV, in 57.03% of the cases, the first appearance of PONV occurred roughly within 6 h after surgery, a time that is consistent with previous observations\(^{[14]}\).

Five variables that were significant in univariate analyses (\(P < 0.1 \)) were consecutively subjected to a logistic regression analysis (Table 2). As a result, duration of surgery [odds ratio (OR) = 1.316, 95%CI: 1.003-2.030, \(P = 0.012 \)] and SVR mean (OR 1.015, 95%CI: 1.005-1.109, \(P = 0.047 \)) were identified as independent predictors of PONV (Table 2, Figure 3). Notably, high SVR mean was associated with a significantly increased risk of PONV in this study (Figure 4).

Comparisons between patients with and without PONV showed that the former group needed more time to tolerate diet and demonstrated poorer sleep quality on the first night postoperatively (Table 1).
Table 1 Perioperative variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>PONV group (n = 128)</th>
<th>Non-PONV group (n = 100)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>50.3 ± 7.7</td>
<td>50.9 ± 6.2</td>
<td>0.672</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.7 ± 3.6</td>
<td>24.6 ± 2.4</td>
<td>0.064</td>
</tr>
<tr>
<td>Hb (g/L)</td>
<td>121.7 ± 21.1</td>
<td>121.1 ± 20.4</td>
<td>0.902</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>37.8 ± 5.1</td>
<td>37.5 ± 5.3</td>
<td>0.822</td>
</tr>
<tr>
<td>Past medical history</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>22 (45.8)</td>
<td>26 (54.2)</td>
<td>0.250</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>15 (53.6)</td>
<td>13 (46.4)</td>
<td>0.553</td>
</tr>
<tr>
<td>SVR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR baseline (dyn*s/cm⁵)</td>
<td>1436 ± 335</td>
<td>1272 ± 367</td>
<td>0.029</td>
</tr>
<tr>
<td>SVR mean (dyn*s/cm³)</td>
<td>1543 ± 386</td>
<td>1347 ± 322</td>
<td>0.050</td>
</tr>
<tr>
<td>SVR AUC (dyns/cm³min⁻¹)</td>
<td>4.53 ± 0.37</td>
<td>4.25 ± 0.47</td>
<td>0.015</td>
</tr>
<tr>
<td>SVR AUC weighted (dyns/cm³min⁻²)</td>
<td>5.25 ± 0.83</td>
<td>4.92 ± 0.97</td>
<td>0.160</td>
</tr>
<tr>
<td>Anesthetic agents and drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remifentanil (mg)</td>
<td>1.1 ± 0.6</td>
<td>1.0 ± 0.4</td>
<td>0.406</td>
</tr>
<tr>
<td>Sufentanil (μg)</td>
<td>109.6 ± 20.2</td>
<td>118.4 ± 16.3</td>
<td>0.491</td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>191.1 ± 74.8</td>
<td>134.6 ± 53.8</td>
<td>0.017</td>
</tr>
<tr>
<td>Intraoperative input and output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalloid (mL)</td>
<td>1559.6 ± 483.6</td>
<td>1519.6 ± 590.9</td>
<td>0.704</td>
</tr>
<tr>
<td>Urine output (mL)</td>
<td>527.5 ± 259.5</td>
<td>455.9 ± 262.2</td>
<td>0.261</td>
</tr>
<tr>
<td>Estimated blood loss (mL)</td>
<td>115.6 ± 97.9</td>
<td>106.2 ± 128.6</td>
<td>0.275</td>
</tr>
<tr>
<td>Postoperative complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAS score</td>
<td>3.9 ± 1.9</td>
<td>2.8 ± 1.7</td>
<td>0.414</td>
</tr>
<tr>
<td>Sleep quality score</td>
<td>5.7 ± 2.3</td>
<td>6.8 ± 2.2</td>
<td>0.020</td>
</tr>
<tr>
<td>Time to walk (h)</td>
<td>21.6 ± 7.7</td>
<td>19.6 ± 6.2</td>
<td>0.173</td>
</tr>
<tr>
<td>Time to diet (h)</td>
<td>11.0 (7.0, 16.3)</td>
<td>7.0 (6.0, 9.4)</td>
<td>0.012</td>
</tr>
<tr>
<td>Length of hospital stay after surgery (h)</td>
<td>109.6 ± 42.7</td>
<td>118.4 ± 58.3</td>
<td>0.379</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD or median and IQR (P25, P75) or n (%). VAS score is the most severe within 24 h after surgery. Sleep quality score is the first night after surgery. The time to diet is the time from the end of the surgery to when the patient started to ingest something other than water without vomiting. BMI: Body mass index; PONV: Postoperative nausea and vomiting; AUC: Area under curve; SVR: Systemic vascular resistance.

