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Abstract
In the current SARS-CoV-2 disease (COVID-19) pandemic, the structural 
understanding of new emerging viruses in relation to developing effective 
treatment and interventions are very necessary. Viruses present remarkable 
differences in geometric shapes, sizes, molecular compositions and organizations. 
A detailed structural knowledge of a virion is essential for understanding the 
mechanisms of capsid assembly/disassembly, antigenicity, cell-receptor 
interaction, and designing therapeutic strategies. X-ray crystallography, cryo-
electron microscopy and molecular simulations have elucidated atomic-level 
structure of several viruses. In view of this, a recently determined crystal structure 
of SARS-CoV-2 nucleocapsid has revealed its architecture and self-assembly very 
similar to that of the SARS-CoV-1 and the Middle-East respiratory syndrome 
virus (MERS-CoV). In structure determination, capsid symmetry is an important 
factor greatly contributing to its stability and balance between the packaged 
genome and envelope. Since the capsid protein subunits are asymmetrical, the 
maximum number of inter-subunit interactions can be established only when they 
are arranged symmetrically. Therefore, a stable capsid must be in a perfect 
symmetry and lowest possible free-energy. Isometric virions are spherical but 
geometrically icosahedrons as compared to complex virions that are both 
isometric and helical. Enveloped icosahedral or helical viruses are very common 
in animals but rare in plants and bacteria. Icosahedral capsids are defined by 
triangulation number (T = 1, 3, 4, 13, etc.), i.e., the identical equilateral-triangles 
formed of subunits. Biologically significant defective capsids with or without 
nucleic acids are common in enveloped alpha-, flavi- and hepadnaviruses. The 
self-assembling, stable and non-infectious virus-like particles have been widely 
exploited as vaccine candidates and therapeutic molecules delivery vehicles.
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Core tip: A detailed structural knowledge of a pathogenic virus is essential for 
understanding the mechanisms of capsid assembly, antigenicity, cell receptor interaction, 
and designing therapeutic strategies. X-ray crystallography, cryo-electron microscopy and 
molecular simulations have elucidated atomic-level structures of several viruses. Notably, 
a recently determined crystal structure of SARS-CoV-2 capsid has revealed its close 
similarity to that of SARS-CoV-1 and MERS-CoV. Capsid symmetry greatly contributes 
to virion stability and balance between genome. Enveloped icosahedral viruses are very 
common in animals, and rare in plants. Several of self-assembled, stable and non-
infectious virus-like particles have been widely exploited as vaccine candidates and 
therapeutic molecules delivery vehicles.
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URL: https://www.wjgnet.com/2220-3249/full/v9/i2/5.htm
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INTRODUCTION
In the current severe acute respiratory syndrome virus-2 (SARS-CoV-2) disease 
(COVID-19) pandemic, detailed structural knowledge of new emerging viruses in 
relation to developing effective treatment and interventions are very necessary[1]. Of 
the previous pandemics caused by emerging or re-emerging pathogenic viruses, the 
1918 “Spanish Flu” pandemic had exerted a big toll on public health and world 
economy[2]. Viruses are complex “biomolecule capsules” with genomic nucleic acid 
(Deoxyribonucleic acid/Ribonucleic acid) and associated protein(s). Unlike most other 
microorganisms, viruses are obligate intracellular parasites that must invade live cells 
and hijack the host biochemical machinery to perpetuate. Though, viruses have been 
debated for being classified as living or non-living, they are the most populated life-
forms following the prokaryotes. After the discovery of the three different ribosomes, 
the cellular organisms have been placed together in a universal “phylogenetic tree”. 
Interestingly, all viruses that do not synthesize ribosomes are re-classified into the 
phylogenetic tree. The International Committee on Taxonomy of Viruses however, has 
established a unified taxonomy for all viruses that includes 3 orders, 56 families, 9 
subfamilies, and 233 genera of about 1550 species[3].

