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Abstract
BACKGROUND 
Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease. 
The Astragalus-Coptis drug pair is frequently employed in the management of 
DKD. However, the precise molecular mechanism underlying its therapeutic 
effect remains elusive.

AIM 
To investigate the synergistic effects of multiple active ingredients in the 
Astragalus-Coptis drug pair on DKD through multiple targets and pathways.

METHODS 
The ingredients of the Astragalus-Coptis drug pair were collected and screened 
using the TCMSP database and the SwissADME platform. The targets were 
predicted using the SwissTargetPrediction database, while the DKD differential 
gene expression analysis was obtained from the Gene Expression Omnibus 
database. DKD targets were acquired from the GeneCards, Online Mendelian 
Inheritance in Man database, and DisGeNET databases, with common targets 
identified through the Venny platform. The protein-protein interaction network 
and the “disease-active ingredient-target” network of the common targets were 
constructed utilizing the STRING database and Cytoscape software, followed by 
the analysis of the interaction relationships and further screening of key targets 
and core active ingredients. Gene Ontology (GO) function and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichments were performed 
using the DAVID database. The tissue and organ distributions of key targets were 
evaluated. PyMOL and AutoDock software validate the molecular docking 
between the core ingredients and key targets. Finally, molecular dynamics (MD) 
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simulations were conducted to simulate the optimal complex formed by interactions between core ingredients and 
key target proteins.

RESULTS 
A total of 27 active ingredients and 512 potential targets of the Astragalus-Coptis drug pair were identified. There 
were 273 common targets between DKD and the Astragalus-Coptis drug pair. Through protein-protein interaction 
network topology analysis, we identified 9 core active ingredients and 10 key targets. GO and KEGG pathway 
enrichment analyses revealed that Astragalus-Coptis drug pair treatment for DKD involves various biological 
processes, including protein phosphorylation, negative regulation of apoptosis, inflammatory response, and 
endoplasmic reticulum unfolded protein response. These pathways are mainly associated with the advanced 
glycation end products (AGE)-receptor for AGE products signaling pathway in diabetic complications, as well as 
the Lipid and atherosclerosis. Molecular docking and MD simulations demonstrated high affinity and stability 
between the core active ingredients and key targets. Notably, the quercetin-AKT serine/threonine kinase 1 (AKT1) 
and quercetin-tumor necrosis factor (TNF) protein complexes exhibited exceptional stability.

CONCLUSION 
This study demonstrated that DKD treatment with the Astragalus-Coptis drug pair involves multiple ingredients, 
targets, and signaling pathways. We propose a novel approach for investigating the molecular mechanism 
underlying the therapeutic effects of the Astragalus-Coptis drug pair on DKD. Furthermore, we suggest that 
quercetin is the most potent active ingredient and specifically targets AKT1 and TNF, providing a theoretical 
foundation for further exploration of pharmacologically active ingredients and elucidating their molecular 
mechanisms in DKD treatment.

Key Words: Astragalus membranaceus; Coptis chinensis Franch; Diabetic kidney disease; Network pharmacology; Molecular 
docking; Molecular dynamics simulation

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Network pharmacology, molecular docking, and molecular dynamics simulation studies have demonstrated that 
diabetic kidney disease (DKD) treatment with the Astragalus-Coptis drug pair involves a diverse range of active ingredients, 
targets, and pathways. Additionally, quercetin has been found to exhibit strong affinity and binding stability with AKT 
serine/threonine kinase 1 and tumor necrosis factor, highlighting its potential therapeutic role in DKD. The findings of this 
study establish a robust theoretical basis for applying the Astragalus-Coptis drug pair in DKD treatment, and these results 
may provide a guiding framework for further experiments.

Citation: Zhang MY, Zheng SQ. Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug 
pair on diabetic kidney disease. World J Diabetes 2024; 15(7): 1562-1588
URL: https://www.wjgnet.com/1948-9358/full/v15/i7/1562.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i7.1562

INTRODUCTION
Diabetic kidney disease (DKD) is a form of chronic kidney disease that arises as a consequence of diabetes mellitus and is 
the primary etiology of end-stage renal disease (ESRD)[1]. Approximately 40% of patients with type 2 diabetes and 
approximately 30% of patients with type 1 diabetes are prone to developing DKD[2]. As the prevalence of diabetes 
increases globally, the number of people with DKD is expected to increase by nearly 50% over the next 24 years, from 537 
million to 783 million[3]. The pathogenesis of DKD is associated with alterations in renal hemodynamics, oxidative stress, 
inflammation, renal fibrosis, hypoxia, and hyperactivity of the renin-angiotensin-aldosterone system[4,5]. The current 
approach to managing DKD primarily revolves around glycemic control and rigorous antihypertensive therapy; 
however, it fails to effectively halt the progression of DKD to ESRD. The treatment options for end-stage renal failure, 
such as dialysis and kidney transplantation, are burdened by high costs, frequent adverse reactions, and limited 
availability of renal sources[6-8].

Traditional Chinese medicine (TCM) has a rich history spanning thousands of years, rendering it uniquely advant-
ageous for ameliorating the clinical symptoms and indicators exhibited by patients with DKD. Consequently, TCM is an 
indispensable intervention method for the clinical prevention and treatment of this disease[9,10]. The pathogenesis of 
DKD is relatively intricate. Modern TCM succinctly characterizes it as the syndrome of “deficiency in origin and excess in 
superficiality”. Several studies have demonstrated that the “deficiency in origin” of DKD is primarily characterized by Qi 
deficiency, while the “excess in superficiality” is dominated by heat. Among these, Astragalus (Astragalus membranaceus. 
Huang Qi) and Coptis (Coptis chinensis Franch. Huang Lian) are commonly used for invigorating Qi and clearing heat, 
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respectively[11]. Astragalus was initially described in Benjing (Sheng Nong’s herbal classic) for its functions in tonifying Qi, 
elevating Yang, consolidating surface and antiperspirant effects, reducing edema, and promoting diuresis, nourishing 
body fluids and enriching the blood. Coptis is first mentioned in Benjing, highlighting its therapeutic properties, such as 
heat-clearing and dampness-drying effects, fire-reducing capabilities and detoxification abilities. The antioxidative stress, 
inhibitory response to inflammation, regulation of glucose and lipid metabolism, protection of podocytes, and en-
hancement of insulin sensitivity exhibited by Astragalus can effectively attenuate renal function deterioration in patients 
with DKD[12]. The administration of Coptis exerts a significant impact on glycemic control, blood pressure regulation, 
lipid metabolism disorder correction, and proteinuria reduction in patients with DKD, thereby effectively delaying 
disease progression[13]. The compatibility of Astragalus and Coptis aligns with the therapeutic principle of “supple-
menting deficiency and reducing actual symptoms” in the Sanbu Jiu hou Lun of Plain Questions, as both herbs serve to 
tonify Qi and reduce fire. The Astragalus-Coptis drug pair has demonstrated significant efficacy in DKD clinical treatment. 
However, there is a lack of comprehensive investigations into its beneficial effects on DKD mechanisms, including 
analyses of its active ingredients and targets, biological processes (BP), and pathways.

Network pharmacology (NP) is an emerging discipline rooted in the principles of systems biology and is employed for 
identifying targets within TCM ingredients. Aligned with the holistic approach of TCM in treating diseases through 
multiple ingredients, targets, and pathways, NP enables a comprehensive assessment of drug regulatory effects on 
biomolecular networks from a systemic perspective. This novel paradigm offers insights into and visualizations of the 
potential interaction network between TCM and multifactorial diseases[14,15]. The application of molecular docking 
techniques enables the evaluation of binding surfaces and interaction forces between receptors and ligands, as well as the 
prediction of binding modes and affinities in receptor-ligand complexes[16]. The structural stability and flexibility of the 
receptor and ligand, as well as the dynamics of receptor-ligand interactions based on appropriate force fields, are 
assessed through molecular dynamics (MD) simulations[17].

