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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the 
most common chronic liver disease worldwide, paralleling the rising pandemic of 
obesity and type 2 diabetes. Due to the growing global health burden and com-
plex pathogenesis of MASLD, a multifaceted and innovative therapeutic approach 
is needed. Incretin receptor agonists, which were initially developed for diabetes 
management, have emerged as promising candidates for MASLD treatment. This 
review describes the pathophysiological mechanisms and action sites of three 
major classes of incretin/glucagon receptor agonists: glucagon-like peptide-1 
receptor agonists, glucose-dependent insulinotropic polypeptide receptor 
agonists, and glucagon receptor agonists. Incretins and glucagon directly or 
indirectly impact various organs, including the liver, brain, pancreas, gastro-
intestinal tract, and adipose tissue. Thus, these agents significantly improve 
glycemic control and weight management and mitigate MASLD pathogenesis. 
Importantly, this study provides a summary of clinical trials analyzing the effect-
iveness and safety of incretin receptor agonists in MASLD management and 
provides an in-depth analysis highlighting their beneficial effects on improving 
liver function, hepatic steatosis, and intrahepatic inflammation. There are 
emerging challenges associated with the use of these medications in the real 
world, particularly adverse events, drug-drug interactions, and barriers to access, 
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which are discussed in detail. Additionally, this review highlights the evolving role of incretin receptor agonists in 
MASLD management and suggests future research directions.

Key Words: Metabolic dysfunction-associated steatotic liver disease; Metabolic dysfunction-associated steatohepatitis; 
Glucagon-like peptide-1; Glucose-dependent inulinotropic polypeptide; Glucagon; Incretin; Receptor agonist
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Core Tip: In this review, we highlight the evolving role of incretin and glucagon receptor agonists in metabolic dysfunction-
associated steatotic liver disease. These agents showed promising potential for improving hepatic steatosis and metabolic 
dysfunction-associated steatohepatitis (MASH) with a clear benefit for associated cardiometabolic risk factors. However, its 
role in MASH-associated fibrosis remains unclear. Barriers to access due to limited supplies, cost, and lack of insurance 
coverage could be overcome through patent and regulatory reforms on drug-device combinations, which may allow for 
generic competitors of these agents to be available for patients at affordable prices.

Citation: Xie C, Alkhouri N, Elfeki MA. Role of incretins and glucagon receptor agonists in metabolic dysfunction-associated steatotic 
liver disease: Opportunities and challenges. World J Hepatol 2024; 16(5): 731-750
URL: https://www.wjgnet.com/1948-5182/full/v16/i5/731.htm
DOI: https://dx.doi.org/10.4254/wjh.v16.i5.731

INTRODUCTION
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing. MASLD has 
become the most common chronic liver disease worldwide, affecting more than 30% of the global population, and is 
associated with the pandemic of obesity and type II diabetes mellitus (T2DM)[1,2]. MASLD and its severe phenotype 
metabolic dysfunction-associated steatohepatitis (MASH) can progress to hepatic fibrosis and cirrhosis and increase the 
risk of hepatocellular carcinoma[3]. Moreover, MASLD is associated with an increased risk of cardiovascular diseases, 
chronic kidney disease, and extrahepatic malignancies[4-6].

Given the growing global disease burden of MASLD, there is an unmet clinical need for therapeutic intervention. 
Regular physical activity and dietary modifications are essential in managing MASLD at various stages of disease 
progression. However, implementation of a healthy lifestyle that maintains a sustainable and significant weight loss to 
alleviate MASH and hepatic fibrosis is challenging, and only a small portion (approximately 20%) of the MASLD 
population achieves at least 10% total body weight loss and sustains it for at least one year[7]. Bariatric surgery can 
maintain significant long-term weight loss, resolve MASH, and result in fibrosis regression. However, due to its surgical 
risk, it cannot be considered a first-line treatment[8,9]. Thus, pharmacological interventions are becoming a rising 
research focus.

The pathogenesis of MASLD is complex and regulated by multiple factors, including genetic, environmental, 
microbiome, and lifestyle factors. T2DM and obesity are two well-known risk factors linked to MASLD[3]. T2DM is 
characterized by insulin resistance and relative insulin deficiency. Insulin resistance increases the breakdown of fats in 
adipose tissue, leading to an excessive influx of free fatty acids into the liver. Moreover, insulin resistance is linked to 
increased hepatic de novo lipogenesis, which results in further fat accumulation in the liver. Intrahepatic fat accumulation 
promotes oxidative stress, mitochondrial dysfunction, and inflammation, which can progress to hepatic inflammation[10-
13]. Obesity contributes to MASLD via a complex crosstalk network. It shares many similarities with T2DM, as it is 
primarily impacted by insulin resistance and adipocyte dysfunction. Moreover, obesity is affected by the hallmark 
process of lipolysis, excess circulating free fatty acids and increased de novo lipogenesis. Furthermore, it subsequently 
triggers inflammatory processes via mitochondrial defects, endoplasmic reticulum stress, and oxidative stress, cont-
ributing to fibrogenesis and cirrhosis[14].

Given the close pathogenic link between MASLD and T2DM/obesity, incretins have emerged as a promising thera-
peutic option for treating MASLD. Incretins are gut-derived peptide hormones secreted after meals and regulate insulin 
secretion in response to fluctuations in glucose levels. Incretin-based therapy was initially developed for diabetes 
management and achieved great success in glycemic control. It also shows significant potential in addressing obesity. 
Recently, these agents have also been shown to provide considerable cardiovascular and renal health benefits[15,16]. 
There are two well-studied incretins, glucagon-like peptide-1 receptor (GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP), and both can regulate glucagon secretion[17,18]. Although glucagon (GC) is not considered a kind of 
incretin, its agonism shares many similarities and synergistic effects with incretin agonism according to liver studies[19]. 
This review focuses on glucagon-like peptide-1 receptor agonists (GLP-1RAs), glucose-dependent insulinotropic 
polypeptide receptor agonists (GIPRAs), and glucagon receptor agonists (GCGRAs). There are emerging studies on dual 
or triple receptor agonists (RAs) that could boost the advantages and offset the disadvantages of certain incretins. These 
agents have been gaining increasing attention as novel agents that can better control hyperglycemia and reduce body 
weight, and they might benefit MASLD patients due to their potential to target multiple pathways[20].
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This narrative review of incretins and glucagon RAs highlights the underlying mechanisms of action, provides a 
summary of clinical data from recently published trials, reveals potential safety concerns, highlights challenges in 
accessing incretins, and explores future perspectives on this emerging topic.

PATHOPHYSIOLOGICAL MECHANISMS AND SITES OF ACTION OF INCRETINS/GLUCAGON
GLP-1RAs
GLP-1 is secreted by specific enteroendocrine cells (L cells) predominantly located in the lower intestine and colon[17]. 
GLP-1 can be secreted at a low continuous basal level during fasting and is secreted in a bolus fashion after a meal, with 
an increase of approximately two to three times its baseline[21,22]. It stimulates glucose-dependent insulin release and 
inhibits glucagon secretion from pancreatic α-cells, improving glycemic control[17].

It is a consensus that hepatocytes and other types of liver cells, such as Kupffer cells and stellate cells, do not express 
the typical GLP-1 receptor, suggesting that the effects of GLP-1 on the liver in MSALD patients are mainly indirect[21,
22]. GLP-1 can regulate portal and peripheral plasma insulin and glucagon concentrations to maintain glucose 
homeostasis[23]. In the diet-induced MASLD mouse model, GLP-1RAs decrease insulin resistance, hepatocyte 
lipotoxicity, and intrahepatic inflammation by improving mitochondrial function[24].

The GLP-1 receptor is distributed in various organs and tissues, including the pancreas, brain, adipose tissue, and 
gastrointestinal tract. Thus, GLP-1 exerts a broader range of physiological effects beyond its effects on glycemic regu-
lation and direct and indirect effects on various types of organs and tissues (Figure 1) to influence MASLD[25].