DISCUSSION

There are many factors affecting PONV, including patient-, anesthesia-, and surgery-related factors. Female sex, a history of motion sickness or PONV, nonsmokers, and perioperative opioid use are the most closely related factors\(^1\). This prospective observational study showed that SVR was associated with PONV in patients undergoing laparoscopic hysterectomy. In addition, patients with high SVR mean were more likely to develop PONV.

Maintenance of tissue perfusion is one of the prerequisites for the proper functioning of any organ\(^2\). Suboptimal tissue perfusion, depending on the severity and duration, can cause organ dysfunction and increase morbidity and mortality\(^3\). Suboptimal GI perfusion may be responsible for some cases of PONV\(^4\). The GI tract is the most vulnerable to hypoperfusion of the whole body\(^5\). The tissue bed of the GI tract is metabolically active; however, it has minimal to no autoregulatory capacity\(^6\) and is notoriously intolerant of even a brief period of ischemia\(^7\). It has been reported that one of the important mechanisms of PONV is the release of serotonin due to...
Table 2 Predictors of postoperative nausea and vomiting

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Binary logistic regression analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P value</td>
<td>OR (95%CI)</td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>0.017</td>
<td>1.316 (1.003-2.030)</td>
</tr>
<tr>
<td>SVR mean (dyn*s/cm5)</td>
<td>0.050</td>
<td>1.015 (1.005-1.109)</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>SVR baseline (dyn*s/cm5)</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>SVR AUC (dyn*s/cm5*min)</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

SVR: Systemic vascular resistance; AUC: Area under curve; OR: Odds ratio; BMI: Body mass index.

Figure 2 Flow chart of the study. PONV: Postoperative nausea and vomiting; ICU: Intensive care unit.

Figure 3 Independent predictors of postoperative nausea and vomiting. SVR: Systemic vascular resistance.

insufficient GI perfusion and the resulting ischemia\cite{5-7}. Fasting before elective surgery will cause hypovolemia and GI ischemia in patients, and they are more prone to PONV. Crystal or colloid fluid for intravenous rehydration before surgery can significantly reduce the incidence of PONV\cite{21}. Other studies have found a correlation between the occurrence of PONV and the increase in serotonin levels. Patients with PONV have higher levels of serotonin metabolites in their urine\cite{22}. These results show
Figure 4 Incidence of postoperative nausea and vomiting between different levels of systemic vascular resistance mean. SVR: Systemic vascular resistance; PONV: Postoperative nausea and vomiting.

the relationship between PONV, GI perfusion, and serotonin.

Furthermore, PONV is more common in patients undergoing laparoscopic surgery. Carbon dioxide pneumoperitoneum has been proposed as a potential cause23. Compared with traditional laparotomy, CO\textsubscript{2} pneumoperitoneum used in laparoscopic surgery more easily causes increased intra-abdominal pressure and compresses the GI tissue mucosa, reducing blood flow24-26. Then, more serotonin is released, which may stimulate the chemoreceptor trigger zone through the GI vagal nerve, consequently leading to PONV27. In this study, after pneumoperitoneum was established, SVR increased significantly. After surgery was completed, SVR basically returned to preoperative levels (Figure 1). This shows that pneumoperitoneum during laparoscopic surgery leads to tissue hypoperfusion, which can be reflected by the increase in SVR.