The present study employed NP to investigate the synergistic effects of multiple active ingredients in the Astragalus-
Coptis drug pair on DKD through multiple targets and pathways. Molecular docking technology and MD simulation 
were employed to validate the results, providing a theoretical basis for subsequent traditional Chinese medicine 
treatment of DKD and novel drug development.

MATERIALS AND METHODS
Identification of the active ingredients and targets of the Astragalus-Coptidis drug pair
The TCMSP is a highly authoritative platform in Chinese herbal medicine system pharmacology that facilitates the 
screening of active ingredients in drugs and the analysis of the relationships between drug targets and diseases[18]. The 
active ingredients were queried in the TCMSP database using “Huangqi” and “Huanglian” as search terms. TCM is 
primarily administered orally and exerts its effects through gastrointestinal digestion and absorption, blood circulation, 
and metabolism. Therefore, it is essential to evaluate the absorption, distribution, metabolism, and excretion (ADME) 
properties of the retrieved active ingredients. The retrieval results were filtered based on the criteria of oral bioavailability 
(OB) ≥ 30% and drug-likeness (DL) ≥ 0.18[19]. The active ingredients were imported from the PubChem database and 
Novopro platform, consistent with the standard. Canonical SMILESs for each ingredient were obtained and subsequently 
entered into the SwissADME platform[20]. The GI absorption score was classified as “high”. The screening criteria based 
on the Lipinski, Ghose, Veber, Egan, and Muegge rules required at least two positive results (“Yes”) for DL. The results 
were collected and imported into the SwissTargetPrediction database, where “Homo sapiens” was selected as the target 
species. Predictions of targets for each active ingredient were made, and target data with a probability greater than 0.1 
were compiled. The URLs for the database and platform mentioned in this article are presented in Table 1.

Identification of common targets between DKD targets and active ingredient targets
The Human Gene Database (GeneCards)[21], the Online Mendelian Inheritance in Man database (OMIM)[22], and the 
DisGeNET platform[23] were utilized to search for “Diabetic Kidney Disease” and “Diabetic Nephropathy” as keywords. 
The targets obtained from these three databases were then consolidated, eliminating any duplicates, to obtain the targets 
related to DKD. The Venny2.1 platform was used to identify common targets by identifying the intersection of targets for 
active ingredients in the Astragalus-Coptis drug pair and DKD targets, and the results were visualized using a Venn 
diagram. Additionally, gene expression levels in DKD were analyzed by retrieving samples from the Gene Expression 
Omnibus with “Diabetic Kidney Diseases” as the keyword and “Homo sapiens” as the organism. Gene expression data 
from DKD and normal kidney samples (GSE1009) were accessed[24]. The gene expression analysis data for GSE1009 were 
obtained from the GPL8300 platform (source: Affymetrix Human Gene Expression Panel). Thresholds of |log2FC| > 1 
and P < 0.05 were applied to identify DEGs[25]. Volcanoes and heatmaps were visualized using the ggplot2 and 
pheatmap packages in R software.

Construction of the “disease-active ingredient-target” network
The network was constructed using Cytoscape 3.10.1, with a focus on potential key objectives, followed by system 
analysis of the network parameters[26]. A network diagram of “disease-active ingredient-target” was generated using 
Cytoscape 3.10.1, incorporating the active ingredients of the Astragalus-Coptis drug pair and common and DKD targets. 
The topological properties of each node were calculated using the “CytoNCA” functional module in Cytoscape 3.10.1 to 
determine their significance, with nodes ranked based on degree value from high to low for core active ingredient identi-
fication.
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Table 1 Databases and platform addresses

Database and platform Address

TCMSP http://www.tcmspw.com/tcmsp.php

Pubchem https://pubchem.ncbi.nlmnih.gov

Novopro https://www.novopro.cn/tools/mol2smiles.html

SwissADME http://www.swissadme.ch

SwissTargetPrediction http://www.swisstargetprediction.ch

GeneCards https://www.genecards.org

OMIM https://omim.org

DisGeNET https://www.disgenet.org

VENNY2.1 http://bioinfogp.cnb.csic.es/tools/venny/

GEO http://www.ncbi.nlm.nih.gov/geo/

STRING https://string-db.org/

DAVID https://david.ncifcrf.gov

Bioinformatics https://www.bioinformatics.com.cn

BioGPS https://biogps.org

RCSB https://www.pdbus.org/

GEO: Gene Expression Omnibus; OMIM: Online Mendelian Inheritance in Man database.

Establishment of the protein-protein interaction network
The STRING database systematically compiles and integrates protein-protein interactions, encompassing physical 
contacts and functional associations[27]. Protein-protein interaction (PPI) analysis of common targets was conducted 
using the STRING database. Multiple proteins were selected, and Homo sapiens was chosen as the research subject to 
construct a PPI network diagram of common targets. The TSV file of the interaction network was exported. Cytoscape 
3.10.1 was utilized to import the TSV files, and the CentiscaPe 2.2 function module was employed to calculate three 
network topology parameters: Degree centrality, betweenness centrality, and closeness centrality. Subsequently, the PPI 
network graph underwent optimization based on thresholds set for degree centrality, betweenness centrality, and 
closeness centrality values to identify key targets[28]. The MCODE plug-in in Cytoscape 3.10.1 was utilized to identify 
high-relevance modules in the PPI network based on topological parameters, including degree cutoff = 2, K-core = 2, 
node score cutoff = 0.2, and maximum depth = 100.

Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis
The joint utilization of the DAVID enrichment analysis platform is sought to enhance our understanding of the functional 
significance of common targets[29]. Gene Ontology (GO) biological function analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were performed separately[30]. GO functional enrichment analysis 
included three categories: Biological process (BP), cellular component (CC), and molecular function (MF). The results of 
the enrichment analysis were exported, and based on the P value, the top 20 enriched terms in both GO and KEGG were 
closely examined for their relevance to DKD. A bioinformatics platform will be used for data visualization.

Construction of the “key target-organ” network
The precise mechanisms underlying the in vivo metabolism of the Astragalus-Coptis drug pair remain unclear, and 
multiple organs and tissues are likely involved in DKD treatment. To further investigate this possibility, microarray 
analysis was conducted using the BioGPS database to obtain the mRNA levels of key targets for each Astragalus-Coptis 
drug pair in various organ tissues[31]. Subsequently, a network map depicting the interconnectedness of these “key 
target-organ” was constructed using Cytoscape 3.10.1.