Since the early 19th century, information on the biology of viruses and their 
structures has remarkably advanced with experimental and computational tools and 
techniques. Although viruses were dened as lterable infectious agents, knowledge 
on their shape, size and physiochemical properties remained unknown until the 
isolation and characterization of tobacco mosaic virus (TMV), using a polarizing light 
microscope in 1953[4]. The TMV particles were further examined using X-ray 
diffraction concluding viruses as homogenous substances with a “protein capsid” of a 
definite shape and size[5]. The capsid, also called as “core”, “coat” or “nucleocapsid” 
protects the viral genome against a hostile environment and delivers it to the host 
cells. The continuation of the TMV work in different laboratories subsequently 
confirmed its capsid’s structural subunits[6,7]. High-resolution crystallography of the 
self-assembled protein subunits further improved the structural knowledge of its 
virions[8]. Morphologically, the assembly units of a capsid seen under electron 
microscope (EM) are called “capsomers” that may or may not be equal to the number 
of protein subunits.

Fluorescence and interferometry based microscopy are the common approaches to 
track the virion’s cell-surface/receptor attachment, entry, cytoplasmic motility, 
uncoating, genome delivery and host-protein interactions[9]. In recent decades, 
advancements in molecular and computational biology, high-resolution X-ray 
crystallography, cryo-EM and molecular dynamics simulation have elucidated atomic-
level structures of several important viruses towards understanding of their virion 
compositions, capsid assembly or disassembly, cell-receptor interactions, antigenicity 
and developing antiviral strategies[9,10]. This article presents the basics of virus 
structures and principles underlying capsid formation as well as therapeutic 
implications.

https://www.wjgnet.com/2220-3249/full/v9/i2/5.htm
https://dx.doi.org/10.5501/wjv.v9.i2.5
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VIRION ARCHITECTURE
Structurally, viruses present remarkable differences in their shapes, sizes, molecular 
compositions and organizations. Their geometric shapes may be spherical, polyhedral, 
elliptical, rod-like, and pleomorphic ranging between 20-400 nm sizes (Figure 1). While 
the simplest known capsids are composed of one oligomeric protein, complex capsids 
also contain different proteins organized in sub-structural assemblies (e.g., portals, 
tails, bers or spikes etc.). A key structural basis of classification of a virus is whether 
the virion has a lipid “envelope” or “shell” (enveloped viruses) or not (non-enveloped 
viruses). Further, in some “enveloped viruses”, the shell may have further complex 
structures made of other glycoproteins and/or nucleoproteins. Enveloped viruses 
have a further level of classification by describing the morphology of their 
nucleocapsids- either isometric or helical. In non-enveloped viruses, capsids are 
defined as isometric, filamentous, and complex. An isometric virion is 
morphologically spherical but geometrically an icosahedron or icosadeltahedron, a 
universally adopted structure in human art and culture since antiquity (Figure 2). 
Filamentous or rod-like virions are relatively simple and helical. The complex virions 
are on the other hand, neither isometric nor helical, but an intricate combination of 
both (e.g., T2 bacteriophage)[11]. Enveloped icosahedral and helical viruses are very 
common in animals and rare in plants and bacteria. Comparatively, while there are 
relatively few purely icosahedral bacteriophages, plants almost exclusively have non-
enveloped helical viruses.

In virion structure determination, capsid symmetry is an important factor. 
Inherently, a capsid’s geometric symmetry greatly contributes to its stability and 
balance between the packaged genome (deoxyribonucleic acid/DNA or ribonucleic 
acid/RNA) structure and/or the labile envelope that should melt out in a cytoplasm at 
a precise location and time. The physical condition for any geometrical structure’s 
stability is the necessity of minimum free-energy state. In view of this, the maximum 
number of strong interactions formed between the capsid subunits is required to attain 
minimum free-energy and to hold its structural integrity[12]. The MDS and Cryo-EM 
approaches appear to predict near experimental results on capsid stability and the 
structural role of packaged genome. Following the rst atomic-resolution structure of 
TMV, a number of computational studies, such as highly coarse grained simulations 
and long timescale assessments on a range of capsids structures and stability have 
been performed[13]. As compared to non-enveloped capsids, there have been fewer 
simulation studies on enveloped capsids. In the relatively large sized enveloped 
viruses, greater structural complexity and lack of symmetry in the envelope bilayer, 
simulation of all components becomes relatively very complex. Nonetheless, structure 
of the mature enveloped human immunodeficiency virus native capsid has been 
recently determined using Cryo-EM and MDS[14].