Nervous system: GLP-1 receptors are found in various parts of the brain, such as the hypothalamus, hindbrain, and 
amygdala, and are crucial for controlling appetite. In preclinical and clinical studies, activation of central GLP-1 receptors 
by GLP-1RAs has been shown to reduce appetite, satiety, food intake, and weight[17,26-30]. In mouse models, this effect 
is mediated by the modulation of key appetite-regulating pathways. GLP-1RAs can inhibit the activity of neuropeptide Y 
(NPY) and agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus located in the hypothalamus. 
Moreover, GLP-1RAs stimulate neurons to express proopiomelanocortin and cocaine- and amphetamine-regulated 
transcripts, which indirectly inhibit NPY-AgRP neurons. These collective effects lead to the release of inhibitory signals to 
the parabrachial nucleus, suppressing appetite, increasing postprandial satiety, and contributing to weight loss[28,29]. A 
human model study also indicated that GLP-1 receptors are expressed on neurons in the human hypothalamus, medulla, 
and parietal cortex and that GLP-1RAs decrease appetite and responses to desirable foods by suppressing brain activation 
in T2DM patients[30]. Outside the central nervous system, GLP-1 receptors located in vagal afferent nerves could faci-
litate food termination by sending anorexigenic signals to parabrachial nucleus neurons. Moreover, activation of GLP-1 
receptor vagal afferents increases glucose tolerance, and its inhibition causes hyperglycemia, which is independent of 
food intake[31]. GLP-1 also influences food intake by regulating taste sensation, as GLP-1 receptor expression on adjacent 
taste nerve fibers[32] and GLP-1 receptor knockout mice exhibit reduced responses to sweeteners, suggesting that GLP-1 
plays a critical role in maintaining sweet taste sensitivity[33]. The effective regulation of appetite through mechanisms 
such as those mediated by GLP-1 receptors is vital in managing MASLD, as it directly influences food intake and body 
weight, both of which are key factors in the progression and treatment of this disease.

Pancreas: In addition to their direct effects on pancreatic α-cells to inhibit glucagon secretion, GLP-1RAs enhance insulin 
secretion from pancreatic β-cells. Importantly, this effect is glucose dependent and occurs when glucose levels are 
elevated, thereby lowering the risk of hypoglycemia[17,34]. In MASLD, increased insulin secretion may help address the 
underlying insulin resistance associated with this disease, potentially reducing hepatic glucose production and liver fat 
accumulation.

Gastrointestinal tract: GLP-1RAs exert an essential influence on gastrointestinal motility. Hypoglycemia can induce the 
acceleration of gastric emptying, which is an essential physiological response to increase the rate of carbohydrate 
absorption; however, this accelerated gastric emptying effect can be attenuated by the administration of exogenous GLP-1
[35]. This delay in gastric emptying leads to a more gradual and sustained postprandial glucose response, and the effects 
of GLP-1 on lowering postprandial glycemia are strongly correlated with its impact on gastric emptying[36]. In addition 
to gastric emptying, GLP-1RA also inhibits small intestinal motility, flow, and transit, subsequently affecting glucose 
absorption in humans[37]. GLP-1RA slows gastric emptying, likely through the vagus nerve, and this effect can be 
aborted after vagal denervation in animals. A human study also indicated that GLP-1 did not impact gastric volume 
during fasting or postprandial periods in patients with vagal neuropathy[38]. Slower gastric emptying and intestinal 
motility contribute to feelings of fullness and satiety, potentially resulting in reduced food intake.

Adipose tissue: Adipose tissue is essential for lipid metabolism. Dysregulation of lipolysis in fat cells can result in an 
increase in the efflux of free fatty acids into the blood, increased de novo lipogenesis, decreased fatty oxidation, and 
reduced lipid export from the liver. These effects are essential for liver fat accumulation and the development of inflam-
mation, which are hallmarks of MASLD[19,39,40]. The GLP1 receptor is present in adipose tissue and can stimulate 
lipolysis in adipocytes in a receptor-dependent fashion via adenylate cyclase/cAMP signaling[41]. Furthermore, GLP-1 
stimulates thermogenesis and overall energy expenditure in brown adipose tissue[42,43]. A meta-analysis studying the 
effect of GLP-1RAs on fat distribution in patients with T2DM showed that treatment with GLP-1RAs led to significant 
reductions in both visceral and subcutaneous adipose tissue. These findings indicate that GLP-1RAs play a critical role in 
fat distribution and can reduce adipose tissue mass in patients with T2DM[44].
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Figure 1 A schematic illustration showing how glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide act on multiple 
organs to mitigate metabolic dysfunction-associated steatotic liver disease. GLP-1: Glucagon-like peptide 1; GIP: Glucose-dependent insulinotropic 
polypeptide.

GIPRAs
GIP is an incretin hormone secreted by K cells in the upper small intestine in reaction to the intake of nutrients[34]. Like 
GLP-1, GIP plays a pivotal role in glucose homeostasis by enhancing glucose-dependent insulin secretion from pancreatic 
β-cells through binding to the GIP receptor and activating cAMP and its related pathway[45]. There is no robust evidence 
for the presence of GIP receptors in liver cells, suggesting that GIP affects MASLD mainly via indirect effects[21,22]. 
Inhibition of GIP signaling could reduce insulin resistance, liver weight, hepatic steatosis deposition, and the levels of the 
inflammatory cytokine interleukin-6[46]. While GIP primarily targets the pancreas, it is present in multiple organs 
(Figure 1) and exerts additional effects on metabolic regulation, making GIPRA a promising candidate for MASLD 
management.

Brain: Emerging evidence suggests that GIP receptors are expressed in the central nervous system, particularly in the 
hypothalamus, and are involved in appetite regulation[47]. The role of GIP in the hypothalamus in relation to hunger and 
satiety is less clear than that of GLP-1. Although GLP-1 has an established mechanism and a clear role in influencing food 
intake, the impact of GIP on appetite regulation has not been determined. Multiple studies with inconsistent results 
highlight the need for more focused research to fully understand the neurological functions of GIP, particularly its 
potential effects on appetite and satiety regulation. In rodent models, both GIP receptor antagonism and agonism can 
positively impact body weight while decreasing food intake. However, additional studies are needed to determine the 
cause of this phenomenon[48]. One possible theory is that GIP receptors can achieve inactivation or downregulation via 
internalization. After receptor activation, the status can switch to receptor desensitization. Thus, agonists may act as 
functional antagonists under certain circumstances[48,49]. The compensatory relationship between GLP-1 and GIP might 
also play a role in the paradoxical agonist-antagonist phenomenon[48]. However, GIP did not exert any acute effects on 
appetite or food intake in a human study[50].

Pancreas: GIP acts on beta cells in the pancreas and regulates postprandial insulin secretion. GIP increases pancreatic 
insulin secretion by binding to the GIP receptor to potentiate glucose-dependent insulin secretion by activating cAMP 
and its related downstream signaling pathway[45]. By facilitating insulin release, GIPRAs may help address 
hyperglycemia and insulin resistance, both of which are central features of MASLD. The insulinotropic effect of GIP is 
lost in patients with T2DM; thus, restoring GIP deficiency with GIPRA could be a potentially interesting focus of future 
studies[51]. However, in contrast to GLP-1, which suppresses glucagon secretion, GIP acts on alpha cells to facilitate 
glucagon release, which represents an essential aspect of its regulatory impact on glucose hemostasis[18].

Gastrointestinal tract: Administration of exogenous GIP does not significantly affect human gastric emptying[52]. Urva et 
al[53] showed that GIPRA alone does not affect gastric emptying, and increasing doses of GIPRAs to GLP-1RAs did not 
slow gastric emptying. These findings indicate that GLP-1, but not GIP, is the primary factor involved in reducing gastric 
emptying in a mouse model. In human studies, the gastric emptying delays observed with both dual GLP-1RA/GIPRA 
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and solely GLP-1RA were comparable. This finding suggested that the delay is primarily caused by GLP-1RA, and GIP 
agonism does not contribute significantly to this effect[53].