Construction of the “active ingredient-target-signaling pathway” network
To visualize and elucidate the intricate relationships among active ingredients, pathways, and targets, we imported the 
data on the core active ingredients of the Astragalus-Coptis drug pair, as well as the key targets and main pathways 
obtained through KEGG enrichment analysis, into Cytoscape 3.10.1 software for visualization purposes. Subsequently, a 
network diagram illustrating the “active ingredient-target-signaling pathway” was generated.

http://www.tcmspw.com/tcmsp.php
https://pubchem.ncbi.nlmnih.gov
https://www.novopro.cn/tools/mol2smiles.html
http://www.swissadme.ch
http://www.swisstargetprediction.ch
https://www.genecards.org
https://omim.org
https://www.disgenet.org
http://bioinfogp.cnb.csic.es/tools/venny/
http://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/
https://david.ncifcrf.gov
https://www.bioinformatics.com.cn
https://biogps.org
https://www.pdbus.org/
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Molecular docking verification
The receptor of the Astragalus-Coptis drug pair was utilized as the key target for treating DKD, while its core active 
ingredient served as the ligand for molecular docking verification to analyze its binding affinity. The molecular structure 
data of the receptor and ligand proteins were obtained from the RCSB database and TCMSP database, respectively, and 
converted into pdb format. The receptor and ligand proteins were pretreated using PyMOL software to eliminate water 
molecules and the original ligands. AutoDock-Tools 1.5.6 software was used to conduct molecular docking between the 
processed receptors and ligand files, which were saved in “pdbqt” format. AutoDock Vina was used to calculate the 
minimum binding energy between each target and active ingredient, and a heatmap was generated on a bioinformatics 
platform for visualization purposes. Finally, PyMOL software was used to visualize the docking results.

MD simulation
Gromacs 2018 was chosen as the software for dynamics simulations, while OPLS was utilized for the force fields of both 
proteins and small molecules. The TIP3P water model was used to add water molecules to the system, with a 10 nm3 × 10 
nm3 × 10 nm3 water box established (ensuring that the edge of the water box was at least 1.2 nm away from the protein). 
An ion auto-balance system was also incorporated. Electrostatic interactions were handled using the particle-mesh Ewald 
method in conjunction with the steepest descent energy minimization (with a maximum of 50000 steps). The Coulomb 
force distance and van der Waals radius cutoff distances were set at 1 nm each. Subsequently, a canonical ensemble and 
an isothermal-isobaric ensemble were employed to equilibrate the system before conducting MD simulations for 100 ns 
under room temperature and pressure conditions. A nonbonded interaction cutoff value of 10 Ångstroms was applied. 
The V-rescale temperature coupling method maintained the simulation temperature at 300 K, while pressure control was 
achieved using the Berendsen method at 1 bar. Calculating binding free energy allows the assessment of intermolecular 
interaction strength within receptor-ligand complexes by quantifying contributions from various chemical energies. The 
Molecular Mechanics Poisson-Boltzmann Surface Area method provides a straightforward means to quantify the binding 
free energy between receptors and ligands[32]. The binding free energy was computed using the gmx_MMPBSA tool 
implemented in GROMACS[33].

RESULTS
Active ingredients and potential targets of the Astragalus-Coptis drug pair
The Astragalus-Coptis drug pair was selected from the TCMSP database, resulting in 135 active ingredients. To meet the 
criteria, these active ingredients had to have an OB equal to or greater than 30%, a DL value equal to or greater than 0.18, 
a “high” gastrointestinal absorption score according to the SwissADME platform, and at least two positive results for the 
five principles of drug similarity (Lipinski, Ghose, Veber, Egan, Muegge). After applying these criteria, we identified 27 
active ingredients from the Astragalus-Coptis drug pair (Table 2). Subsequently, using the SwissTargetPrediction database 
for target prediction analysis of these 27 active ingredients resulted in 1646 predicted targets. After removing duplicates, 
we obtained a final list of 512 unique targets for these active ingredients.

DKD targets and common targets
The integration of 2961, 1818, and 1189 DKD targets obtained from the GeneCards, OMIM, and DisGeNET databases 
yielded 4044 unique DKD targets (Figure 1A). By employing the Venny 2.1 tool to compare the active ingredient targets 
with the DKD targets, a Venn diagram was generated (Figure 1B), revealing a set of 273 common targets. Furthermore, 
DEG between DKD samples and normal samples in the test group using GSE1009 data identified 34 upregulated genes 
and 16 downregulated genes (Table 3). Volcano plots and heatmaps illustrating the differential gene expression data for 
DKD are presented in Figure 1C and D.

“Disease-active ingredient-target” network
The DKD targets, the active ingredients of the Astragalus-Coptis drug pair, and the common targets were imported into 
Cytoscape 3.10.1 to generate a network diagram of “disease-active ingredient-target”, as depicted in Figure 2, consisting 
of 303 nodes and 1253 edges. The degree value for each active ingredient was calculated using the “CytoNCA” functional 
module to determine their topological importance, resulting in a ranking from highest to lowest degree. Following 
network analysis, active ingredients with a degree ≥ 56 were selected. Among them, 3,9-di-O-methylnissolin, 
isorhamnetin, jaranol,  quercetin, 1-7-dihydroxy-3,9-dime-thoxypterocarpene, (3R)-3-(2-hydroxy-3,4-
dimethoxyphenyl)chroman-7-ol, palmatine, obacunone, and moupinamide were found to be associated with 66, 63, 63, 
62, 62, 58, 57, and 56 disease targets, respectively, in this study. These active ingredients may serve as core ingredients in 
the Astragalus-Coptis drug pair for treating DKD (Table 4).

Construction and analysis of the protein-protein interaction network
To investigate the mechanism of action of the Astragalus-Coptis drug pair in treating DKD, we input 273 common targets 
associated with this drug pair into the STRING database for PPI analysis (Figure 3A). The resulting PPI network TSV file 
was imported into Cytoscape 3.10.1 software to construct a visual representation of the PPI network diagram, excluding 
nodes that had no interaction with other nodes. Consequently, we obtained a PPI network consisting of 271 nodes and 
4129 edges (Figure 3B). Cluster analysis using MCODE was performed to generate a highly connected subnetwork and 
assign targets to four groups (Figure 3C). By utilizing the CentiscaPe 2.2 functional module, we determined thresholds for 
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Table 2 Active ingredients of the Astragalus-Coptis drug pair

TCM Serial number MOL ID Ingredient OB (%) DL
Astragalus membranaceus HQ1 MOL000379 9,10-dimethoxypterocarpan-3-O-β-D-glucoside 36.74 0.92

HQ2 MOL000387 Bifendate 31.10 0.67

HQ3 MOL000442 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 39.05 0.48

HQ4 MOL000371 3,9-di-O-methylnissolin 53.74 0.48

HQ5 MOL000380 (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol 64.26 0.42

HQ6 MOL000354 Isorhamnetin 49.60 0.31

HQ7 MOL000378 7-O-methylisomucronulatol 74.69 0.30

HQ8 MOL000398 Isoflavanone 109.99 0.03

HQ9 MOL000239 Jaranol 50.83 0.29

HQ10 MOL000098 Quercetin 46.43 0.28

HQ11 MOL000438 (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol 67.67 0.26

HQ12 MOL000417 Calycosin 47.75 0.24

HQ13 MOL000422 Kaempferol 41.88 0.24

HQ14 MOL000392 Formononetin 69.67 0.21

Coptis chinensis Franch HL1 MOL002903 (R)-Canadine 55.37 0.77

HL2 MOL001454 Berberine 36.86 0.78

HL3 MOL002894 Berberrubine 35.74 0.73

HL4 MOL002904 Berlambine 36.68 0.82

HL5 MOL001458 Coptisine 30.67 0.86

HL6 MOL002907 Corchoroside A_qt 104.95 0.78

HL7 MOL002897 Epiberberine 43.09 0.78

HL8 MOL000622 Magnograndiolide 63.71 0.19

HL9 MOL008647 Moupinamide 86.71 0.26

HL10 MOL013352 Obacunone 43.29 0.77

HL11 MOL000785 Palmatine 64.60 0.65

HL12 MOL000098 Quercetin 46.43 0.28

HL13 MOL002668 Worenine 45.83 0.87

DL: Drug-likeness; MOL: Molecule; OB: Oral bioavailability; TCM: Traditional Chinese medicine.