CAPSID TRIANGULATION NUMBER
Viral capsid is described as empty and symmetric oligomers of one or polymers of 
different types of protein subunits in which viral DNA/RNA is packaged[15]. In a given 
capsid, the minimum number of protein subunits is determined by the symmetry of 
the face (i.e. triangle, square, tetrahedron etc.), and multiplying it by the number of all 
faces gives the total number of subunits. The triangulation number (T) is the smaller, 
identical equilateral-triangles that compose each triangular face, and is calculated 
using the law of solid geometry (T = Pf2; where P is a positive integer i.e., 1, 3 and 7; 
and f is face number i.e., 1, 2, 3, 4, etc.). The minimum number of subunits (n) is thus 3 
for triangle, 4 for square, 12 for tetrahedron, 24 for octahedron, and 60 for 
dodecahedron or icosahedron. For instance, in an icosahedral capsid, the triangulation 
number allows to determine the number of subunits as n = 60T. A capsid volume can 
be increased by either increasing T value or adding equatorial capsomers. Generally, 
spherical viruses with capsids T > 1 tend to be of larger sizes.

CANONICAL CUBIC SYMMETRY
In solid geometry, the cubic symmetry is the characteristic of canonical polyhedral 
structures like, tetrahedron, cube, octahedron, icosahedron and dodecahedron formed 
of three or more identical faces, identical vertices and identical edges (Figure 3A). For 
example, a cube has 6 identical square faces, 8 identical vertices and 24 edges. Further, 
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Figure 1  The structural and morphological diversity of viruses. A: Electron micrograph of some representative animal, plant, fungal and bacterial 
viruses; B: Cartoon representation of virions showing their sizes (20-400 nm) and shapes (spherical, polyhedral, elliptical, rod-like etc.).

a cube has twofold rotational symmetry axes passing through the centers of the 
opposite faces and threefold axes along the diagonals passing through each of the 
vertices. The combination of these two rotational symmetry elements gives rise to 
additional 3 fourfold symmetry axes going through centers of the opposite faces and 6 
twofold symmetry axes going through the midpoints of opposite edges. A cube with 
four-, three-, and twofold symmetry axes thus, allows placement of 12 identical units. 
In viruses, the polyhedral capsids with inherent cubic symmetry have at least 4 
threefold rotational axes.

ICOSAHEDRAL SYMMETRY
Icosahedral virions follow exclusive pathways of capsid assembly and maturation 
regulated by symmetry principles having three axes of symmetry: Fivefold, threefold, 
and twofold or 5-3-2 symmetry (Figure 3B). For example, a T = 1 icosahedron has 5-3-2 
symmetry with n = 60. Notably, though most of the plant satellite viruses icosahedral 
capsids have n = 60, many spherical viruses have n > 60 produced by one or more 
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Figure 2  Morphologically spherical but geometrically polyhedral formations. A: The virion-like universally adopted structures in human art and 
culture: 1. Ancient wood carving, Ephesus, Turkey; 2. Ancient Roman dodecahedron, Gallo-Roman Museum of Tongeren, Belgium; 3. Ancient petroglyph, Osirian 
Temple, Abydos, Egypt; 4. Neolithic stone spheres, Scotland, United Kingdom; 5. Guardian lion or Shishi, Yonghe Temple, Beijing, China; 6. Amazon Sphere, 
Seattle, United States; and 7. Tianjin Binhai Library, Tianjin, China; B: Spherical viruses with icosahedral capsids. PAV: Parvovirus; CMV: Cytomegalovirus; NV: 
Norovirus; HBV: Hepatitis B virus; 291: bacteriophage; SARS-CoV-2: Severe acute respiratory syndrome virus-2; BTV: Bluetongue virus; SV40: Simian virus 40;  
HSV-1: Herpes simplex virus; MLV: Murine leukemia virus; HIV-1: Human immunodeficiency virus-1; Influenza: Influenza virus.