Adipose tissue: GIP is proposed to influence fat deposition in adipose tissue, and it also affects fat deposition in 
nonadipose tissues, such as liver tissue. GIP reduces adipokine secretion and increases white adipose tissue storage 
capacity[19]. The study also revealed that GIP receptors in adipocytes and GIP itself might increase fat accumulation in 
subcutaneous adipose tissue. This occurs through the activation of lipoprotein lipase, which helps breakdown 
chylomicron triglycerides and inhibits lipolysis triggered by catecholamines and glucagon[54]. A large-scale population 
study suggested that higher GIP levels were associated with more visceral abdominal fat and a greater waist-to-hip ratio, 
independent of the plasma insulin concentration[55]. The direct effect of GIP agonism as a therapy for liver fat deposition 
remains uncertain, and additional in-depth research is needed to fully understand its effects and mechanisms.

GCGRAs
Glucagon, which is produced mainly by alpha cells in the pancreas and, to some extent, in the small intestine, is crucial 
for regulating key metabolic processes. Glucagon acts on beta cells in the pancreas and stimulates insulin secretion to 
maintain glucose hemostasis. Dysregulated glucagon secretion occurs in patients with MASLD or associated comor-
bidities, which has triggered research interest in the role of glucagon in MASLD[56-58].

In contrast to GIP and GLP-1, which are believed not to act on the liver directly, glucagon receptors are predominantly 
located in the liver and are also present in other types of organs and tissues, such as the brain and adipose tissue. This 
widespread distribution underlines the multifaceted role of these receptors in MASLD (Figure 2)[19,59].

In the liver, glucagon significantly lowers hepatic glycogen levels while increasing gluconeogenesis[60]. Chronic 
dosing with glucagon may increase hepatic insulin sensitivity by augmenting insulin activity[61]. Glucagon stimulates 
beta-oxidation of fatty acids and inhibits hepatic fat synthesis, which could reduce fatty acid storage. It also increases 
mitochondrial turnover, decreases oxidative stress, and decreases the activation of stellate cells. These effects could 
subsequently reduce intrahepatic fatty acid storage and inflammation/fibrosis[19,62].

Dysregulation of glucagon signaling is implicated in MASLD, suggesting that GCGRA is an attractive therapeutic 
option. These agents, which target the glucagon receptor in various organs and tissues, offer an approach to address the 
complex pathophysiology of MASLD.

Brain: Glucagon can cross the blood-brain barrier and bind to receptors in many brain areas, including the hypothalamus
[63,64]. Administering glucagon significantly suppressed satiety in animal studies, and administering antibodies against 
glucagon could stimulate appetite[65,66]. It is postulated that the hepatic branch of the vagus nerve transmits satiety 
signals to the hypothalamus. This liver-brain axis theory is supported by evidence that the satiety effect induced by 
glucagon administration into the portal vein is aborted after hepatic vagotomy and that damaging terminal fields of vagal 
afferent neurons blocks the glucagon-induced suppression of food intake[65,67]. In a small-scale human study, it was 
found that coadministration of low dosages of glucagon and GLP-1 could suppress appetite, which supports the concept 
that GLP-1 and glucagon dual agonism might have synergistic effects on diet suppression and weight control[68]. The 
GCGRA may influence neural circuits governing food intake, potentially reducing appetite and caloric intake. By 
suppressing excessive caloric intake, GCGRA could contribute to weight loss, which is an essential aspect of MASLD 
treatment.

Adipose tissue: Glucagon receptors have been shown to exist in solubilized membranes of human adipose tissue. Thus, 
the function of glucagon in adipose tissue has drawn increasing research attention, highlighting a potentially key role in 
metabolic processes and energy regulation within this tissue type[69].

In animal models, glucagon can increase energy expenditure by inducing thermogenesis through the stimulation of 
brown adipose tissue[70]. Administration of glucagon alone in healthy human volunteers significantly increased resting 
energy expenditure[71].

Many experiments have indicated that glucagon can stimulate lipolysis in adipocytes in rodents[72,73]. However, 
infusion of physiological concentrations of glucagon into human volunteers did not significantly impact lipolysis in 
human white adipose tissue but increased lipolysis in other species. Additionally, glucagon has been shown to inhibit the 
proliferation of human white adipose stem cells, but the concentration required for this effect is high, leading to questions 
about its physiological relevance[74].

From dual to triple receptor agonism: The evolution of incretin therapy
A notable concern with GCGRAs is their potential to cause significant hyperglycemia. This is particularly relevant in 
MASLD patients, many of whom also have T2DM. Consequently, using GCGRA monotherapy may not be a safe and 
effective treatment strategy for MASH. However, when GCGRAs are combined with GLP-1RAs, this approach mitigates 
the risk of glucagon-induced hyperglycemia while preserving the beneficial anti-inflammatory and antifibrotic effects of 
glucagon. This combination therapy could, therefore, offer a more suitable treatment option for MASLD patients with 
T2DM[19].

The dual GLP-1RA/GCGRA combination has been shown to increase gluconeogenesis and glycogenolysis while 
reducing intrahepatic lipids in mice. Compared with GLP-1 mono-selective receptor agonists, dual agonists significantly 
reduce liver triglyceride, diacylglycerol, and cholesterol ester levels; inflammation; and fibrosis in mouse models[75]. 
Kannt et al[76] utilized C57BL/6J mice fed a MASLD diet and noted that neither GCGRA nor GIPRA alone influenced 
body weight, liver lipids, or histology. However, the combination of dual GLP-1RA/GCGRA or GLP-1RA/GIPRA 
provided additional health benefits compared with monotherapy regarding weight loss, liver triglyceride reduction, and 
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Figure 2  A simplified schematic illustrating how glucagon acts on multiple organs to mitigate metabolic dysfunction-associated 
steatotic liver disease.

MASLD activity score improvement[76]. Nestor et al[77] used a different dual GLP-1RA/GCGRA agent and concluded 
that the dual agonist significantly reduced steatosis in the MASH mouse model[77].

Although the role of GIP in satiety suppression and weight reduction is under debate, the coadministration of GLP-
1RA and GIPRA has produced promising results. Combining GIPRA with GLP-1RA significantly increases weight loss, 
glycemic control, and lipid profile management compared with mono GLP-1RA alone[21,78].

Dual GLP-1 and GIPRA outperform single selective GLP-1RA in achieving better glycemic control and weight loss. 
These unimolecular dual incretins synergize to reduce fat mass, and the selective GIP agonist does not significantly 
reduce body weight. Compared with selective mono-agonists, dual RAs also demonstrate superior antihyperglycemic 
and insulinotropic efficacy. Its effectiveness extends across various species, including rodents, primates, and humans. 
These dual RAs have also been engineered for less frequent dosing and minimized side effects, offering a more 
physiological approach to managing conditions such as impaired glucose tolerance[62,79-81].

Adding GLP-1 and GIP components to glucagon appears to mitigate the diabetogenic effect of glucagon, and the 
synergistic effect between GLP-1 and GIP could provide superior health potential. Therefore, managing MASLD and its 
related comorbidities is a promising endeavor for triple RAs. In rodent models of obesity, compared with existing mono-
receptor agonists or dual coagonists, balanced unimolecular triple agonists have been shown to have superior effects on 
body weight reduction, glycemic control, and hepatic steatosis regression[82]. A triple combination of selective mono-
agonists significantly reduced the MASH histological activity score compared to that of high-dose liraglutide at the exact 
extent of body weight loss[76].

Over time, we can expect the development and evolution of multiagonist agents. These agents are anticipated to be 
part of a new class of drugs that are ingeniously designed to merge the amino acid sequences of crucial metabolic 
hormones. This innovative approach aims to create a single, more potent entity with prolonged efficacy.