DC (degree centrality), BC (betweenness centrality), and CC (closeness centrality) within the common target interaction 
network as follows: DC = 30.47232472, BC = 303.9409594, and CC = 0.001774064, respectively. Based on topological 
analysis using these thresholds as screening criteria, we identified a core PPI network comprising 10 key targets: AKT 
serine/threonine kinase 1 (AKT1) (degree value: 46), epidermal growth factor receptor (EGFR) (degree value: 44), tumor 
necrosis factor (TNF) (degree value: 43), SRC proto-oncogene, non-receptor tyrosine kinase (SRC) (degree value: 43), Jun 
proto-oncogene, AP-1 transcription factor subunit (JUN) (degree value: 43), caspase 3 (CASP3) (degree value: 43), 
mitogen-activated protein kinase 3 (MAPK3) (degree value: 43), heat shock protein 90 alpha family class A member 1 
(HSP90AA1) (degree value: 41), signal transducer and activator of transcription 3 (STAT3) (degree value: 40), and 
estrogen receptor 1 (ESR1) (degree value: 38) (Figure 3D, Table 5). These targets may have significant implications for 
understanding the pathogenesis and treatment of DKD.

GO enrichment analysis
The 273 common targets of the Astragalus-Coptis drug pair in treating DKD were entered into the DAVID database for GO 
function and KEGG pathway enrichment analysis. A total of 1265 items were obtained through GO functional enrichment 
analysis, including 937 BP, 122 CC, and 206 MF terms. The respective items within each category were sorted based on 
their P values from smallest to largest, and the top 20 items were selected for visualization, as depicted in Figure 4. The 
results revealed that cell BP included protein phosphorylation, negative regulation of apoptotic process, and the inflam-
matory response. The primary CCs included mitochondrion, extracellular exosome, and membrane raft. The main MF 
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Table 3 Information on the differential gene expression analysis identified from the Gene Expression Omnibus dataset

Gene symbol Protein name Log2FC P value Change
PLCE1 Phospholipase C epsilon 1 3.980421 0.00000765 Upregulated

CLIC5 Chloride intracellular channel 5 4.380969 0.00001522 Upregulated

PTPRO Protein tyrosine phosphatase receptor type O 3.922249 0.00001810 Upregulated

HSPA12A Heat shock protein family A (Hsp70) member 12A 4.194141 0.00001836 Upregulated

AIF1 Allograft inflammatory Factor 1 3.616273 0.00002007 Upregulated

GMDS GDP-mannose 4,6-dehydratase 3.900218 0.00002555 Upregulated

SEMA5A Semaphorin 5A 3.956868 0.00002673 Upregulated

CEP152 Centrosomal protein 152 4.004339 0.00002683 Downregulated

FOXC1 Forkhead Box C1 3.505715 0.00003095 Upregulated

MME Membrane metalloendopeptidase 3.837958 0.00003666 Upregulated

FGF1 Fibroblast growth Factor 1 3.743398 0.00003695 Upregulated

TNNC1 Troponin C1, slow skeletal and cardiac type 3.602037 0.00004852 Upregulated

CYP2C8 Cytochrome P450 family 2 subfamily C member 8 -3.55671 0.00004895 Downregulated

THBS1 Thrombospondin 1 3.170090 0.00005034 Upregulated

VEGFA Vascular endothelial growth Factor A 4.261645 0.00005391 Upregulated

LUNAR1 Leukemia-associated noncoding IGF1R activator RNA 1 3.265115 0.00005733 Downregulated

HOXD1 Homeobox D1 3.812893 0.00005999 Upregulated

BMP2 bone morphogenetic protein 2 3.115485 0.00006297 Upregulated

IQGAP2 IQ motif containing GTPase activating protein 2 2.540433 0.00006536 Upregulated

ST3GAL6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 2.858100 0.00006870 Upregulated

THSD7A Thrombospondin type 1 domain containing 7A 2.581030 0.00006966 Upregulated

F2R Coagulation factor II thrombin receptor 2.809148 0.00007121 Upregulated

SLC9A1 Solute carrier family 9 member A1 4.330925 0.00007424 Downregulated

ADORA2B Adenosine A2b receptor 2.582378 0.00008127 Downregulated

FAM153A Family with sequence similarity 153 member A 3.774375 0.00009200 Upregulated

ITGB1 Integrin subunit beta 1 3.774328 0.00009284 Downregulated

CDS1 CDP-diacylglycerol synthase 1 2.695287 0.00009577 Upregulated

EGR2 Early growth response 2 3.580285 0.00010401 Downregulated

PLA2R1 Phospholipase A2 receptor 1 3.485108 0.00010718 Upregulated

GAS1 Growth arrest specific 1 3.659052 0.00010882 Upregulated

TYRO3 TYRO3 protein tyrosine kinase 2.854082 0.00011003 Upregulated

LOC101929500 Uncharacterized LOC101929500 2.664931 0.00011229 Upregulated

F3 Coagulation factor III, tissue factor 3.035691 0.00011752 Upregulated

XPNPEP2 X-prolyl aminopeptidase 2 3.454828 0.00013038 Downregulated

FUT6 Fucosyltransferase 6 3.357247 0.00013492 Downregulated

LCN1 Lipocalin 1 2.654097 0.00014868 Downregulated

C1orf21 Chromosome 1 open reading frame 21 2.655885 0.00015593 Upregulated

LOC103344931 Uncharacterized LOC103344931 2.423861 0.00015641 Upregulated

FRY FRY microtubule binding protein 2.922064 0.00016127 Upregulated

POU2F2 POU class 2 homeobox 2 -2.51972 0.00016162 Downregulated

VEGFA Vascular endothelial growth Factor A 2.860180 0.00016446 Upregulated
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CHRNE Cholinergic receptor nicotinic epsilon subunit 2.954435 0.00016654 Downregulated

TUBB4A Tubulin beta 4A class IVa 3.908527 0.00016713 Downregulated

MGAT5 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase 2.568678 0.00017864 Upregulated

PTPRD Protein tyrosine phosphatase receptor type D 3.052249 0.00018095 Upregulated

HYAL1 Hyaluronidase 1 -2.217640 0.00018409 Downregulated

DPYSL3 Dihydropyrimidinase like 3 3.782204 0.00018554 Upregulated

UGT2B17 UDP glucuronosyltransferase family 2 member B17 2.604504 0.00018633 Downregulated

PAM Peptidylglycine alpha-amidating monooxygenase 2.25575 0.00018848 Upregulated

RFC4 Replication Factor C subunit 4 3.094109 0.00020080 Downregulated

Table 4 Core active ingredients of the Astragalus-Coptis drug pair

Serial number MOL ID Ingredient Degree

HQ4 MOL000371 3,9-di-O-methylnissolin 66.0

HQ6 MOL000354 Isorhamnetin 63.0

HQ9 MOL000239 Jaranol 63.0

HQ10, HL12 MOL000098 Quercetin 62.0

HQ13 MOL000422 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 62.0

HQ11 MOL000438 (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol 58.0

HL11 MOL000785 Palmatine 58.0

HL10 MOL013352 Obacunone 57.0

HL9 MOL008647 Moupinamide 56.0

Table 5 Analysis of topological parameters of key targets

Name Degree centrality Betweenness centrality Closeness centrality Degree
AKT1 155 6135.22026848002 0.00258397932816537 46

EGFR 127 2630.66165751648 0.00239234449760765 44

TNF 155 6936.3437260436 0.00257069408740359 43

SRC 129 3308.84927642964 0.00240384615384615 43

JUN 117 1696.42973120389 0.00232018561484918 43

CASP3 116 2086.85812276904 0.00233644859813084 43

MAPK3 119 2232.21929446136 0.00233100233100233 43

HSP90AA1 124 3622.00791458381 0.00235849056603773 41

STAT3 123 1881.06728458254 0.00234192037470726 40

ESR1 102 1938.43441498511 0.00224215246636771 38

were protein serine/threonine/tyrosine kinase activity, ATP binding, and protein kinase activity.

