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Abstract
Unlike central nervous system injuries, peripheral nerve injuries (PNIs) are often 
characterized by more or less successful axonal regeneration. However, structural 
and functional recovery is a senile process involving multifaceted cellular and 
molecular processes. The contemporary treatment options are limited, with 
surgical intervention as the gold-standard method; however, each treatment 
option has its associated limitations, especially when the injury is severe with a 
large gap. Recent advancements in cell-based therapy and cell-free therapy 
approaches using stem cell-derived soluble and insoluble components of the cell 
secretome are fast-emerging therapeutic approaches to treating acute and chronic 
PNI. The recent pilot study is a leap forward in the field, which is expected to 
pave the way for more enormous, systematic, and well-designed clinical trials to 
assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a 
bio-drug either alone or as part of a combinatorial approach, in an attempt 
synergize the best of novel treatment approaches to address the complexity of the 
neural repair and regeneration.

Key Words: Exosome; Mesenchymal stem cells; Nerve injury; Stem cells; Secretome; 
Regeneration

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v16.i5.467
mailto:kh.haider@sr.edu.sa


Mushtaq M et al. Nerve injury repair with “garbage bags”

WJSC https://www.wjgnet.com 468 May 26, 2024 Volume 16 Issue 5

Core Tip: The extracellular vesicles constituting the insoluble component of the secretome were once considered cell’s 
garbage bags. They have become a hot area of research since realizing their significance as an essential means of 
intracellular communication. They have shown promise for therapeutic applications for repairing and regenerating the 
damaged tissues via delivering their payload to the resident reparative cells and supporting them in the intrinsic repair 
process. Although stem cell-derived exosomes have been extensively studied for peripheral nerve injury repair in experi-
mental animal models, their use for radial nerve injury repair in a patient, as the pilot study by Civelek et al, is expected to 
pave the way for assessment in future clinical trials.

Citation: Mushtaq M, Zineldeen DH, Mateen MA, Haider KH. Mesenchymal stem cells’ “garbage bags” at work: Treating radial nerve 
injury with mesenchymal stem cell-derived exosomes. World J Stem Cells 2024; 16(5): 467-478
URL: https://www.wjgnet.com/1948-0210/full/v16/i5/467.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i5.467

INTRODUCTION
Stem cells and their derived paracrine factors are potential therapeutic modalities to treat spinal cord injury, stroke, and 
neurodegenerative diseases[1]. Among different stem cell types, mesenchymal stem cells (MSCs) have remained at the 
forefront of characterization and assessment in the preclinical and clinical settings as choice cells for their regenerative 
properties in nerve injury repair[2]. They foster the survival and regeneration of neurons via multifaceted mechanisms 
that primarily include differentiation into morpho-functionally competent neural cells and the release of trophic factors, 
thereby establishing a conducive microenvironment for neural tissue repair[3]. Some of the latest published studies 
highlighting their findings in preclinical and clinical settings for peripheral nerve injury (PNI) treatment have been 
summarized in Tables 1 and 2[4-20].

Exosomes are small extracellular vesicles (50-100 nm in size bounded by a lipid bilayer membrane) released by cells as 
an integral part of their paracrine activity. They contain a specific cargo of bioactive molecules. Once considered the 
“garbage bags” for cell metabolic waste disposal[21], exosomes are being established as critical regulators of diverse 
physiological cell processes and essential mediators of intercellular communication[22,23].

MSC-derived exosomes exhibit neuroprotective and regenerative effects by modulating inflammation, promoting cell 
survival, antioxidant properties, anti-apoptotic and pro-proliferative activities, and stimulating neuronal differentiation
[24]. They also have higher biocompatibility and low risk of tumorigenicity, microvascular, immune rejection, etc.; safety 
concerns are generally associated with using cell grafts[25]. As they copycat the regenerative effects of MSCs, they are 
potential candidates as the non-cellular alternatives for neurodegeneration. In the following sections, we will focus on 
advancements in PNI treatment using stem cells and their derived exosomes, recapitulated in Figure 1. Moreover, we will 
also delve into the clinical trials assessing stem cell-based and their derivative exosome-based approaches for treating PNI 
patients, with a critical appreciation of clinical experience in the pilot study published by Civelek et al[20] using MSCs-
derived exosomes.