CLINICAL TRIALS AND THERAPEUTIC EFFECTS OF INCRETINS AND GLUCAGON RAS
The evolving role of GLP-1RAs in MASLD or MASH has been investigated in multiple randomized controlled trials 
(RCTs) that enrolled patients with or without T2DM. The key phase II RCTs that evaluated GLP-1RAs, dual GLP-1RA/
GIPRAs, or dual GLP-1RA/GCGRAs for the specific treatment of individuals with MASLD or MASH are summarized in 
Table 1. In all these RCTs, the diagnosis of MASLD or MASH was established either by magnetic resonance imaging-
based techniques, such as magnetic resonance proton density fat fraction (MRI-PDFF) and magnetic resonance 
spectroscopy (MRS), or based on liver biopsy histology evidence. The minimum enrollment of each trial must be more 
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than 15 individuals per treatment group. To our knowledge, there were no published RCTs on GLP-1/GIP/GCG triple 
receptor agonists for MASLD/MASH in humans at the time of writing. However, the results of ongoing clinical trials 
investigating the effect of triple agonists on biopsy-confirmed MASH are urgently needed[83]. The effect of incretin and 
glucagon RAs on MASH is postulated to be related to indirect beneficial effects on weight loss and insulin resistance, as 
well as reductions in metabolic dysfunction, lipotoxic effects, and inflammation. In a phase II RCT by Newsome et al[84], 
semaglutide significantly improved MASH without worsening fibrosis but did not improve fibrosis. The lack of impr-
ovement in fibrosis in this trial was an unexpected finding despite a notable benefit with respect to MASH resolution and 
dose-dependent weight loss. The reason for these unexpected findings is unclear but could be explained by the relatively 
short duration of follow-up and lack of statistical power. Similarly, in a phase II RCT by Loomba et al[85], semaglutide 
failed to meet the primary endpoint of fibrosis improvement without worsening MASH among patients with 
compensated liver cirrhosis. However, semaglutide reduced liver enzyme levels, liver steatosis, and the levels of the 
exploratory hepatic collagen biomarker pro-collagen 3 peptide. The effect of semaglutide on advanced fibrosis impro-
vement and liver-related outcomes remains to be investigated, and the results of this ongoing large clinical trial are 
expected in Q3 of 2029 (NCT04822181).

GLP-1RAs
Currently, 13 published placebo or active-controlled phase II RCTs have investigated the use of liraglutide (n = 6), 
exenatide (n = 2), semaglutide (n = 4), or dulaglutide (n = 1) in the treatment of MASLD or MASH (Table 1). A total of 584 
individuals were enrolled in the intervention arm, and 528 were enrolled in the placebo or active control arm. The mean 
age was 52 years, and the mean follow-up duration was 36 wk. Only one RCT, by Loomba et al[85], investigated the effect 
of semaglutide on biopsy-proven MASH-related cirrhosis compared to that of a placebo. The researchers found that, 
compared with placebo, semaglutide did not improve liver fibrosis [11% vs 29%, OR: 0.28 (95%CI 0.06-1.24); P = 0.087]. 
Similarly, no notable differences were observed between the treatment groups in terms of the percentage of patients who 
achieved MASH resolution [34% vs 21%, OR: 1.97 (95%CI 0.56-7.91); P = 0.29]. However, despite the lack of a significant 
difference in liver stiffness between the semaglutide group and the placebo group, semaglutide significantly reduced 
liver enzyme levels, the hepatic collagen biomarker pro-collagen-3 peptide levels, and steatosis. Those who achieved 
substantial weight loss by semaglutide had lower levels of VLDL cholesterol and triglycerides, and those with T2DM had 
lower levels of HbA1c. Semaglutide did not cause any new or significant safety concerns, and the main adverse events 
were transient, mild to moderate gastrointestinal-related AEs[85].

Notably, in a proof-of-concept phase II trial, Alkhouri and colleagues demonstrated that, in comparison with sem-
aglutide monotherapy, the combination of semaglutide and firsocostat (an acetyl-coenzyme A carboxylase inhibitor that 
reduces hepatic de novo lipogenesis) with and without cilofexor (a farnesoid X receptor agonist that inhibits lipogenesis, 
gluconeogenesis, and bile acid synthesis) resulted in more significant improvements in liver fat content (LFC) measured 
by MRI-PDFF, with a mean of absolute changes ranging from -9.8% to -12.6% vs -8.6% (P < 0.05). However, the reduction 
in LFC was comparable between the triple and double combinations[86]. Of the remaining 11 trials, GLP-1RAs 
demonstrated significant improvement in LFC as evaluated by MRS or MRI-PDFF compared to placebo or active control 
in 6 trials[87-92], and two other phase II trials with biopsy-confirmed MASH, liraglutide, and semaglutide resulted in 
promising outcomes with MASH resolution compared to placebo (P < 0.05)[84,93]. In contrast, three small trials of 
liraglutide and exenatide failed to show a significant reduction in liver fat content measured by MRS compared to that of 
the active control or placebo[94-96]. Remarkably, GLP-1RAs were relatively safe and had limited major serious adverse 
effects (AEs); the most frequently reported AEs were mild to moderate gastrointestinal-related AEs that occasionally led 
to medication discontinuation. The details of these trials are summarized in Table 1.

GLP-1/GIP dual RAs
In a substudy of the open-label phase III SURPASS-3 trial, Gastaldelli and colleagues examined the effect of 52 wk of 
subcutaneous tirzepatide once per week vs once-daily insulin degludec on LFC measured by MRI-PDFF in patients with 
MASLD and T2DM. By the end of the 52 wk of therapy, the absolute reduction in LFC was significantly greater in the 
pooled 10 mg and 15 mg tirzepatide groups (-8.1%) than in the insulin degludec group (-3.4%), with an estimated 
treatment difference in LFC of -4.7% [95%CI -6.72 to -2.70; P < 0.0001]. At week 52, the proportion of individuals with at 
least a 30% relative decrease in LFC was greater in the tirzepatide group (67%-81%) than in the insulin degludec group 
(32%)[97]. Tirzepatide was associated with a substantial weight loss of 8 to 11 kg and a notable reduction in abdominal 
visceral fat depots. In contrast, insulin degludec increased the expression of both metabolic parameters[97]. This study 
demonstrated that tirzepatide benefits patients with MASLD and T2DM. However, the lack of liver biopsy did not allow 
for an evaluation of the effects of tirzepatide on individual histological features of MASH. Gastrointestinal AEs were mild 
to moderate and more frequently reported in the tirzepatide group than in the insulin degludec group.

GLP-1/GCG dual RAs
A recent phase II open-label active comparator RCT investigated the effects of GLP-1RA/GCGRA (efinopontinide) 
compared to a selective GLP-1RA (semaglutide) on LFC evaluated by MRI-PDFF in patients with MASLD with or 
without T2DM. The main finding was that the mean relative reduction in LFC was 72.7% in the efinopegdutide group vs 
42.3% in the semaglutide group. The mean relative reduction in LFC at week 24 in the efinopegdutide group compared to 
the semaglutide group was 30.4% (95%CI 22.1-38.7; P <0.001). Moreover, a more significant proportion of participants 
achieved a normal LFC (< 5%) at week 24 in the efinopegdutide group (66.7%) than in the semaglutide group (17.8%)[98]. 
Overall, mild to moderate gastrointestinal AEs were more frequently reported in patients taking efinopegdutide than in 
those receiving semaglutide.
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AES AND DRUG-DRUG INTERACTIONS
GLP-1RAs and dual GLP-1RA/GIPRAs for treating T2DM and, more recently, for weight loss have become more fre-
quently encountered in clinical practice. This was attributed to the potent class effect for better diabetes control[99-101], 
the up to 20% reduction in total body weight[102,103], and a notable improvement in metabolic syndrome and cardiac 
risk, even in patients without diabetes[104]. The most commonly reported adverse events associated with these incretin 
RAs are gastrointestinal symptoms, which include nausea, vomiting, gastroparesis, constipation, diarrhea, and bowel 
obstruction. There are limited data on head-to-head comparisons between the different available incretin RAs regarding 
gastrointestinal AEs and gastric emptying as primary outcomes.