KEGG enrichment analysis
KEGG pathway enrichment analysis identified 185 related pathways, which were then ranked by P value from smallest to 
largest. The top 20 pathways were selected for further analysis (Figure 5A and B; Table 6). The core active ingredients of 
the Astragalus-Coptis drug pair in the treatment of DKD, along with common targets and the top 20 KEGG signaling 
pathways, were imported into Cytoscape 3.10.1 software to construct a comprehensive active ingredient-target-signaling 
pathway network diagram (Figure 5C). This network graph consisted of a total of 80 nodes and 385 edges. The results 
demonstrated that the Astragalus-Coptis drug pair has synergistic effects on treating DKD through multiple ingredients, 
targets, and pathways. The P value for the advanced glycation end products (AGE)-receptor for AGEs (AGE-RAGE) 
signaling pathway in diabetic complications was 2.05E-22, while the gene number was 31. In addition, 40 genes related to 
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Table 6 Kyoto Encyclopedia of Genes and Genomes enrichment results

ID Term Enrichment P value Count
hsa04933 AGE-RAGE signaling pathway in diabetic complications 10.2107004 2.05E-22 31

hsa05417 Lipid and atherosclerosis 6.12795222 3.17E-20 40

hsa04151 PI3K-Akt signaling pathway 4.55917914 3.19E-19 49

hsa04066 HIF-1 signaling pathway 8.15889052 7.92E-17 27

hsa04510 Focal adhesion 5.67892124 1.28E-16 35

hsa04014 Ras signaling pathway 5.16396821 4.42E-16 37

hsa04012 ErbB signaling pathway 8.91256580 3.47E-15 23

hsa04664 Fc epsilon RI signaling pathway 10.1719501 4.44E-15 21

hsa04931 Insulin resistance 7.62447759 7.90E-15 25

hsa04068 FoxO signaling pathway 6.78869516 1.03E-14 27

hsa04010 MAPK signaling pathway 4.25354962 3.49E-14 39

hsa04062 Chemokine signaling pathway 5.31807312 7.06E-14 31

hsa04926 Relaxin signaling pathway 6.38328356 5.15E-13 25

hsa05418 Fluid shear stress and atherosclerosis 5.92405453 2.81E-12 25

hsa04668 TNF signaling pathway 6.64533415 2.32E-12 23

hsa04657 IL-17 signaling pathway 5.95682590 1.70E-08 17

hsa04922 Glucagon signaling pathway 4.30961126 1.88E-05 14

hsa04614 Renin-angiotensin system 10.0245305 4.72E-05 7

hsa04960 Aldosterone-regulated sodium reabsorption 7.12167420 1.01E-04 8

hsa04152 AMPK signaling pathway 4.89982957 1.15E-07 18

the Lipid and atherosclerosis pathway had a P value of 3.17E-20. The Astragalus-Coptis drug pair may play crucial roles in 
DKD treatment through these two core pathways. Based on the analysis of the differentially expressed genes mentioned 
above, we reconstructed a KEGG pathway map for the core pathway (Figure 6) and constructed a Sankey diagram using 
a bioinformatics platform to illustrate the relationships between the targets and pathways (Figure 5D).

Analysis of the “key target-organ network”
We analyzed the mRNA distribution levels across various cells, organs, and tissues for the 10 key targets. Notably, there 
was a significant increase in the mRNA levels of genes related to 23 specific entities, including the kidney, adrenal gland, 
adrenal cortex, prostate, thyroid gland, liver, cardiomyocytes, CD4+ T cells, CD8+ T cells and others. To demonstrate the 
associations between these key targets and organ tissues mentioned above, we constructed a “key target-organ network” 
consisting of 33 nodes and 130 edges (Figure 7). Network analysis revealed that these organs were primarily closely 
linked with the kidney and immune-related factors such as CD34+ T cells, CD4+ T cells, and CD8+ T cells. This finding 
suggested that the Astragalus-Coptis drug pair may exert therapeutic effects on DKD by activating renal function and 
systemic immunity.

Molecular docking
The ligands were selected based on the highest degree value in the “disease-active ingredient-target” network analysis, 
which included 9 core active ingredients. Molecular docking was then performed with the key target receptors AKT1, 
EGFR, TNF, SRC, JUN, CASP3, MAPK3, HSP90AA1, STAT3, and ESR1. AutoDock software was used to calculate the 
minimum binding energy, and the results are presented in Figure 8 as a heatmap. A lower binding energy indicates a 
stronger binding capacity between the ligand and receptor. Specifically, a binding energy ≤ -5.0 kcal/mol suggests 
moderate binding capacity, while a binding energy ≤ -7.0 kcal/mol indicates high binding capacity[34]. The binding 
energies of quercetin and obacunone to the key target were below -6.0 kcal/mol, while the binding energies of the other 
ingredients to the target were mostly lower than -5.0 kcal/mol. This indicates that the Astragalus-Coptis drug pair exhibits 
strong binding affinity for both the core active ingredients and the key targets, particularly between quercetin, 
obacunone, and the targets. The ingredient-target interactions with the smallest fraction of binding energy and their 
corresponding binding modes were visualized using PyMOL 1.7.2.1 and Discovery Studio 2020 (Figure 9). Notably, 
quercetin displayed the lowest binding energy with the TNF target (-9.95 kcal/mol), which can be attributed to its 
interaction with GLN-B:27 through hydrogen bonds formed with residues LEU-B:26 and ILE-B:136, a C-H bond formed 
with residue GLU-B:135, and a hydrophobic interaction involving residue PRO-B:139 of TNF (Figure 9J).
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Figure 1 Screening of Astragalus-Coptis drug pair common targets. A: Venn diagram illustrating the target genes associated with diabetic kidney 
disease (DKD); B: Venn diagram depicting the 273 common targets between the active ingredient targets and DKD targets; C: Volcano plot displaying differential gene 
expression patterns in DKD samples, where red and blue indicate upregulated and downregulated genes, respectively, while gray represents no significant difference; 
D: Heatmap presenting the expression profiles of these 50 differential gene expression analysis. Columns correspond to sample groups, while rows represent 
individual genes. The cyan Group A denotes normal samples, whereas the red Group B signifies DKD samples. OMIM: Online Mendelian Inheritance in Man 
database.

MD simulation and binding free energy
MD simulation is a crucial method for investigating the stability and dynamics of protein complexes in aqueous 
solutions. To validate the binding stability of the ligand-receptor protein complex, MD simulations were conducted for 
100 ns based on the results obtained from molecular docking studies involving the HL10 (obacunone)-MAPK3, HQ10 
(quercetin)-AKT1, and HQ10 (quercetin)-TNF protein complexes.

The atomic root mean square deviation (RMSD) serves as a reliable metric for assessing the conformational stability of 
both the receptor and ligand while also quantifying the degree to which atomic positions deviate from their initial state. 
Lower deviations indicate enhanced conformational stability[35]. The Rg value can reflect the compactness of the binding 
structure and the degree of constraint of the system. Low Rg values indicate dense and compact systems[36]. The system 
stability can be assessed by measuring the RMSD and Rg. Based on the corresponding RMSD and Rg values for the three 
protein complexes (Figure 10A and B), it is evident that during the 100 ns MD simulation, the protein complexes 
exhibited a predominantly stable state with no significant structural alterations.