PNI AND INTRINSIC REPAIR PROCESS
Unlike the brain’s synaptic plasticity, which allows it to have functional reorganization with limited or no repair or 
renewal in the event of injury[26], axonal regrowth through peripheral nerve sheaths has been observed in PNI as part of 
the recovery process[27,28] (Figure 2). However, the recovery process in PNI is influenced by the severity of the injury. In 
non-severe injuries, i.e., neuropraxia and local demyelination, axonotmesis with intact neural stroma, and loss of 
funiculus and its contents, the nerve recovers from the damage by the inherent ability to repair[29].

On the contrary, injuries involving the severing of the nerve may require gold-standard surgical intervention. Diverse 
cellular and molecular events involving Schwann cells (SCs), macrophages, and extracellular matrix contribute to the 
repair process, which usually spans a prolonged duration[28]. Neuronal repair in the peripheral nervous system involves 
more than one mechanism, i.e., axonal regrowth, central nerve cell restoration, and neurogenesis, to ensure functional 
recovery[30,31].

Axonal regrowth may involve damaged nerve cells from the peripheral ganglia or reactivation of signaling from the 
intact central nerve cells of the severed axons[32]. On the other hand, central nerve cell restoration involves sprouting, a 
process wherein new axons, dendrites, and synapses grow from the intact central nerve cell body. Neurogenesis, the 
growth of new neurons, is possible if the neurons retain some of their multipotent neural stem/progenitor cell 
population, especially near the injury site[33].

CELLULAR AND MOLECULAR BASIS OF PNI
SCs myelinate the peripheral axons, support the regrowth of axons by secreting laminin, fibronectin, and collagens, and 

https://www.wjgnet.com/1948-0210/full/v16/i5/467.htm
https://dx.doi.org/10.4252/wjsc.v16.i5.467
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Table 1 Recently reported peripheral nerve injury repair in the experimental animal models

Ref. Experimental model 
(in vitro or animal)

Therapeutic 
modalities Main findings

MSCs-based therapy

Zhang et al[4], 
2024

SCs from injured 
sciatic nerves and 
HUVECs

MSCs treated with PRP-
derived exosomes

Treatment with PRP-exosome improved MSC survival. Exosome-treated MSCs, co-
cultured with SCs, reduced their apoptosis and enhanced SC proliferation after 
PNI. Similarly, exosome-treated MSCs also had pro-migratory and angiogenic 
effects. Cytokine array analysis and ELISA showed upregulation of 155 proteins 
and downregulation of six proteins, with many pro-angiogenic and neurotrophic 
factors. Western blot revealed the activation of the PI3K/Akt signaling pathway in 
exosomes-treated MSCs

Sivanarayanan 
et al[5], 2023

Sciatic nerve crush 
injury in rabbit

Allogenic BM-MSCs and 
their CM

BM-MSCs and BM-MSCS-CM treatment improved the regenerative capacity in 
acute and subacute injury groups, with slightly better improvements in the 
subacute groups. BM-MSCs supported the healing process of PNI, whereas CM 
increased the healing process

Yalçın et al[6], 
2023

Sciatic nerve injury in 
rat

ADSCs The study documented the role of syndecan-1 and heat shock protein 70 in the 
regenerative effects of ADSCs on PNI. Histology and EMG showed that treatment 
with ADSCs significantly improved nerve regeneration and its functionality via the 
release of nerve growth factor

Liu et al[7], 2020 Sprague-Dawley rats SC-like ADSCs are 
placed on an acellular 
scaffold after treatment 
with nerve leachate