genes. Moreover, an icosahedral capsid consists of f = 20 (5 on top, 5 at bottom and 10 
in middle) and 12 vertices. While there are rings of five subunits (pentamers) at the 
vertices of each of the original faces, there are rings of six subunits (hexamers) at all the 
new vertices generated (Figure 4). The icosahedral capsids with pentamer and 
hexamer subunits are called “quasi-equivalent” that however, remains in the 
minimum free-energy state. Following tomato bushy stunt virus (TBSV)[16], turnip 
yellow mosaic virus was the second spherical virus whose icosahedral capsid was 
determined, using X-ray crystallography[17].

Further, not only icosahedrally symmetric capsids have > 60 identical subunits, in 
several cases it is formed by subunits of different gene products. Therefore, based on 
their T numbers, icosahedral capsids are categorized into different classes (Figure 5).

T = 1 icosahedron
The smallest and simplest known viruses have T = 1 capsids made of a single 
symmetrical protein. The small plant satellite viruses, like satellite tobacco necrosis 
virus (STNV) icosahedron is T = 1, n = 60[18].

T = 3 icosahedron
Some virus capsids have T = 3, n = 180 structure where in each triangular face (n = 3), 
the subunits are asymmetrical (e.g., pentamers or hexamers). For example, in TBSV (T 
= 3, n = 180), each triangle is made of three identical subunits but in different 
conformations to accommodate the quasi-equivalent assembly[16]. In contrast, 
picornavirus icosahedral capsids are made of 60 copies of each of four subunits (VP1 = 
60, VP2 = 60, VP3 = 60 and VP4 = 60)[19].

T = 7 icosahedron
Bacteriophage T7 icosahedron is composed of 12 pentamer and 60 hexamers with a T = 
7 symmetry[8,20].
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Figure 3  Cubic symmetry, the inherent characteristic of polyhedrons. A: Tetrahedron, cube, octahedron, icosahedron and dodecahedron formed of 
three or more identical faces, identical vertices and identical edges; B: Icosahedral capsid (e.g., T = 1, 3, 4) with principle of axes of symmetry (e.g., 2-3-5 symmetry).

Figure 4  Icosahedral capsid formation. Capsid formation with rings of five subunits i.e., pentamers or six subunits i.e. hexamers at the vertices of each of the 
faces (Left panel; Penta-/hexameric artifacts, Gallery Mall, Riyadh, Saudi Arabia).

T = 13 icosahedron
The reoviruses have double-shelled isometric capsids i.e. a capsid within a capsid. The 
outer capsid has a T = 13, n = 780 symmetry while the inner capsid has a T = 2, n = 120 
symmetry[21].

T = 16 icosahedron
The herpes simplex virus (HSV) capsid has a T = 16, n = 960 symmetry[22].
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Figure 5  Schematic presentation of icosahedral capsids. A: A Clug model of icosahedral capsid assembly; B: Formation of icosahedral T = 1 (subunit A), 
T = 3 (subunits A, B and C) and T = 4 (subunits A, B, C and D) capsids.

T = 25 icosahedron
In highly complex adenovirus icosahedrons, the T = 25, n = 1500 structure is made of 
12 pentameric and 240 hexameric subunits, including a fiber of different proteins[23].

T = 147 icosahedron
The insect chilo iridescent virus icosahedral capsid consists of 12 pentamericand 1460 
hexamericcapsomers, arranged with T = 147 symmetry[24].