A recent retrospective study that used extensive health claims data captured 93% of all outpatient prescriptions and 
physician diagnoses in the United States through the international classification of diagnoses, ninth or tenth revision, and 
examined gastrointestinal AEs associated with GLP-1RAs for weight loss in a clinical setting. This study revealed that, 
compared with patients receiving bupropion-naltrexone, patients receiving GLP-1RAs had an increased risk of pancre-
atitis [adjusted HR, 9.09 (95%CI, 1.25-66)], bowel obstruction [HR, 4.22 (95%CI, 1.02-17.40)], and gastroparesis [HR, 3.67 
(95%CI, 1.15-11.90)], but there was no significant difference in the risk of biliary disease [HR, 1.50 (95%CI, 0.89-2.50)]
[105]. In the SUSTAIN 10 trial, in a head-to-head comparison of subcutaneous semaglutide vs liraglutide, gastrointestinal 
AEs were reported in 36.7% vs 29.3% of the patients in the semaglutide and liraglutide groups, respectively[106]. 
Nonetheless, gastrointestinal AEs are highly prevalent with oral GLP-1RAs[107]. Oral semaglutide at 25 and 50 mg per 
day were associated with nausea in 27% and vomiting in 18% of patients. Moreover, in patients with obesity without 
T2DM treated with 50 mg oral semaglutide, 52% of patients developed nausea, 24% developed vomiting, 28% developed 
constipation, and 27% developed diarrhea[108,109]. The experimental oral non-peptide GLP-1RAs danuglipron and 
orforglipron induced significant gastrointestinal AEs, mainly nausea, which occurred primarily during dose escalation
[110,111]. A longitudinal assessment of gastrointestinal AEs during a 68-wk trial of once-weekly subcutaneous 
semaglutide in adults with overweight or obesity revealed that gastrointestinal AEs developed at any time up to 68 wk, 
with a median duration of nausea occurring for 8 d and vomiting for 2 d. Moreover, the AEs led to discontinuation of 
medication in 10% to 17% of the study participants across different dose cohorts at any time after randomization[111].

Multiple cases of depression, suicidal ideation, and self-injury among patients using liraglutide and semaglutide were 
recently reported to the European Medicines Agency for review. Importantly, patients with a medical history of depr-
ession or suicidal ideation were excluded from clinical trials of semaglutide and liraglutide. According to the pharma-
ceutical company drug label for liraglutide, 0.3% of those who received the drug in clinical trials reported suicidal 
ideation, whereas 0.1% reported suicidal ideation in patients receiving placebo. Therefore, clinicians need to exercise 
caution in prescribing these medications to patients with depression or suicidal ideation[112]. Additionally, close 
monitoring for symptoms of depression or the development of suicidal ideation is required for patients on GLP-1RAs.

Medullary thyroid cancer is a potential risk factor according to rodent studies, but because cancer is a latent disease, it 
will take many years to gather data on people. A personal or family history of medullary thyroid cancer is a contrain-
dication for both GLP-1RA and GLP-1RA/GIPRA[112].

GASTROINTESTINAL AES AND CLINICAL PRACTICE IMPLICATIONS
The most common side effects of incretin RAs are gastrointestinal related (nausea, vomiting, diarrhea, constipation, or 
bowel obstruction). Multiple studies have shown that AEs are dose dependent and primarily occur during the dose 
escalation period[113]. They usually tend to abate with long-term use. However, the mechanism of such improvement is 
unclear[114]. In the PIONEER-7 trial, individuals were allowed to adjust doses of oral semaglutide according to efficacy 
and tolerability. Nine percent of the study participants stopped the drug due to gastrointestinal AEs, which were 
documented in some patients after the first exposure at an initial dose of 3 mg per day. Individual variability in the onset 
of these AEs could be related to pharmacokinetics, such as the T-max of each drug[115,116]. In the STEP-1 trial, the 
researchers showed that gastrointestinal AEs may occur at any time during the 68-wk study after maximal dose-up 
titration has been implemented[103]. Therefore, a tailored individualized approach is recommended to place patients on 
the maximum tolerated dose, providing medication benefits with the least possible side effects. This can be accomplished 
by following the recommendations of the regulating agencies, starting with lower doses and adopting a slower titration 
strategy to induce tolerance before exposure to higher doses. Such a slow titration strategy may help minimize the risks of 
potential side effects. Generally, patients need to be educated about the expected effect of early satiation and nausea they 
may experience while eating after they feel full[114]. It is also recommended that patients who develop gastrointestinal 
AEs implement dietary modifications, such as eating frequent small meals and decreasing fat and nondigestible fiber 
consumption, similar to patients with gastroparesis[117]. In some instances, when a patient continues to experience 
persistent side effects, a dose de-escalation approach to the lowest tolerable dose may help reduce symptoms. It is 
comprehensible that these medications may exacerbate symptoms of diabetic gastroparesis. Therefore, alternative weight 
loss therapeutics, such as naltrexone-bupropion or phentermine-topiramate, should be considered for these patient 
subgroups.
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INCRETIN RAS AND PERIOPERATIVE MANAGEMENT
Recently, there have been growing concerns regarding the risks of GLP-1RA administration relative to perioperative 
management. These risks stem from increased residual gastric content in patients receiving GLP-1RAs, increasing the risk 
for aspiration[118,119]. Given the short half-life, the older universal recommendation was to hold these medications the 
same day of the procedure. However, in light of the development of longer-acting GLP-1RAs that carry different AE 
profiles, including gastric stasis, the preoperative management of these medications has been challenging[120,121]. There 
are limited data on the perioperative and postoperative outcomes associated with treatment with GLP-1RA. A single-
center small observational study evaluated point-of-care gastric ultrasound data from patients taking semaglutide to treat 
obesity after a 10-hour fast. The study investigated whether these patients had a “full stomach,” defined as clear fluid 
content (1.5 mL/kg, or solids), compared with patients not taking GLP-1RAs. In the lateral and supine positions, 90% and 
70%, respectively, of the semaglutide group had solids identified, compared with 10% of controls[119]. A recent 
retrospective cohort study investigated the effect of GLP-1RAs on the quality of bowel preparation for patients under-
going colonoscopy for colon cancer screening. These findings revealed that the percentage of patients with poor bowel 
preparation was significantly greater in the GLP-1RA group than in the control group (15.5% vs 6.6%, P = 0.01). Notably, 
a greater proportion of patients in the GLP-1RA group required a repeat colonoscopy due to poor bowel preparation than 
did those in the control group (18.9% vs 11.1%, P = 0.041)[122].

However, no studies have yet been conducted to examine the effect of GLP-1RAs in gastrointestinal-related surgeries. 
The Society of Perioperative Assessment and Quality Improvement developed a consensus recommendation suggesting 
continuing GLP-1RAs before the day of surgery unless patients experienced gastrointestinal AEs or were undergoing 
gastrointestinal-related surgery. In such a clinical scenario, longer-acting GLP-1RAs should be held 7 d prior to surgery, 
and closer monitoring of antidiabetic medications should be performed in patients with T2DM. Otherwise, patients were 
instructed to take GLP-1RAs in the morning after surgery[121]. The half-life of most long-acting GLP-1RAs is approx-
imately 5 d, and it would be rational to recommend holding these medications for approximately 4 wk prior to the 
elective procedure (which is equivalent to 5-6 times the half-life of these medications). In the context of obesity, such a 
recommendation may be applicable without significant clinical consequences. However, in patients with T2DM, it is 
imperative to ensure that alternative antidiabetic treatments, such as biguanide (e.g., metformin) or sodium-glucose 
cotransporter-2 (SGLT2) inhibitors (e.g., empagliflozin), are used and, if indicated, that insulin supplementation be 
managed under the guidance of endocrinologists or primary care physicians. Moreover, in urgent or emergency surgery 
settings, it should be presumed that patients receiving GLP-1RAs have gastric stasis and appropriate measures should be 
implemented to prevent aspiration. For example, bedside ultrasound should be used to assess residual gastric contents
[123,124]. Furthermore, intravenous erythromycin may be considered to fasten gastric emptying[125,126]. The standard 
erythromycin dose is 3 mg/kg IV infused over 45 minutes[127].

BARRIERS TO ACCESSING AND PRESCRIBING INCRETIN RAS IN CLINICAL PRACTICE
Currently, Medicare does not provide coverage of GLP-1RAs for the diagnosis of obesity alone without T2DM, while 
Medicaid and commercial insurance coverage vary substantially[128]. The annual out-of-pocket cost of semaglutide and 
liraglutide for chronic weight management is roughly $16,000, and for tirzepatide (a duaL GLP-1RA/GIPRA recently 
FDA approved for obesity), it is expected to be $12700[129]. This costly annual out-of-pocket pay, in addition to lack of 
insurance coverage, creates disturbing trends. For example, there are emerging versions of compounded semaglutide that 
patients can purchase online or overseas at a lower cost. However, the FDA issued a warning about reports of adverse 
events associated with the use of compounded semaglutide. Furthermore, the agency expressed concerns that some 
products may not contain the same active ingredient as FDA-approved products. In fact, the agency issued warning 
letters to companies involved in the online sale of unapproved and misbranded semaglutide and tirzepatide drugs[112].