The root mean square fluctuation (RMSF) can effectively capture the volatility and flexibility of amino acid sites, as 
demonstrated in Figure 10C. Notably, the RMSF values for all residues within the three systems were consistently below 
0.5 nm, except the first terminal residue. This observation strongly suggested that the core structure of the three-protein 
complex exhibited remarkable rigidity.
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Figure 2 Disease-active ingredient-target network. The yellow octagon nodes represent the Astragalus-Coptis drug pair, while the blue prismatic nodes 
depict the active ingredients in this drug pair. The purple arrow nodes symbolize diabetic kidney disease, and the pink circular nodes represent the common targets. 
The edges illustrate the interaction between the active ingredient and its target. DKD: Diabetic kidney disease.

Hydrogen bonding is one of the most robust noncovalent binding interactions between an acceptor and a ligand, and a 
greater number of hydrogen bonds contributes to enhanced binding stability. Analysis of hydrogen bonds (Figure 10D) 
revealed that in the HQ10-AKT1 system, most time scales exhibited 1 to 3 hydrogen bonds, with a maximum of 4 
hydrogen bonds observed. In the HQ10-TNF system, there was a significant increase in frames with a high number of 
hydrogen bonds (≥ 3), reaching a maximum of 5 hydrogen bonds. Conversely, only one hydrogen bond was present in 
the HL10-MAPK3 system. The formation of hydrogen bonds between the ligand and receptor plays a crucial role in 
stabilizing the protein-protein complex.

The overall secondary structure diagram of the protein complex (Supplementary Figure 1) revealed no significant 
fluctuations in the secondary structures, such as B-sheet, B-bridge, or bend structures, during the 100 ns MD simulation. 
The solvent-accessible surface area represents the degree of exposure of the protein surface. The results indicated that 
MAPK3 exhibited greater effects than did AKT1 and TNF. Both TNF and MAPK3 proteins displayed comparable 
exposure to hydrophobic and hydrophilic surfaces, while AKT1 had a slightly larger hydrophilic surface than a 
hydrophobic surface.

In parallel, we analyzed the binding free energy between the HL10 (obacunone)-MAPK3, HQ10 (quercetin)-AKT1, and 
HQ10 (quercetin)-TNF protein complexes. The GGAS parameter represents the free energy of the gas phase, which is 
determined through a comprehensive calculation involving van der Waals energy (VDWAALS) and electrostatic energy 
(EEL). Additionally, the nonpolar solvation energy (ESURF), although its value is negligible, and the polar solvation 
energy (EGB) in GSOLV were examined to assess the influence of polar solvents on binding affinity. These findings are 
illustrated in Figure 11.

The mean VDWAALS and mean EEL values were negative for the HQ10-AKT1, HQ10-TNF, and HL10-MAPK3 
complexes (-12.75 kcal/mol and -0.77 kcal/mol; -14.65 kcal/mol and -10.13 kcal/mol; -1.32 kcal/mol and -0.30 kcal/mol, 
respectively), indicating a favorable combination of van der Waals energy and EEL in these complexes. However, the 
average EGB in GSOLV was relatively positive (7.60 kcal/mol, 16.15 kcal/mol and 1.05 kcal/mol, respectively). Although 
the average ESURF was negative (-1.52 kcal/mol, -1.97 kcal/mol, and -0.18 kcal/mol, respectively), the overall average 
GSOLV values were positive (6.08 kcal/mol, 14.18 kcal/mol, and 0.87 kcal/mol, respectively), suggesting that polar 
solvents are unfavorable for binding interactions. The average binding free energies were -7.44 kcal/mol ± 6.35 kcal/mol, 
-10.60 kcal/mol ± 9.98 kcal/mol, and -0.75 kcal/mol ± 2.97 kcal/mol, respectively. From these results, it can be concluded 
that all three protein complexes are stable. However, the HQ10-TNF protein complex exhibits stronger binding stability 
due to its greater content of van der Waals forces and hydrogen bonds.

After conducting MD simulations, we observed alterations in the interaction forces between ligands and receptors 
within all protein complexes of HQ10-AKT1, HQ10-TNF, and HL10-MAPK3 (Supplementary Figure 2). The combination 
of HQ10 and AKT1 in Supplementary Figure 2B is stabilized by two conventional hydrogen bonds with LEU347 and 
GLU341, one carbon-hydrogen bond and a conventional hydrogen bond with ARG346, as well as a Pi-Pi stacking 
interaction with TYR350. Additionally, van der Waals forces contribute to stabilizing its binding complex through 
interactions with ARG243, GLY345, and LEU239. The interaction between HQ10 and TNF in Supplementary Figure 2D is 
mediated by two hydrogen bonds with GLN27 and ASN19, one hydrogen bond with ILE136, one carbon-hydrogen bond 
with GLU135, and a conventional hydrogen bond. Additionally, there is an alkyl interaction involving LEU26 and 

https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
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Figure 3 Protein-protein interaction network. A: The protein-protein interaction (PPI) network of common targets; B: The PPI network, commonly targeted, 
was optimized using Cytoscape 3.10.1; C: Cluster analysis-based construction of a PPI network utilizing MCODE plugin; D: The central core PPI network consisted of 
48 nodes and 707 edges, wherein 10 nodes exhibiting an orange-to-purple gradient symbolized key targets associated with Astragalus-Coptis drug pair combination 
for treating diabetic kidney disease. Node sizes were proportionate to target degrees in the network.



Zhang MY et al. NPs of the Astragalus-Coptis drug pair

WJD https://www.wjgnet.com 1574 July 15, 2024 Volume 15 Issue 7



Zhang MY et al. NPs of the Astragalus-Coptis drug pair

WJD https://www.wjgnet.com 1575 July 15, 2024 Volume 15 Issue 7

Figure 4 Gene Ontology enrichment diagram. A: Bubble map illustrating cellular biological processes (BP); B: Bubble plot depicting cellular components 
(CC); C: Bubble plot representing molecular function (MF). The X- and Y-axes display the fold enrichment and full name, respectively, while the color and size of the 
bubbles indicate the P value and number of genes, correspondingly; D: Top 10 BP, CC, and MF from Gene Ontology enrichment analysis are visualized as blue, 
orange, and purple bars, respectively.
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Figure 5 Kyoto Encyclopedia of Genes and Genomes pathway enrichment diagram. A: Bubble plot depicting the top 20 pathways identified through 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis; B: Classification of the top 20 pathways based on KEGG enrichment analysis according to 
their respective KEGG types; C: Diagram illustrating the active ingredient-target-signaling pathway. The cyan node represents the active ingredient, while the purple 
node signifies the target. The blue node denotes the pathway itself; D: Sankey diagram showcasing KEGG core pathways. The left rectangular node in this sankey 
plot represents the target, whereas the right rectangular node symbolizes the corresponding KEGG pathway. The lines represent associations between targets and 
pathways.

PRO129. A pi-alkyl interaction occurs between LEU26 and ALA, which is stabilized through van der Waals forces from 
ASN46, VAL150, TRP28, ARG138, ASN137, LEU142, ALA22, and GLN21. The interaction between HL10 and MAPK in 
Supplementary Figure 2F is reinforced by a hydrogen bond and a carbon-hydrogen bond with ARG64, as well as the van 
der Waals forces contributed by LYS65 and THR66.