According to our observations, higher SVR mean increases the risk of PONV. It is suggested that we could reduce SVR levels to relieve GI mucosal pressure during surgery, thereby reducing the incidence of PONV. SVR is an index calculated from the mean arterial pressure, right atrial pressure, and cardiac output. The normal value is generally 900-1500 dyn*s/cm5. In this study, SVR often increased under the premise of normal blood pressure. Moreover, the cardiac output decreased, which may also explain why increased SVR is related to tissue hypoperfusion.

The duration of surgery remains an independent risk factor for PONV, which is consistent with some previous studies28. The opioid doses administered during the perioperative period have not been shown to be related to PONV. This may be related to the fact that the patient will stop PCVA when PONV occurs. In this regard, we should pay attention to counseling patients before surgery, not to reducing the discomfort caused by PONV at the cost of pain. We also found that the visual analog scale scores of PONV patients were worse than those of non-PONV patients, which may be related to the patients’ tolerance and subjective experience. However, the occurrence of PONV was not associated with the length of hospitalization. PONV generally occurred within 24 h after surgery, and it was not the main factor that determined the time of discharge.

This study has several limitations. One major limitation is that PONV diagnosis mainly depends on the subjective symptoms of patients, thus lacking objective indicators for measurement. Another limitation is that this was a single-cohort observational study. Therefore, a causal effect of SVR on PONV could not be determined. Whether SVR monitoring-guided care can improve PONV cannot be determined by this study. Although the accuracy of the LiDCO rapid monitoring system has been shown in cardiac surgery patients, whether SVR has reference significance remains to be investigated29.

CONCLUSION

In summary, duration of surgery and SVR mean were associated with PONV after laparoscopic hysterectomy. Patients with high SVR mean were more likely to develop
PONV. Although we administered prophylactic therapy, the incidence of PONV in this study remained very high. The complexity of the pathogenesis makes the prevention of PONV more difficult, and the current lack of animal experimental models that can replace humans is also a prominent concern in the research process. We need to actively explore and constantly look for measures that can reduce the occurrence of PONV.

ARTICLE HIGHLIGHTS

Research background
Postoperative nausea and vomiting (PONV) remains prevalent after general anesthesia, especially after gynecological laparoscopic surgery. The pathogenesis of PONV is multifactorial, and its etiology and pathogenesis are not clear. Suboptimal gastrointestinal (GI) perfusion may be responsible for some cases of PONV, and there are risk factors for suboptimal GI perfusion in patients undergoing laparoscopic hysterectomy. Furthermore, increased systemic vascular resistance (SVR) is related to suboptimal GI perfusion. However, there is currently no research on the relationship between SVR and PONV.

Research motivation
Female sex, a history of motion sickness or PONV, nonsmokers, and perioperative opioid use are the most closely related risk factors for PONV. Suboptimal GI perfusion may be attributed to some cases of PONV, and an increased SVR may lead to GI ischemia. The present study analyzed the relationship between SVR indices and PONV after laparoscopic hysterectomy, which may assist in the prevention of PONV in the future.

Research objectives
The aim of this prospective observational study was to observe the associations between SVR and PONV in patients undergoing laparoscopic hysterectomy. Four SVR indices, the baseline, mean, area under the curve (AUC) and weighted AUC, were assessed through logistic regression analysis. Moreover, we compared the outcomes of PONV patients and non-PONV patients.

Research methods
We performed a prospective observational study of patients undergoing laparoscopic hysterectomy.

Research results
The incidence of PONV after laparoscopic hysterectomy in our institution was 56.14%, and PONV mostly occurred roughly within 6 h after surgery. SVR mean and duration of surgery were associated with PONV. High SVR mean was associated with a significantly increased risk of PONV in this study. Furthermore, patients who developed PONV needed more time to tolerate diet and demonstrated poorer sleep quality on the first night after surgery.

Research conclusions
SVR mean and duration of surgery were associated with PONV after laparoscopic hysterectomy. Patients with high SVR mean were more likely to develop PONV.

Research perspectives
Although we administered many prophylactic measures, the incidence of PONV remained very high, especially after gynecological laparoscopic surgery. More randomized controlled trials should be performed to explore precautions that can reduce the occurrence of PONV.

REFERENCES