Clearly, there is an imbalance in the supply and demand of GLP-1RAs[112]. In a recent retrospective cohort study, 
researchers found that during the first year of availability of GLP-1RAs, the mean monthly growth rate for Ozempic, 
Wegovy, Rybelsus, and Saxenda exceeded 85%. Additionally, the Mounjaro and Wegovy populations demonstrated 
monthly user growth rates greater than 200% and 100%, respectively[130]. Despite this noticeable growth in the demand 
and limited supply of GLP-1RAs, no generic competitors for these products have yet emerged in the market. A recent 
analysis by Alhiary et al[131] evaluated the patent and regulatory system strategies used by manufacturers of the brand 
name GLP-1RAs to extend market exclusivity. This study revealed that brand name manufacturers obtained a median of 
19.5 patents per GLP-1RA and secured a median of 18.3 years of expected protection. Interestingly, more than half of 
these patents were obtained on delivery devices rather than on active ingredients[131]. These long periods of GLP-1RA 
market exclusivity highlight the need for patent and regulatory reforms on drug-device combinations.

CLINICAL TRIALS EVALUATING INCRETIN AND GLUCAGON RAS FOR MASLD AND FUTURE PERSPEC
-TIVES
Semaglutide is currently being evaluated in a phase III double-blind placebo-controlled RCT in patients with biopsy-
confirmed MASH; the primary outcomes investigated were the histological resolution of MASH after 72 wk of treatment 
and the time to the first liver-related clinical event after 240 wk of treatment (NCT04822181; Table 2). This pivotal trial is 
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Table 1 The main phase II and phase III randomized controlled trials investigating glucagon-like peptide 1 receptor agonist, glucagon-like peptide 1 receptor agonist/glucose-dependent insulinotropic 
polypeptide receptor agonist, or glucagon-like peptide 1 receptor agonist/glucagon receptor agonist in metabolic dysfunction-associated steatotic liver disease or metabolic dysfunction-associated 
steatohepatitis

Ref. (trial 
phase) Intervention (n) Comparator (n) Participants Duration Primary hepatic outcome measures Major adverse events

GLP-1 RAs (n = 13 trials)

Armstrong et 
al[93] (2016) 
(phase II)

Liraglutide 1.8 
mg/d (26)

Placebo (26) Biopsy-confirmed 
MASH with or 
without T2DM

48 wk Liraglutide use was associated with greater histological MASH 
resolution (39%) than placebo use (9%, P = 0.019). Fibrosis 
progression occurred in 9% of the liraglutide group vs 36% in 
placebo (P = 0.04)

Moderate gastrointestinal AEs in the liraglutide group (81%) vs 
placebo group (65%)

Dutour et al
[87] (2016) 
(phase II)

Exenatide 5-10 µg 
twice a day (22)

Placebo (22) T2DM and 95% with 
MASLD (assessed by 
MRS)

26 wk LFC was reduced with exenatide (-23.8% [SD 9.5] more than 
placebo (+12.5% [9.6]; P = 0.007)

Not reported

Yan et al[88] 
(2019) (phase 
II)

Liraglutide 1.8 
mg/d (24)

Insulin glargine 0.2 
IU/kg/d (24) or 
Satigliptin 100 mg/d (27)

T2DM and MASLD 
(assessed by MRI-
PDFF)

26 wk In the liraglutide and sitagliptin groups, LFC decreased from 
baseline to week 26 (liraglutide: from 15.4% [SD 5.6] to 12.5% [6.4], 
P < 0.001; sitagliptin: from 15.5% [5.6] to 11.7% [5.0]; P = 0.001). 
Delta MRI-PDFF was greater with liraglutide than sitagliptin, but 
was not significantly different between the two groups (-4.0 vs -
3.8; P = 0.911). MRI-PDFF did not change significantly from 
baseline in the insulin glargine group

Not reported

Khoo et al
[95] (2019) 
(phase II)

Liraglutide 3 
mg/d (15)

Lifestyle modifications 
(diet and exercise) (15)

Obesity and MASLD 
without T2DM 
(assessed by MRS)

26 wk Both treatment groups showed similar reduction in LFC at 26 wk 
(-8.1% [SD 13.2] vs -7.0% [7.1]) P = 0.78

Nausea, abdominal discomfort, and diarrhea in the liraglutide 
group

Liu et al[96] 
(2020) (phase 
II)

Exenatide 5-10 µg 
twice a day (38)

Insulin glargine 0.1-0.3 
IU/kg per day (38)

T2DM and MASLD 
(assessed by MRS)

24 wk LFC was not significantly reduced after exenatide treatment 
(change in LFC: -17.6% [SD 12.9]) compared with insulin glargine 
(change in LFC -10.49 [SD 11.38]) P = 0.1248

Similar between the two groups

Binzino et al
[94] (2020) 
(phase II)

Liraglutide 1.8 
mg/d (23)

Placebo (26) T2DM and MASLD 
(assessed by MRS)

26 wk Reduction in LFC was not different between the two groups 
(liraglutide: from 18.1% [SD 11.2] to 12.0% [7.7]; placebo: from 
18.4% [9.4] to 14.7% [10.0%]; estimated treatment effect -2.1% [95% 
CI -5.3 to 1.0]) P = 0.17

No serious AEs were reported

Kuchay et al
[89] (2020) 
(phase II)

Dulaglutide 1.5 
mg/wk (32)

Standard of care for 
T2DM (32)

T2DM and MASLD 
(assessed by MRI-
PDFF)

26 wk Dulaglutide resulted in a control-corrected absolute reduction in 
LFC -3.5% (95% CI -6.6 to -0.4; P = 0.025) and relative reduction of 
-26.4% (-44.2 to -8.6; P = 0.004) compared with placebo; absolute 
changes in liver stiffness on VCTE (-1.31 kPa [-2.99 to 0.37]; P = 
0.12) with no difference between two treatment groups

No serious AEs were reported

Guo et al[90] 
(2020) (phase 
II)

Liraglutide 1.8 
mg/wk (32)

Insulin glargine once a 
day (32); Placebo (32)

T2DM and MASLD 
(assessed by MRS) 
treated with 
metformin

26 wk Liraglutide resulted in a control-corrected absolute reduction in 
LFC of -6.3% (P < 0.05) and relative reduction of -24% (P < 0.05); 
reduction in liver fat content was greater with liraglutide (-6.3%) 
than with insulin glargine (-3.4%) with no difference between the 
two treatment groups (P > 0.05)

No serious AEs; mild-to-moderate gastrointestinal AEs were 
reported in the liraglutide group

Zhang et al Liraglutide 1.2 Pioglitazone 30 mg a day T2DM and MASLD Liraglutide resulted in a control-corrected absolute reduction in No serious AEs; mild-to-moderate gastrointestinal AEs were 24 wk
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[91] (2020) 
(phase II)

mg/wk (30) (30) (assessed by MRS) 
treated with 
metformin

LFC of -4.0% (95% CI -6.6 to -0.4; P < 0.05) and relative reduction 
of -17% (P < 0.05); this reduction in LFC was greater with 
liraglutide than pioglitazone

reported in the liraglutide group

Newsome et 
al[84] (2021) 
(phase II)

Semaglutide 0.1 
mg/d (80); 0.2 
mg/d (78); 0.4 
mg/d (82)

Placebo (80) Biopsy-proven MASH 
and liver fibrosis with 
or without T2DM

72 wk Among patients with stage F2 or F3 fibrosis, the percentage of 
patients with MASH resolution and no worsening of fibrosis was 
40% in the 0.1 mg group, 36% in the 0.2 mg group, 59% in the 0.4 
mg group, and 17% in placebo (P < 0.001 for semaglutide 0.4 mg 
vs placebo); fibrosis stage improvement occurred in 43% of the 0.4 
mg group and in 33% of the placebo group (P = 0.48)

No serious AEs; nausea, constipation, and vomiting was higher in 
the 0.4 mg group than in the placebo group