Sprague-Dawley rats were divided into four groups: Scaffold only, untreated 
ADSCs + scaffold, nerve leachate-treated ADSCs + scaffold, and autograft. Four 
months after treatment, the average area, density, and thickness of regenerated 
nerve fibers in the nerve leachate-treated ADSCs + scaffold group significantly 
increased compared to the untreated ADSCs + scaffold group. These data show the 
superiority of nerve leachate-treated ADSCs for treating PNI

Kizilay et al[8], 
2017

Wistar rat model of 
sciatica nerve injury 
by clip compression

BM-MSCs The proximal, distal, and mean latency values were higher in MSC treatment 
groups vs without MSC-treated animals. The nerve conduction velocity, compound 
action potential, and the number of axons in MSC-treated animals are higher than 
in non-MSC-treated animals. Also, myelin damage decreased in MSC-treated 
animals

Cell-free therapy

Growth factor-based approach for PNI

Shi et al[9], 2022 Rat sciatic nerve 
transection model

In vitro experimental studies show that BDNF/PLGA sustained-release 
microsphere treatment improved migration and neural differentiation of ADSCs. 
In vivo studies indicated that BDNF microsphere treatment significantly reduced 
the nerve conduction velocity compound amplitude compared to the untreated 
animals. Moreover, the BDNF microsphere group had more closely arranged and 
uniformly distributed nerve fibers than the control animals

Li et al[10], 2021 Rat sciatic nerve 
transection model

Leision site injection of a 
lentivirus expressing 
FGF13

FGF13 treatment successfully recovered motor and sensory functions via axon 
elongation and remyelination. FGF13 pretreatment enhanced SCs survival and 
increased cellular microtubule-associated proteins in vitro PNI model. The data 
supported the role of FGF13 in stabilizing cellular microtubules, which is essential 
for promoting PNI repair following PNI

Su et al[11], 2020 Rat sciatic nerve 
transection model

Composite nerve conduit 
with slow-release BDNF

The study used fabricated composite nerve conduits with slow-release BDNF to 
treat PNI and compare the regeneration potentials of autologous nerve grafts. The 
BDNF composite conduits remained bioactive for at least three months and 
successfully regenerated a 10-mm sciatic nerve gap

Lu et al[12], 2019 Rat model of sciatic 
crush injury

Intramuscular delivery 
of FGF21 once daily for 
seven days

FGF21 treatment led to functional and morphologic recovery with improved motor 
and sensory function, enhanced axonal remyelination and re-growth, and 
increased SC proliferation. Local FGF21 treatment reduced oxidative stress via 
activation of Nrf-2 and ERK. FGF21 also reduced autophagic cell death in SCs

Exosome-based approach for PNI

Zhu et al[13], 
2023

Mouse model of 
spared nerve injury

Exosomes from UC-
MSCs under hypoxia

After 48 h of culture under 3% oxygen in a serum-free culture system, UC-MSCs 
secreted higher EVs than the control cells. SCs could uptake EVs in vitro and 
increase their growth and migration. The treatment of animals with EVs 
accelerated the recruitment of SCs at the PNI site and supported PN repair and 
regeneration

Hu et al[14], 
2023

Rat model of the 
injured sciatic nerve

SCs-like cells derived 
from hA-MSCs. 
Exosomes from hA-
MSCs or SC-like cells 
from hA-MSCs

SC-like cells were successfully differentiated from hA-MSCs and used for exosome 
collection. Treatment with exosomes from SC-like cells significantly enhanced (vs 
hA-MSCs-derived exosomes) motor function recovery, reduced gastrocnemius 
muscle atrophy, and supported axonal regrowth, myelin formation, and 
angiogenesis in the rat model. They were also more efficiently absorbed by SCs 
and promoted the proliferation and migration of SCs

In vitro model and a 
rat model of sciatic 

Exosome treatment inhibited autophagy and karyopherin-α2 levels, which were 
significantly increased in SCs in the injured sciatic nerve, both in vivo and in vitro. 