T = 219 icosahedron
The marine algae Phaeocystis Pouchetii virus (PpV01) has the largest capsid diameter 
and T number of any icosahedral DNA virus studied[25]. PpV01 capsid consists of 2180 
trimeric and 12 pentameric capsomers arranged with T = 219 quasisymmetry. Above 
the capsid 60 fiber-like structures project, having nearly uniform distribution on the 
surface.

Further, based on T numbers, three classes of icosahedron are also proposed. Of 
these, the two classes that follow T = Pf2, n = 60 are also referred to as P = 1 and P = 3 
classes. The third one is “prolate” class of icosahedron found in T7[20] and 29[26] phages 
and as well as aberrant flock house virus[27]. Geometrically, prolate icosahedra are 
stretched along one of the axes and therefore, defined as n = 30 (T + Q) where Q is 
“elongation number” and Q > T. On the other hand, while an icosahedron is “obate” 
when Q < T and “isometric” when T = Q.

HELICAL FILAMENT OR ROD SYMMETRY
Majority of helical filamentous or rod-shaped capsid structures and assemblies belong 
to either plant viruses or bacteriophages[7]. In TMV, the rod-shaped capsid is made of 
asymmetrical subunits or capsomers in a high-aspect-ratio geometry. The subunits (n 
= approximately 2130) are joined in a helical circle to form symmetrical discs that are 
stacked on top of another, resulting in a hollow tube or rod.

HEAD-TAILED SYMMETRY
In the head-tail architecture, an isometric “icosahedral” head is attached with a 
“helical” tail. Though the head-tail is an inherent feature of bacteriophages e.g. T7 
phage[8], many have other morphologies, too. The tails can be short, long and non-
contractile or complex and contractile, and may have additional appendages such as 
“base-plates” and “collars”.
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ENVELOPED-ISOMETRIC SYMMETRY
The Sindbis virus is the only known enveloped virus to have a geometrically 
symmetric virion[28]. Its single protein, isometric icosahedral core (T = 3, n = 180) is 
covered by an isometric glycolipid envelope (T = 4, n = 240) from which trans-
membrane glycoprotein “spikes” protrude.

ENVELOPED-HELICAL SYMMETRY
In animal enveloped viruses, like retroviruses (e.g., human immunodeficiency virus, 
HIV), paramyxoviruses (measles and mumps viruses), orthomyxoviruses (influenza 
viruses), and rhabdoviruses (e.g., vesicular stomatitis virus, VSV; rabies virus, RBV) as 
well as plant viruses, the segmented genome is packaged in multiple compact 
helical/coiled filamentous nucleocapsids[29]. In influenza virus, its eight rod-shaped 
RNA individually encapsidated in separate cores made of matrix protein and 
nucleoprotein, are all contained within a spherical envelope dotted with 
hemagglutinin and neuraminidase spikes. In contrast, rhabdoviruses are non-isometric 
with bullet-shaped helical core made of nucleoprotein only. However, the structural 
geometry involved in the formation of rhabdovirus core still remains elusive.

ENVELOPED-SPINDLE SYMMETRY
Hyperthermophilic archaeal fuselloviruses have spindle/lemon-shaped virions with 
short tail-fibers attached to one end of the envelope. In sulfolobus spindle-shaped 
virus, for example, the capsid is made of three core proteins VP1, VP3 and VP4, 
including a nucleoprotein VP2[30].

VIROIDS, VIRUSOIDS OR SATELLITES
Owing to their similarities with conventional viruses, viroids, virusoids or satellites 
are often referred to as sub-viral particles. Viroids are the smallest phytopathogens 
with rod or dumb-bell shaped unencapsidated infectious RNA that however, do not 
synthesize any proteins[31]. Viriods do not have a capsid or outer envelope, but, as with 
viruses, can reproduce only within a host cell. The potato spindle tuber viroid was the 
first viroid discovered in 1971[32]. The hepatitis D virus is a viroid or satellite virus that 
requires hepatitis B virus (HBV) co-infected cells to replicate its RNA[33]. Its only 
synthesized core utilizes HBV envelope protein for infectious virion maturation.