Flint et al[92] 
(2021) (phase 
II)

Semaglutide 0.4 
mg/d (34)

Placebo (33) MASLD (assessed by 
MRI-PDFF and MRE) 
with or without 
T2DM

72 wk Semaglutide significantly reduced LFC compared with placebo 
and more patients had a ≥ 30% reduction in LFC with semaglutide 
at 24, 48, and 72 wk (with an estimated treated ratio of 0.50 at 
week 72 with P < 0.0001); changes in liver stiffness were not 
different between the two groups

Gastrointestinal AEs (diarrhea and nausea) were more frequently 
reported in the semaglutide group than the placebo group

Alkhouri et 
al[86] (2022) 
(phase II)

Semaglutide 2.4 
mg/wk (21)

Semaglutide 2.4 mg/wk 
plus cilofexor 
30 mg/d (22) or 
Semaglutide 2.4 mg/wk 
plus cilofexor 100 mg/d 
(22) or Semaglutide 2.4 
mg/wk plus firsocostat 
20 mg/d (22) or 
Semaglutide 2.4 mg plus 
cilofexor 30 mg/d plus 
firsocostat 20 mg/d (21)

MASH with mild to 
moderate fibrosis 
(assessed by either 
liver biopsy or MRI-
PDFF ≥ 10% and 
VCTE measured liver 
stiffness ≥ 7 kPa) with 
or without T2DM

24 wk Combination treatments vs semaglutide monotherapy resulted in 
greater improvements in LFC (least-squares mean of absolute 
changes: ranging from -9.8% to -12.6% vs -8.6%; the difference was 
significant only between the semaglutide and semaglutide plus 
firsocostat groups) and in noninvasive tests of liver fibrosis

Treatment was well tolerated; the incidence of AEs was similar 
across the groups (73-90%), and most commonly reported AEs 
were gastrointestinal, including nausea, diarrhea, and 
constipation

Loomba et al
[85] (2023) 
(phase II)

Semaglutide 2.4 
mg/wk (47)

Placebo (24) Biopsy-proven 
compensated MASH 
cirrhosis with or 
without T2DM

48 wk Semaglutide, compared to placebo, resulted in no improvement in 
liver fibrosis (11% vs 29%, OR: 0.28 [95%CI 0.06-1.24]); P = 0.087 
and no significant difference between treatments for MASH 
resolution (34% vs 21%, OR: 1.97 [95%CI 0.56-7.91]); P = 0.29

Mild to moderate transient gastrointestinal AEs occur mainly 
during treatment initiation or dose escalation

GLP-1RA/GIPRA (n = 1 trial)

Gastaldelli et 
al[97] (2022) 
(substudy of 
phase III)

Tirzepatide 5 
mg/wk (71); 10 
mg/wk (79); 15 
mg/wk (72)

Insulin degludec once a 
day (74)

T2DM and MASLD 
(assessed by MRI-
PDFF) treated with 
metformin and/or 
SGLT2 inhibitors

52 wk The absolute reduction in LFC at week 52 was significantly higher 
for the pooled tirzepatide 10 mg and 15 mg groups (-8.1%) vs the 
insulin degludec group (-3.4%); the estimated treatment difference 
vs insulin degludec was -4.7% (95%CI -6.7 to -2.7; P < 0.0001); 
those with at least a 30% relative decrease in LFC at week 52 were 
higher in each tirzepatide group (ranging from approximately 
67% to 81% for tirzepatide doses) vs the insulin degludec group 
(32%)

GLP-1RA/GCGRA (n = 1)

Romero-
Gómez et al
[98] (2023) 
(phase II)

Efinopegdutide 
10 mg/wk (72)

Semaglutide 1 mg/wk 
(73)

MASLD (assessed by 
MRI-PDFF) with or 
without T2DM

24 wk The mean relative reduction in LFC was 72.7% with efinopeg-
dutide and 42.3% with semaglutide. The difference in mean 
relative reduction from baseline in LFC at week 24 in the 
efinopegdutide group compared to the semaglutide group was 
30.4% (95%CI 22.1-38.7; P < 0.001)

Overall, gastrointestinal AEs were more frequently reported in the 
efinopegdutide group compared to semaglutide
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Post hoc analyses of randomized controlled trials investigating the effects of incretin receptor agonists (RAs) (e.g., cotadutide) on plasma aminotransferase concentrations in patients with type 2 diabetes mellitus or studies that used liver 
ultrasound or blood biomarkers or scores for testing the effects of incretin RAs on metabolic dysfunction-associated steatotic liver disease were excluded. AEs: Adverse effects; GLP-1: Glucagon-like peptide 1; GIP: Glucose-dependent 
insulinotropic polypeptide; GCG: Glucagon; LFC: Liver fat content; MRS: Magnetic resonance spectroscopy; MRI-PDFF: MRI-proton density fat fraction; MASLD: Metabolic dysfunction-associated steatotic liver disease; MASH: 
Metabolic dysfunction-associated steatohepatitis; RAs: Receptor agonists; RCT: Randomized controlled trial; SGLT2: Sodium-glucose cotransporter 2; T2DM: Type 2 diabetes mellitus; VCTE: Vibration-controlled transient elastography.

Table 2 The main ongoing randomized controlled trials assessing the efficacy and safety of incretin receptor agonists in metabolic dysfunction-associated steatotic liver disease

Clinical trial 
registration 
number

Trial acronym Status Study participants Interventions Study characteristics
Estimated 
sample size, 
n

Primary hepatic outcome measures
Estimated 
completion 
date

GLP-1 RAs

Histological resolution of MASH with no 
worsening of liver fibrosis after 72 wk of treatment

Improvement in liver fibrosis and no worsening of 
MASH after 72 wk of treatment

NCT04822181 ESSENCE Recruiting MASH on liver biopsy Semaglutide vs 
placebo

Phase III double-blind, placebo-
controlled trial

1200

Time to first liver-related clinical events (composite 
endpoint) after 240 wk of treatment

July, 2029

NCT05016882 N/A Active not 
recruiting

MASH on liver biopsy Semaglutide 
Plus NNC0194-
04991 
vs placebo

Phase II, randomized, double-blind, 
active and placebo-controlled, double-
dummy, parallel-group, multinational 
trial

672 Improvement in liver fibrosis and no worsening of 
MASH after 52 wk of treatment

March, 2025

Percentage of participants who achieve ≥ 1 stage 
improvement in liver fibrosis without worsening of 
MASH after 72 wk of treatment

NCT04971785 N/A Active not 
recruiting

MASH-related 
compensated cirrhosis 
on liver biopsy

Semaglutide 
plus cilofexor or 
fisocostat

Phase II, randomized, double-blind, 
double-dummy, placebo-controlled trial

440

Histological resolution of MASH after 72 wk of 
treatment

December, 2024

NCT04639414 COMBATT2NASH Recruiting T2DM with MASH on 
liver biopsy

Semaglutide 
plus 
empagliflozine 
vs placebo and 
empagliflozine 
vs placebo

Phase IV, randomized, double-blind 
placebo-controlled trial

192 Histological resolution of MASH without 
worsening of fibrosis after 48 wk of treatment

December, 2023

NCT05140694 N/A Not yet 
recruiting

T2DM with MASLD on 
transient elastography 
with CAP

Dulaglutide vs 
empagliflozin vs 
empagliflozin 
plus 
dulaglutide

Phase IV, randomized, active-
comparator controlled, parallel grouped 
trial

135 Changes in CAP score after 24 wk of treatment December, 2025

Phase IV, multicenter, open, prospective, 
randomized, controlled dietary 

NCT03648554 REALIST Not yet 
recruiting

T2DM with MASH on 
liver biopsy

Dulaglutide vs 
placebo

93 Histological resolution of MASH with no 
worsening of fibrosis after 52 wk of treatment

March, 2024
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reinforcement trial

GLP-1RA/GIPRA

NCT04166773 SYNERGY-NASH Active, not 
recruiting

MASH on liver biopsy 
with or without T2DM

Tirzepatide vs 
placebo

Phase IIb, randomized, double-blind, 
placebo-controlled trial

196 Histological resolution of MASH with no 
worsening of fibrosis after 52 wk of treatment

February, 2024

Dual GLP-1RA/GCGRAs

Histological resolution of MASH with no 
worsening of fibrosis after 48 wk of treatment