DISCUSSION
The therapeutic potential of the Astragalus-Coptis drug pair for DKD treatment has been supported by clinical and experi-
mental studies. However, the active ingredients of the Astragalus-Coptis drug pair and the underlying mechanisms 
responsible for its therapeutic effects on DKD remain unclear. Therefore, we employed NP approaches, molecular 
docking, and MD simulations to elucidate the active ingredients, potential targets, and mechanisms of action associated 
with the Astragalus-Coptis drug pair in DKD.

According to the “disease-active ingredient-target” network topology analysis, the Astragalus-Coptis drug pair used to 
improve the core of DKD active ingredients include 3,9-di-O-methylnissolin, isorhamnetin, jaranol, quercetin, 1,7-
dihydroxy-3,9-dimethoxy pterocarpene, (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol, palmatine, obacunone, 
and moupinamide. Relevant studies support the therapeutic effects of these active ingredients on DKD. Both quercetin 
and isorhamnetin mitigate the impact of DKD on renal function through their ability to lower glucose levels, enhance 
oxidative status, alleviate inflammation, and regulate lipid metabolism and adipocyte differentiation[37,38]. Additionally, 
quercetin can regulate renal lipid accumulation to prevent and alleviate DKD while also improving diabetic kidney injury 
through the Nrf2/HO-1 signaling pathway activation, which inhibits deiron[39,40]. Palmatine is a potent inhibitor of 
lipase that effectively reduces serum cholesterol and blood glucose levels. Furthermore, it exhibits a direct and/or 
indirect association with DKD[41]. Obacunone can alleviate high glucose-induced oxidative damage in NRK-52E cells by 

https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3d1af491-bb65-48fa-9c55-470f29053588/95055-supplementary-material.pdf
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Figure 6 Distribution of common targets in the core pathways. A: Distribution of common targets associated with the advanced glycation end products 
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(AGE)-receptor for AGEs signaling pathway in diabetic complications; B: Distribution of relevant common targets in the Lipid and atherosclerosis pathway. Red, 
green, and gray rectangles represent upregulated and downregulated gene targets, respectively, without any significantly differentially expressed gene targets.

Figure 7 Diagram of the “key target-organ network”. The green nodes represent the key targets, while the yellow nodes depict the organs. The edges 
symbolize the connections between these key targets and organs.

inhibiting oxidative stress and mitochondrial dysfunction through the GSK-3β signaling pathway and plays a protective 
role in the kidney[42]. The active ingredients in the Astragalus-Coptis drug pair are known to have therapeutic effects on 
DKD.

PPI network analysis indicated that AKT1, EGFR, TNF, SRC, JUN, CASP3, MAPK3, HSP90AA1, STAT3, and ESR1 are 
the key targets of the Astragalus-Coptis drug pair and its active ingredients in the treatment of DKD. Furthermore, the 
synergistic relationship between these targets is crucial for their therapeutic efficacy. Numerous cell and animal model 
studies have shown that AKT1, a member of the serine/threonine protein kinase subfamily known as AGC protein 
kinase, participates in various signaling pathways related to DKD. These intricate signaling pathways underscore the 
diverse regulatory roles of AKT1 in kidney cell processes affected by DKD and contribute to renal protection[43]. EGFR is 
a member of the tyrosine kinase ErbB receptor family, whose receptors are widely expressed in mammalian kidneys, 
including podocytes. Selective removal of EGFR from podocytes can significantly improve the progression of glomerular 
disease and renal tubulointerstitial fibrosis in DKD, reduce proteinuria, maintain the integrity of podocytes, increase 
autophagy, and reduce inflammation. EGFR inhibitors may reduce DKD by reducing ROS and ER stress. Quercetin can 
reduce renal fibrosis in vitro and in vivo by inhibiting EGFR signaling activation[44,45]. TNF may serve as an autonomous 
risk factor for the development of chronic kidney disease in patients diagnosed with type 2 diabetes. Elevated levels of 
TNF inflammatory mediators can exacerbate renal inflammation in individuals suffering from DKD, and it is plausible 
that inhibition of TNF could mitigate or prevent the onset of DKD. Quercetin inhibits the release of proinflammatory 
markers such as IL-1β, IL-4, IL-6, and TNF-α, alleviating renal inflammation in DKD[46-48]. SRC is a tyrosine-protein 
kinase that governs cellular metabolism, survival, and proliferation. Inhibition of SRC kinase significantly upregulates 
CKIP-1 expression to ameliorate diabetic renal fibrosis. Therefore, targeting SRC may represent a promising strategy for 
preventing and treating age-related microangiopathy[49]. The transcription factor signal transduction and activator of 
transcription 3 (STAT3) plays a crucial role in the pathogenesis of renal fibrosis and inflammation. Inhibition of STAT3 
impedes the progression and development of DKD[50,51]. Introns 1 and 2 of the ESR1 may contain functionally sig-
nificant regions associated with the risk of type 2 diabetes or ESRD. ESR1 has favorable effects on blood glucose 
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Figure 8 Heatmap of molecular docking binding energies (kcal/mol). The X-axis corresponds to the key target receptor, while the Y-axis represents the 
core active ingredient. The darker shade of blue in the heatmap indicates a lower binding energy and a stronger binding affinity between the active ingredient and the 
target.

homeostasis. ESR1 regulates VEGFA expression in adipose tissue, promoting angiogenesis, reducing inflammation, and 
improving adipose tissue functionality. It confers a protective effect on patients with DKD[52-54]. The above studies 
suggest that these key targets are closely related to the occurrence and development of DKD and that the core ingredients 
of the Astragalus-Coptis drug pair can regulate these targets to varying degrees.

GO enrichment analysis revealed that the therapeutic effect of the Astragalus-Coptis drug pair on DKD primarily 
involves protein phosphorylation, endoplasmic reticulum (ER) unfolded protein, negative regulation of apoptotic process 
and inflammatory response, vascular endothelial growth factor receptor signaling pathway, and other cellular BP. 
Additionally, this effect is associated with various cell components, such as the ER, mitochondria, and exosomes. The MF 
included protein serine/threonine/tyrosine kinase activity and protein kinase activity. Various studies have de-
monstrated that protein tyrosine phosphatase nonreceptor type 2 (PTPN2) plays a protective role in DKD by ameliorating 
metabolic disorders and inhibiting renal STAT phosphorylation-dependent microinflammation[55]. Several factors 
associated with the pathogenesis of DKD, including hyperglycemia, AGEs, angiotensin II, and various cytokines, have 
been demonstrated to promote the expression of vascular endothelial growth factor (VEGF) in various cell types. In the 
early stages of DKD, there is increased VEGF and VEGF2 kidney expression. Inhibiting VEGF-A or its receptor can 
prevent proteinuria and alleviate glomerular injury, thereby exerting a beneficial effect on kidney changes related to DKD
[56,57]. ER stress (ERS) refers to the accumulation of misfolded proteins in cells, which induces cellular stress and 
regulates cell damage bidirectionally. ERSs are regulated by various signaling pathways and are closely associated with 
the pathogenesis of DKD[58]. The potential mechanisms by which the Astragalus-Coptis drug pair improves DKD are 
consistent with the GO enrichment results mentioned above.