CAPSID ASSEMBLY
In a capsid assembly, protein subunits are joined by maximal hydrophobic contacts 
and/or non-covalent interactions, and sometimes by covalent bonds. Structurally, 
most capsid proteins can be ascribed to a very limited number of conformational 
motifs i.e., “jelly-roll/antiparallel β barrel” and “HK97” leading to their perfect 
oligo/polymerization, stability and dynamics, formation of assembly intermediates, 
genome packaging and maturation[34]. While many viruses from the small STNV to the 
largest known Acanthamoeba polyphaga mimivirus utilize the jelly-roll motif, some 
mammalian DNA viruses like, HSV use HK97 motif in their capsids[35]. Evolutionarily, 
a capsid structure is less dynamic than the proteins of its specic motif. Also, the 
preference of HK97 in prokaryotic capsids and jelly-roll in eukaryotic capsids might 
suggest its early existence.

Since the capsid subunits are asymmetrical, the maximum number of inter-subunit 
interactions can be established only when they are arranged symmetrically. Therefore, 
in an ideally stable geometry, the capsid must be in a perfect symmetry and lowest 
possible free-energy. Watson and Crick first suggested the capsid formation by the 
association of multiple copies of the capsid protein(s), and the spherical viruses with 
cubic symmetry involving at least 4 threefold rotational symmetry axes[36]. The 
simplest helical capsid is assembled by first encircling the asymmetrical protein 
subunits to form symmetrical discs or rings, and lying one on the top of another 
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resulting in a hollow filament or rod-like structure. In complex arrangements, the 
smallest number of protein subunits are placed around the vertices of a cube i.e. 12 
regular pentagonal subunits to form a tetrahedron, octahedron and dodecahedron 
while 20 equilateral triangular subunits to form an icosahedron (Figure 6). 
Computationally, a non-symmetric spherical capsid can be formed using at least 12 
protein subunits with substantial energy difference, favoring the symmetrical 12-mer 
over near/complete structure. Conversely, the relatively larger subunits i.e., 40-mer 
because of minor difference between their uniform sized complexes may not 
necessarily satisfy an icosahedral symmetry[37,38]. While there is limited knowledge on 
complex quaternary capsid structures, most viruses have icosahedral or helical 
symmetry. Notably, while nearly 50% of the virus families have icosahedral capsids, 
about 10% have helical capsids.

Notably, the X-ray precession image of TBSV was the first experimental evidence of 
icosahedral symmetry in a spherical virus[16]. Further advancements in Cryo-EM 
assisted structure determination of icosahedral capsids became a turning point in 
structural biology. The rst reported MDS study on capsid self-assembly employed 
simple triangular shaped subunits (T = 3) with only two types of spherical virions[39]. 
Generally, the icosahedral capsid assembly is described by two timescales- nucleation 
and elongation[40]. Icosahedral reconstruction is a type of single particle three 
dimensional (3D) image reconstruction. Using Cryo-EM and image reconstruction, the 
HBV icosahedral core secondary structure has been deduced, revealing a new fold for 
a viral protein where in vitro expressed HBV capsid assembled to yield T = 3 as well T 
= 4 icosahedrons[41,42].