NCT05364931 PROXYMO-ADV Active, not 
recruiting

MASH with fibrosis on 
liver biopsy

Cotudatide vs 
placebo

Phase IIb/III randomized double-blind, 
placebo-controlled trial

1860

Histological resolution of MASH with no 
worsening of fibrosis and improvement in liver 
fibrosis by at least one stage without worsening of 
MASH after 84 wk of treatment

April, 2024

NCT05006885 N/A Completed MASLD on MRI-PDFF Pemvidutide vs 
placebo

Phase I 95 Percentage of change in LFC by MRI-PDFF from 
baseline to day 85

August, 2022

NCT04771273 N/A Completed MASH on liver biopsy Survodutide 
(BI456906) vs 
placebo

Phase IIb, multicenter, double-blind, 
parallel-group, randomized trial

240 Percentage of patients with histological 
improvement in MSAH (defined as NAS reduction 
of two or more points) after 48 wk of treatment

December, 2023

Triple GLP-1RA/GIPRA/GCGRA

NCT04505436 N/A Recruiting MASH on liver biopsy Efocipegtrutide 
(HM15211) vs 
placebo

Phase IIb, adaptive, randomized, double-
blind, placebo-controlled, parallel-group 
trial

240 Histological resolution of MASH with no 
worsening of liver fibrosis after 52 wk of treatment

November, 2025

1NNC01940499 is a new subcutaneously administered FGF21 analog. The last search on https://clinicalstrial.gov/ was completed on December 21, 2023.
CAP: Controlled attenuation parameter; GIP: Glucose-dependent insulinotropic polypeptide; GLP-1: Glucagon-like peptide 1; GCG: Glucagon; MRI-PDFF: MRI-proton density fat fraction; MASLD: Metabolic dysfunction-associated 
steatotic liver disease; NAS: NAFLD activity score; MASH: Metabolic dysfunction-associated steatohepatitis.

well powered and has a sufficient follow-up duration, which will help provide answers regarding the effect of 
semaglutide on primary outcomes. Moreover, there are two ongoing placebo-controlled RCTs evaluating the effect of the 
combination of semaglutide with a fibroblast growth factor 21 (FGF21) analog and with cilofexor or firsocostat on liver 
fibrosis improvement and MASH resolution vs placebo (NCT05016882/NCT04971785; Table 2). COMBATT2NASH is a 
phase 4 placebo-controlled double-blind RCT studying the effect of semaglutide plus empagliflozin vs empagliflozin 
monotherapy vs placebo on MASH resolution with no worsening of liver fibrosis (NCT04639414; Table 2). Additionally, 
the REALIST trial is a phase 4 placebo-controlled RCT examining the effect of dulaglutide on MASH compared to that of 
the placebo (NCT03448554; Table 2).

SYNERGY-NASH is a phase 2b, double-blind, placebo-controlled RCT evaluating the effect of tirzepatide (a dual GLP-
1RA/GIPRA) on MASH resolution after 52 wk of treatment (NCT04166773; Table 2). Cotudatide is a dual GLP-1RA/
GGCRA currently being investigated in a phase 2b/3 placebo-controlled RCT to evaluate its effect in 1860 patients with 
biopsy-confirmed MASH and fibrosis (NCT05364931; Table 2). Cotadutide significantly reduced body weight and 
improved glycemic control, serum liver enzyme levels, and noninvasive fibrosis biomarker levels in individuals with 
T2DM and obesity[132]. Moreover, cotadutide improved the histological features of MASH and fibrosis in mice[75], and 
verified data regarding the efficacy of MASH histological resolution in human trials are awaited. Harrison and colleagues 

https://clinicalstrial.gov/
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presented data on dual GLP-1RA/GCGRA pemvidutide from a proof-of-concept trial and demonstrated a marked 
reduction in LFC (with 94% of participants achieving more than 30% relative reduction in just 12 wk of treatment with the 
1.8 mg weekly dose) and normalization of LFC (< 5%) in 56% of participants. Unfortunately, almost one-quarter of 
patients discontinued pemvidutide due to adverse events that were mainly gastrointestinal (NCT05006885; Table 2). 
Another dual GLP-1RA/GCGRA agent is survodutide (BI 456906), which has greater potency against GLP-1 than 
glucagon. This agent has shown promising results in inducing rapid weight loss and improving insulin sensitivity[133]. A 
phase II RCT evaluated survodutide use in patients with MASH and fibrosis and has completed enrollment. The results 
are anticipated in Q1 2024 (NCT04771273; Table 2).

In a recent phase 2, double-blind, randomized, placebo-controlled 48-wk trial (NCT04881760), the use of retatrutide (a 
novel triple GLP-1RA/GIPRA/GCGRA) in overweight or obese adults resulted in substantial weight loss of -22.8% and -
24.2%, respectively, with the 8 mg and 12 mg dose regimens, respectively[134]. Data from the subgroup analysis of this 
study were presented at the American Association for the Study of Liver Disease Conference in 2023, which evaluated the 
effects of retatrutide on 98 individuals with LFC > 10%, as measured by MRI-PDFF. The investigators found that the 
mean relative LFC changes from baseline at 24 wk were -81.4% and -82.4% with the 8 mg and 12 mg dose regimens, 
respectively, compared to 4.6% with the placebo, with P < 0.001. Notably, at 48 wk, LFC < 5% was achieved in 89% and 
93%, respectively, of the 8 mg and 12 mg dose regimens, respectively, vs 0% in the placebo group (P < 0.001)[135]. 
Similarly, efocipegtrutide (HM15211) is another novel triple GLP-1RA/GIPRA/GCGRA agent that is currently being 
investigated in phase 2b trials, an adaptive, randomized, double-blind, placebo-controlled, parallel-group trial in patients 
with biopsy-confirmed MASH. The primary outcome of this trial was histological resolution of MASH with no worsening 
of liver fibrosis after 52 wk of treatment (NCT04505436)[83].

CONCLUSION
MASLD and its aggressive MASH phenotype are heterogeneous multisystem diseases that require multidisciplinary 
management plans and a holistic approach. GLP-1RAs showed promising potential for improving hepatic steatosis and 
MASH mainly through substantial weight loss, in addition to providing clear improvement in associated cardiometabolic 
risk factors. However, the role of GLP-1RAs in MASH-associated fibrosis remains unclear. Barriers to access such as 
limited supplies, cost, and lack of insurance coverage, particularly for nondiabetic MASLD patients with obesity, could be 
mitigated through patent and regulatory reforms on drug-device combinations, which may allow for generic competitors 
of these agents to be available for patients at affordable prices. Notably, emerging evidence suggests that the newer dual 
GLP-1RA/GIPRAs, dual GLP-1RA/GCGRAs, and triple GLP-1RA/GIPRA/GCGRAs have substantial effects on weight 
loss and consequently play critically important roles in the MASH therapeutic armamentarium. However, these findings 
remain to be confirmed by ongoing clinical trials[21]. Importantly, given the multiple complex mechanistic patho-
physiologies of MASH, it is postulated that the combination of incretin RAs with different agents that exert effects on 
MASH through different mechanisms of action, such as liver-directed thyroid hormone receptor beta-selective agonists 
(Resmetirom; NCT04197479), farnesoid X RAs or acetyl-CoA carboxylase inhibitors (NCT04971785); an FGF-21 analog 
(NCT05016882); SGLT2 inhibitors (NCT04639414 and NCT05140694); or a pan peroxisome proliferator-activated receptor 
agonist (lanifibranor; NCT03008070), might prove to be the best therapeutic strategy for treating MASLD. The 
extrahepatic effects of MASLD, which include T2DM, chronic kidney disease, diastolic dysfunction, and some 
extrahepatic cancers (mainly colorectal and breast cancers), have become more evident. Thus, incretin RAs, which act not 
only on the liver but also on extrahepatic organs negatively impacted by MASLD, could be a promising therapeutic 
strategy that may lead to improved disease outcomes and prolonged survival beyond its effect on the liver.
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