Yin et al[15], 
2021

ADSCs
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nerve injury Abrogation of karyopherin-α2 reduced SCs autophagy, with the role of miRNA-
26b. Treatment with exosomes supported myelin sheath regeneration in rats with a 
sciatic NI

Liu et al[16], 
2020

PNI model rats 
supported by in vitro 
studies

ADSCs and their 
derivative exosomes

Treatment with ADSC-derived exosomes significantly reduced SC apoptosis after 
PNI via increased Bcl-2 and decreased Bax mRNA expression, in addition to 
increasing SC proliferation. Histological data in PNI model rats also observed these 
effects

Chen et al[17], 
2019

In vitro model and rat 
sciatic nerve 
transection model 
with a 10-mm gap

Human ADSCs-derived 
exosomes and in vitro

In vitro studies showed that SCs internalized human ASCs-derived exosomes to 
enhance their proliferation, migration, myelination, and secretion of neurotrophic 
factors. Treatment with ASC-exosomes supported axon regeneration in a rat sciatic 
nerve transection model with a 10-mm gap and supported myelination and 
restoration of denervation muscle atrophy. This data showed the efficacy of 
exosomes in promoting PN regeneration by restoring SC function

Masgutov et al
[18], 2019

Wistar rat sciatic nerve 
injury model

ADSCs ADSCs-derived MSCs were delivered using fibrin glue to the traumatic injury, 
helped to fix the cells at the graft site, and gave extracellular matrix support to the 
provided cells. The transplanted cells were neuroprotective on DRG L5 sensory 
neurons and stimulated axon growth and myelination. Also, MSCs promoted 
nerve angiogenesis and motor function recovery

ADSCs: Adipose-derived mesenchymal stem cells; BM-MSCs: Bone marrow-derived mesenchymal stem cells; BNDF: Brain-derived neurotrophic factor; 
EVs: Extracellular vesicles; hA-MSCs: Human amniotic-derived mesenchymal stem cells; HUVEC: Human umbilical vein endothelial cells; CM: 
Conditioned medium; EMG: Electromyography; ERK: Extracellular regulated protein kinases; FGF: Fibroblast growth factor; MSCs: Mesenchymal stem 
cells; Nrf-2: Nuclear factor erythroid-2-related factor 2; PN: Peripheral nerve; PNI: Peripheral nerve injury; PLGA: Poly(D, L-lactide-co-glycolide; PRP: 
Platelet-rich plasma; SCs: Schwan cells; UC-MSCs: Umbilical cord mesenchymal stem cells; PI3K: Phosphoinositide 3-kinase.

produce neurotrophic factors, i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-
derived neurotrophic factor. Additionally, they facilitate remyelination by aligning as Bands of Büngner, clear cellular 
and myelin debris by phagocytosis, and guide proper axonal regeneration by increasing cell adhesion molecules NCAM, 
L1, and N-cadherin and early re-expression of bHLH family transcription factors protein growth-associated protein-43, 
and that helps actin and microtubule cytoskeletal recovery[34]. SCs and fibroblasts also secrete endoneurial matrix 
comprising various components, i.e., collagen, glycoproteins (fibronectins, laminins), glycosaminoglycans, and 
proteoglycans[35]. These matrix components can inhibit or stimulate axonal repair, and their activity is enhanced during 
axonal repair after injury.

Joining hands with SCs are macrophages, especially M2 macrophages, that remove the debris from the damaged 
peripheral nerves. Additionally, they provide a conducive microenvironment for nerve repair and growth via modulating 
inflammation and by releasing pro-inflammatory cytokines, i.e., interleukin (IL)-1 and tumor necrosis factor-α, to promote 
SC activation[7]. During the resolution phase of PNI repair, the macrophages also stimulate the release of anti-inflam-
matory cytokines, i.e., IL-10, to help resolve inflammation and promote tissue healing.

TREATMENT ADVANCES FOR PNI
PNI can result in significant functional impairments, necessitating proper therapeutic options for nerve repair. In clinical 
settings, microsurgical intervention by nerve autografting is considered the gold-standard treatment for PNI. However, it 
is limited by the availability of the nerve graft, chances of infection, and neuroma development. The other contemporary 
treatment options for PNI include direct suturing, SCs transplantation, and electrical stimulation, but with their 
respective deficiencies, especially when treating significant nerve defects wherein they fail to achieve complete repair. 
The following section elaborates on the current advancements in PNI treatment using cell-based and cell-free approaches, 
as summarized in Figure 2[36].