DEFECTIVE VIRIONS OR PARTICLES
Correct and strong interactions between protein-subunits as well as other 
macromolecules allow assembly of stable capsids whereas weak interactions lead to 
unstable or defective capsids. Formations of defective capsids are mainly reported 
from enveloped icosahedral alphaviruses, flaviviruses and hepadnaviruses, including 
irregular non-icosahedral capsids of some immature retroviruses[43]. Such defects may 
arise as scars at the beginning of capsid assembly to the completion where it may be 
incorporated stochastically during self-assembly or imposed by interactions with viral 
or host factors. Nonetheless, defective virions are not necessarily replication-
incompetent or infectious. In HBV, for example, the newly assembled pleomorphic 
capsids (T = 3 and T = 4) may or may not contain viral DNA, and therefore, may or 
may not be infectious. In contrast, though the alphavirus capsids (T = 4) and envelope 
proteins appear to be well structured, a substantial fraction of Ross river virus capsid 
is shown to have defects[44].

Though icosahedral viruses are inherently symmetric, the imposed asymmetry can 
be regular, irregular or dynamic. The asymmetric or symmetric capsid modifications 
have both structural and biological advantages in many viruses. In regular asymmetry, 
the well-defined modification incapsids symmetry strengthens polymerase activities of 
HBV and cytoplasmic polyhedrosis virus[45,46], whereas enhances canine parvovirus 
and MS2 phage binding to their host cell-receptors[47,48]. Conversely, irregular 
asymmetry is stochastic, caused by defects trapped during capsid assemblies as 
observed in HBV and Ross river virus[49,50].

Biologically, identification of selective advantage of structural defects in a 
symmetric capsid allows the virions to better respond to their environment and 
exposure to internal components[4]. In both cases, such defects may facilitate capsid 
structural transitions, uncoating, regulated genome release, intracellular trafficking or 
accessibility of cellular factors. The dynamic asymmetry in capsid intermediates arises 
due to Brownian dynamics when internal components are exposed to the surface[49-51]. 
Notably, the inter-subunit hydrophobic interactions represent the primary driving 
force behind the thermodynamics of capsid self-assembly akin to surfactant micelle 
formation[52]. Analogously, while the inter-subunit electrostatic interactions can oppose 
hepadnavirus capsid assembly where its stability increases with ionic strength, the 
alphavirus capsids that appear uniformly assembled are extremely sensitivity to 
solution conditions[53].
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Figure 6  A cartoon presentation of an icosahedral capsid assembly. A: Construction of a polyhedral shade with equilaterally triangular glass panes 
(Metro Rail Project, Riyadh, Saudi Arabia); B: Assembly of an icosahedral (T = 1) capsid of a spherical virus.

VIRUS-LIKE PARTICLES
Though a nucleocapsid stability also depends on its strong interaction with the viral 
genome, several stable native capsidsor sub-viral particles are also formed without it, 
and are called virus-like particles (VLPs). The self-assembled non-infectious VLPs 
present the overall structure of the viral capsid or virion. For example, in hepatitis E 
virus (HEV), in vitro expressed capsid assembly[54], followed a high resolution Cryo-EM 
reconstruction for its VLPs[55]. Notably, the in vitro produced HEV-VLPs are much 
smaller than the authentic infectious virions, and are never detected in infected 
individuals. As compared to the larger native icosahedral virions (T = 3, n = 180), the 
HEV-VLPs display T = 1, n = 60 symmetry where T = 1 projection however, appears as 
spikes decorated with spherical rings akin to native virions[56]. The observed T = 1 
VLPs instead of T = 3 has been suggested because of its energetically unfavorable 
configuration in the absence of genomic RNA. Moreover, similar to plant T = 3 
capsids, the HEV-VLPs display threefold protrusions formed by P1 and twofold spikes 
made of P2 adopting the jelly-roll motif. Also, based on the T = 1 VLP structure, a T = 3 
capsid of HEV has been modeled by using the quasi-equivalent capsid of TBSV[56].