The KEGG enrichment results included pathways related to the AGE-RAGE signaling pathway in diabetic complic-
ations, the Lipid and atherosclerosis, the PI3K-Akt signaling pathway, and the HIF-1 signaling pathway, among others. 
The active ingredient of the Astragalus-Coptis drug pair can enhance the treatment of DKD by targeting the AGE-RAGE 
signaling pathway, which is involved in diabetic complications, as well as lipid and atherosclerosis. The development of 
AGEs associated with hyperglycemia plays a pivotal role in the pathogenesis of DKD, and the interaction between AGE 
receptors (RAGE) and their ligands initiates oxidative stress, chronic inflammation, and fibrosis in renal tissue, ultimately 
culminating in renal dysfunction. A reduction in AGE levels or inhibition of RAGE is beneficial to DKD in experimental 
models. The AGE/RAGE signaling pathway elicits ER stress in DKD, and targeting key targets within this pathway holds 
promise for treating these and other related kidney disorders[59,60]. Additionally, the heightened occurrence of DKD in 
individuals with diabetes is linked to lipid and atherosclerosis signaling pathway. Dyslipidemia can exacerbate the 
progression of DKD in patients with DKD. Quercetin may mitigate atherosclerotic lesions by modulating the gut 
microbiota and reducing atherogenic lipid metabolites[61-63]. By inhibiting the aberrant activation of the PI3K/Akt 
signaling pathway, it is possible to reduce podocyte apoptosis, restore podocyte homeostasis, alleviate kidney injury, and 
improve renal function. Quercetin alleviates chronic kidney failure by targeting the PI3K/Akt pathway. Furthermore, 
activation of the PI3K/Akt signaling pathway plays a crucial role in mediating extracellular matrix accumulation and 
contributes to the pathogenesis and progression of DKD[64-66]. The above evidence demonstrates that the Astragalus-
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Figure 9 Docking result diagram. A: Obacunone-mitogen-activated protein kinase 3 (MAPK3); B: Obacunone-AKT serine/threonine kinase 1 (AKT1); C: 
Obacunone-heat shock protein 90 alpha family class A member 1 (HSP90AA1); D: Quercetin-tumor necrosis factor (TNF); E: Quercetin-AKT serine/threonine kinase 
1 (AKT1); F: Quercetin-epidermal growth factor receptor (EGFR); G-L: The different types of two-dimensional bonding modes, respectively.
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Figure 10  Molecular dynamics simulations of HL10 (obacunone)-mitogen-activated protein kinase 3, HQ10 (quercetin)-AKT 
serine/threonine kinase 1, and HQ10 (quercetin)-tumor necrosis factor. A: Root mean square deviation (RMSD) plots of HL10-mitogen-activated 
protein kinase 3 (MAPK3), HQ10-quercetin-AKT serine/threonine kinase 1 (AKT1), and HQ10-tumor necrosis factor (TNF) protein complexes; B: Rg plot of HL10-
MAPK3, HQ10-AKT1, and HQ10-TNF protein complexes; C: Root mean square fluctuation (RMSF) plots of HL10-MAPK3, HQ10-AKT1, and HQ10-TNF protein 
complexes; D: Number of hydrogen bonds in HL10-MAPK3, HQ10-AKT1, and HQ10-TNF protein complexes.

Coptis combination exerts synergistic effects by affecting multiple ingredients, targets, and pathways to improve the 
treatment of DKD.

Finally, molecular docking was used to evaluate 10 key targets and 9 core active ingredients. The docking results 
showed binding energies ranging from -4.56 kcal/mol to -9.95 kcal/mol, indicating that all the active ingredients are 
likely to have good docking ability. The binding energies of the obacunone-MAPK3, quercetin-AKT1, and quercetin-TNF 
protein complexes were the lowest. It has relatively good docking ability. MD simulations were used to investigate the 
structural stability of the HL10 (obacunone)-MAPK3, HQ10 (quercetin)-AKT1, and HQ10 (quercetin)-TNF protein 
complexes. The structures of these protein complexes are very stable at 300 K. The binding free energies of the HQ10-
AKT1 and HQ10-TNF protein complexes were -7.44 kcal/mol ± 6.35 kcal/mol and -10.60 kcal/mol ± 9.98 kcal/mol, 
respectively, which were the lowest among the three groups, indicating good binding activity and structural stability. 
These findings suggest that these active ingredients, together with their targets, play indispensable roles in DKD 
treatment. Currently, there is a lack of relevant experimental studies investigating the impact of quercetin on AKT1 and 
TNF in DKD treatment. However, animal studies have demonstrated that quercetin improves renal function in DKD 
animals, reduces oxidative stress levels, and alleviates inflammatory responses in the kidneys[67]. Furthermore, a NP 
study predicted that EGFR is a potential physiological target of quercetin. This finding was confirmed by in vitro and in 
vivo experiments, which showed that quercetin inhibits the activation of the EGFR signaling pathway by reducing the 
phosphorylation of EGFR and ERK1/2, mitigating podocyte apoptosis, and improving DKD[68]. This study utilized NP, 
molecular docking, and MD to predict that quercetin binds stably to AKT1 and TNF, identifying them as potential 
therapeutic targets. AKT1 and TNF are implicated in core pathways such as the AGE-RAGE signaling pathway in 
diabetic complications and the Lipid and atherosclerosis pathway. Consequently, quercetin may modulate these core 
pathways by targeting AKT1 and TNF, potentially influencing AGEs and lipid metabolism, thereby enhancing the 
improvement of DKD. The present study, however, has certain limitations. First, the active ingredient and target data 
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Figure 11  Binding free energy between receptor-ligand protein complexes. A: Binding energy of the HQ10-AKT serine/threonine kinase 1 protein 
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complex; B: Binding energy of the HQ10-tumor necrosis factor protein complex; C: Binding energy of the HL10-mitogen-activated protein kinase 3 protein complex. 
EEL: Electrostatic energy; EGB: Polar solvation energy; ESURF: Nonpolar solvation energy; GGAS: Total gas phase free energy; GSOLV: Total solvation free energy 
(overall total solvation free energy, which is calculated as the sum of total gas phase free energy and total gas phase free energy); VDWAALS: Van der Waals 
energy.

were obtained from the literature and databases, which may introduce potential biases. Additionally, the reliability and 
accuracy of predictions heavily rely on the quality of the available data. Therefore, further in vivo experiments, in vitro 
experiments and clinical observations are necessary to validate whether the Astragalus-Coptis drug pair can effectively 
improve DKD through the ingredients, targets, and pathways.

CONCLUSION
In summary, this study represents the first systematic exploration of the pharmacological and molecular mechanisms 
underlying the Astragalus-Coptis drug pair treatment for DKD using bioinformatics tools such as NP, molecular docking, 
and MD simulation. The bioinformatics and computational analysis above demonstrated that quercetin and obacunone 
are the fundamental active ingredients of the Astragalus-Coptis drug pair in DKD treatment. Their mechanisms of action 
involve the regulation of key targets, such as AKT1, EGFR, TNF, MAPK3, and HSP90AA1, which subsequently modulate 
various BP, CCs, and MF. Additionally, the Astragalus-Coptis drug pair can also intervene in the AGE-RAGE signaling 
pathway in diabetic complications. Moreover, it can modulate various signaling pathways, such as the Lipid and athero-
sclerosis pathway and the PI3K-Akt pathway, among others, to enhance glucose and lipid metabolism while reducing 
atherosclerosis. Furthermore, it potentially mitigates podocyte apoptosis, inhibits inflammation, regulates AGEs and ERS, 
etc, offering therapeutic benefits for DKD. The findings of this study establish a solid theoretical foundation for the use of 
the Astragalus-Coptis drug pair in the treatment of DKD, thereby providing valuable insights for expanding its clinical 
applications. Moreover, these results are anticipated to serve as a guiding framework for future advanced experimental 
investigations.
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