MSCs AND PNI REPAIR
The cell-based therapy approach has come a long way with encouraging data for peripheral nerve repair and rege-
neration; several stem/progenitor cells have been assessed for their neuronal reparability in pre-clinical models. These 
include pluripotent cells, i.e., embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult tissue-
derived stem/progenitor cells, i.e., MSCs, neural stem cells (NSCs), etc. Although pluripotent stem cells have high differ-
entiation potential, using ESCs has ethical issues and moral strings attached. In contrast, using iPSCs (considered 
surrogate ESCs) has tumorigenic potential due to genomic instability induced during reprogramming[37]. MSCs from 
amongst the adult tissue-derived stem cells have gained considerable attention in nerve regeneration studies in experi-
mental animal models with their self-renewal, robust nature, excellent cell biology, and multipotentiality[38]. Table 1 
summarizes the data published by various recently published experimental animal studies using MSCs. From the 
different tissue sources of MSCs, adipose tissue-derived MSCs and bone marrow (BM)-derived MSCs have shown 
excellent neural regeneration and repairability. Their reparability is via multifactorial mechanisms encompassing 
neuroprotection to differentiation to adopt morphofunctional competent neural cells besides the release of secretome 
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Table 2 Clinical studies for peripheral nerve injury repair using Schwan cells, stem cells, and their derived exosomes

NCT# Study title Conditions Interventions Primary outcome Sponsor Collaborators

NCT04346680 Intraoperative ADSC adminis-
tration during nerve release

Neurotmesis of 
peripheral nerve 
disorder

ADSC administration Electrophysiological improvement, improvement in EMG - the appearance of 
activities in denervated muscles, one year

Mossakowski MRC 
Polish Academy of 
Sciences

Centre of Postgraduate 
Medical Education

NCT03964129 BMAC nerve allograft study PNI upper limb Avance nerve graft with 
autologous BMAC

Comparison of AEs between patients treated with ANG with BMAC and the 
historical data of nerve repairs with the ANG only. Long-term study - AEs, 
such as infection, wound dehiscence, neuropathy, carpal tunnel syndrome, 
bleeding, seroma, and lymphocele, will be recorded and analyzed. AEs will be 
mapped to a MedDRA-preferred term and system organ classification

Brooke Army Medical 
Center

Walter Reed National 
Military Medical Center; 
Cleveland Clinic Lerner 
Research Institute

NCT03359330; 
PKUPH-PNI

Mid-term effect observation of 
biodegradable conduit small 
gap tublization repairing PNI

PNIs Degradable conduit small 
gap tublization

To observe the mid-term clinical effect of biodegradable conduit small gap 
tublization on the repair of PNI in multi-center patients and fresh PNIs in the 
upper extremities

Peking University 
People’s Hospital

-

NCT05541250 Safety and efficacy of 
autologous human SCs 
augmentation in severe 
peripheral nerve injury

PNIs Autologous human SC The primary purpose of this phase I study is to evaluate the safety of injecting 
one’s SCs along with nerve auto-graft after a severe nerve injury, such as a 
sciatic nerve or brachial plexus injury

University of Miami, 
Florida, United States 
(Recruiting)

-

NCT04654286 Clinical outcomes of HAM and 
allogeneic MSCs composite 
augmentation for nerve transfer 
procedure in brachial plexus 
injury patients

Brachial plexus 
neuropathies

Nerve transfer or nerve 
transfer with HAM-MSC 
composite wrapping

AROM pre-surgery and 12-month follow-up for shoulder flexion, extension, 
abduction, adduction, external rotation, and internal rotation using the MRC 
scale (ranging from 0-5)