THERAPEUTIC APPLICATIONS
A detailed 3D image of a virus particle is essential for understanding the mechanisms 
of capsid assembly/disassembly, antigenicity, interaction with host cell-receptors, and 
for designing therapeutic strategies[57,58]. The self-assembled, non-infectious VLPs 
mimic the real virus and present its structural immunogenic proteins as vaccine 
candidates. The different stages of therapeutic VLP design and development includes 
selection of antigenic protein or component (epitope), its expression in prokaryotic or 
eukaryotic system, purification and immune assays. However, to further maximize the 
magnitude and duration of the immunity, most of the licensed VLP-based vaccines 
also utilize adjuvants like, liposomes, agonists of pathogen recognition receptors, 
polymeric particles, emulsions, cytokines and bacterial toxins[59]. For example, some 
licensed prophylactic vaccines against HEV, human papilloma virus, and porcine 
circovirus are VLP-based vaccines. VLP technology combined with synthetic biology 
allows for more precise and predictable control over the composition and assembly of 
the capsids towards generating multivalent or cross-protective vaccines[60]. Moreover, a 
broad range of molecular manipulations such as encapsulation, chemical conjugation 
and genetic engineering further present VLPs as promising delivery agents for 
targeted gene therapy[61].

In addition, several viral capsid and envelope glycoproteins are exploited as drug-
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delivery vehicles in vitro and in vivo[62-64]. For example, brome mosaic virus (B MV) 
capsid assembles into different-sized therapeutic nanoparticles[64]. Recently, 
determination of a 1.4 Å resolution crystal structure of the novel SARS-CoV-2 
nucleocapsid’s N2b domain has been determined, revealing its compact, intertwined 
architecture and self-assembly properties very similar to that of SARSCoV-1 and 
MERS-CoV[65]. Further, cryo-EM structure of its “spike” glycoprotein ectodomain-
trimer has been also elucidated towards designing of vaccines and inhibitor candidates 
of viral entry[66]. Likewise, therapeutic virosomes are hybrid drug-delivery system that 
can carry genetically-modified nucleic acids, peptides, proteins and small organic 
molecules. A number of such prophylactic and therapeutic virosomes, especially anti-
cancer products with high safety profiles are currently commercially available[67].

Compared to other enveloped icosahedral viruses, the adenovirus capsid surface 
has remarkable long, thin fibers primarily responsible for tethering of the viral capsid 
to the cell-receptor. Adenoviral capsid vectors have therefore, achieved substantial use 
in broad ranging therapeutic applications (e.g. hemophilia, cancer, and cystic fibrosis) 
in preclinical animal models and human trials[68]. Adeno-associated virus has been 
developed as gene therapy vector[69]. In addition, reconstituted pseudovirions of 
fusion-competent Sendai virus and influenza virus have been used as therapeutic gene 
delivery vehicles or nanoparticles[70]. Moreover, phage T4 capsid nanoparticles 
carrying reporter genes, vaccine candidates, enzymes, and ligands have been 
efficiently delivered in vitro and in vivo[71].

CONCLUSION
Viruses have remarkable differences in their geometric shapes, sizes and biomolecular 
compositions. Advances in molecular biology, X-ray crystallography, Cryo-EM and 
MDS have elucidated atomic-level understanding the structures of virions, including 
mechanisms of capsid assembly/disassembly, antigenicity, cell-receptor interaction, 
and designing therapeutic interventions. Cryo-EM combined with image analysis has 
provided 3D structures of icosahedral capsids that fail to form large crystals. Also, the 
structural details of influenza virus hemagglutinin and neuraminidase spikes, and 
adenovirus hexon unit are now known. These structures have further enhanced the 
information on antigenic surface for neutralizing antibodies, the cell-receptor site and 
fusion, polyprotein processing during maturation and egress as well as the interfering 
molecules of capsid functionality. In addition, several viral envelope and capsid 
proteins are exploited as targeted drug/gene-delivery vehicles. Because viral 
surface/envelope protein glycosylation inuences antigenicity, further incorporating 
models of their glycan moieties would be a key to enhance full-scale virion 
simulations. This may further provide crucial insights into capsid assembly/ 
disassembly, nucleation of other components, viral genome packaging, antigenicity, 
interaction with cell-receptors, and therefore, exploiting for therapeutic strategies.
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