Dr. Soetomo General 
Hospital, Jakarta

Huang et al[19], 
2016

A clinical study on the 
treatment of peripheral nerve 
injury growth factor of 
mecobalamin combined with 
nerve

150 PNI patients Mecobalamin (0.5 mg, I.V, 
once a day) combined with 
NGF (30 mg, I.M injection, 
once a day) for 3-6 wk

Treatment with mecobalamin combined with NGF improved the sensor-
imotor evaluation of the curative effect made by the British Medical Research 
Institute of Neurotrauma Society

Guangxi Basic Science 
and Technology Plan 
Project PR China (No.: 
20111209)

Civelek et al
[20], 2024

Effects of exosomes from 
mesenchymal stem cells on 
functional recovery of a patient 
with total radial nerve injury: A 
pilot study

One patient with 
total radial nerve 
injury

WJ-MSCs derived 
exosomes

The six-month follow-up based on the BMRC and Mackinnon-Dellon scales 
showed improved motor (M5, excellent), and sensory functions also showed 
improvement (S3+, good). These results were achieved without physical 
therapy. Substantial axonal damage was observed at a ten-week follow-up, 
but nerve re-innervation was observed by EMG, which also improved 
significantly during the six-month follow-up

Department of 
Neurosurgery, 
University of Health 
Sciences

ADSCs: Adipose tissue-derived mesenchymal stem cells; AEs: Adverse effects; ANG: Avance nerve graft; AROM: Active range of motion; HAM-MSC: Human amniotic membrane-derived mesenchymal stem cells; BMAC: Bone marrow 
aspirate concentrate; EMG: Electromyography; MRC: Medical Research Council; MSCs: Mesenchymal stem cells; SCs: Schwan cells; PNI: Peripheral nerve injury; WJ-MSCs: Wharton jelly-derived mesenchymal stem cells; NGF: Nerve 
growth factor; BMRC: Behavioral Medicine Research Council; ADSC: Adipose-derived stem cell.

containing neurotrophic factors and exosomes rich in the bioactive payload of microRNAs (miRNAs), enzymes, and 
protein[39], which will be discussed in the following sections. To enhance their stemness and reparability, they have been 
combined with NSCs, preconditioned to enhance their paracrine activity, or genetically modified to serve as a source of 
neurotrophic factors as paracrine factors[40,41].
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Figure 1 The novel cell-based and cell-free therapy approaches for peripheral nerve injury repair and regeneration. MSC: Mesenchymal stem 
cell; iPSC: Induced pluripotent stem cell; NSC: Neural stem cell; VEGF: Vascular endothelial growth factor; miRNA: MicroRNA; lncRNA: Long non-coding RNA; 
circRNA: Circular RNA; MHC: Major histocompatibility complex.

Figure 2 Summary of the intrinsic peripheral nerve injury repair mechanisms and the emerging novel treatment modalities to support 
intrinsic peripheral nerve injury repair. MSC: Mesenchymal stem cell; iPSC: Induced pluripotent stem cell; NSC: Neural stem cell; VEGF: Vascular endothelial 
growth factor; miRNA: MicroRNA; lncRNA: Long non-coding RNA; circRNA: Circular RNA; MHC: Major histocompatibility complex.

MSCs have also advanced to the clinical assessment for PNI repair in different clinical studies (Table 2), mainly as an 
adjunct to other therapeutic interventions, such as intraoperative administration (Clinicaltrials.org ID: NCT04346680), 
being part of the nerve transfer composite (Clinicaltrials.org ID: NCT04654286), or avance nerve transfer (Clinical-
trials.org ID: NCT03964129).

CELL-FREE THERAPY-BASED APPROACHES FOR PNI REPAIR
Growth factor-based strategy
Besides cell-based therapy, there has been immense interest in using a growth factors-based approach to support 
neuronal regeneration and functional recovery[42]. Several growth factors have been identified as potential candidates 
for this end (Table 3). These growth factors contribute via interacting with each other to initiate various signaling 
pathways to guide and stimulate regeneration and functional recovery of the injured neurons. A generally accepted 
mechanism of growth factor-based treatment of PNI is that the target-derived growth factors are captured at the nerve 
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Table 3 List some commonly studied growth factors for peripheral nerve injury treatment

Ref. Growth factor

Sandoval-Castellanos et al[43], 2020 Brain-derived neurotrophic factor

Xu et al[44], 2023 Ciliary neurotrophic factor

Gu et al[45], 2024 Chemokine platelet factor-4

Romano and Bucci[46], 2020 Epidermal growth factor

Cintron-Colon et al[47], 2022 Glial cell line-derived neurotrophic factor

Ye et al[48], 2022 Hepatocyte growth factor

Slavin et al[49], 2021 Insulin-like growth factor-1

Alastra et al[50], 2021 Nerve growth factor

Li et al[51], 2023 NGF+ basic fibroblast growth factor

Golzadeh and Mohammadi[52], 2016 Platelet-derived growth factor

Ding et al[53], 2024 Transforming growth factor

Xu et al[44], 2023 Vascular endothelial growth factor

NGF: Nerve growth factor.

terminals via receptor-mediated endocytosis and get retrogradely transported to cell bodies to impart their neurotrophic 
action.

From the list, neurotrophic growth factors families and cytokines, i.e., NGF, GDN, fibroblast growth factor (FGF), 
ciliary neurotrophic factor, etc., are critical in oligodendrocyte precursors’ migration, proliferation, and differentiation and 
regulate axonal interactions and myelination. Some reported signaling pathways underlying these cellular level changes 
include the mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, nuclear transcription factor-kappa B, 
BDNF/Trk, Ras/extracellular regulated protein kinases, and transforming growth factor-β[54]. Understanding their 
interaction with specific receptors and the downstream signaling is essential for progressing growth factor-based 
therapeutic intervention. Numerous preclinical and clinical studies have investigated the efficacy of growth factor-based 
therapies in promoting nerve regeneration in animal models with PNI, as summarized in Tables 1 and 2.

MSC-derived exosomes for PNI
As discussed earlier, the MSCs-based cell therapy approach has shown promise in PNI treatment. Still, their use is not 
without limitations, i.e., tumorigenesis, triggering an immune response, rejection of the cell graft, off-the-shelf non-
availability, logistic issues, etc., hampered the pace of their reckoning as a routine treatment option[55,56]. Hence, 
exosomes derived from different cell types, i.e., SCs, MSCs, etc., offer potential alternatives to overcome these limitations
[57]. Their physiological functions primarily involve long-distance intracellular communication, using their surface 
proteins and lipid rafts to fuse with the recipient cells and deliver the payload of bioactive molecules. Alternatively, they 
can be taken up by the recipient cells via endocytosis.

An essential phase in exosome biogenesis is the initiation of intraluminal vesicles (ILVs) through the invagination of 
the endosomal membrane[58,59]. This is followed by payload encapsulation consisting of proteins, lipids, mRNA, 
miRNA, long non-coding RNA (lncRNA), circular RNAs (circRNAs), DNA, enzymes, signaling proteins, sphingolipids, 
etc., and the release of ILVs into the extracellular environment as exosomes[60,61]. Each cell type’s payload composition is 
distinct under a given set of conditions[62,63], contributing to their functional heterogeneity, i.e., cell survival, apoptosis, 
proliferation, immunomodulation, etc. More recently, exosome modification protocols are being developed to modulate 
them for good biocompatibility, low immunogenicity, capability to cross biological membrane barriers, and, more 
importantly, to carry a specific payload composition of interest. Different exosome modification techniques are 
summarized in Figure 3. In line with their diverse theragnostic applications, MSCs-derived exosomes have been 
extensively studied to support neuronal functional recovery and regeneration in PNI experimental animal models[14,17,
64].

The treatment of SCs with MSCs-derived exosomes reduces their autophagy via miRNA-26b mediated abrogation of 
karyopherin subunit α2[15], improves SC proliferation dose-dependently, entering SCs through endocytosis to modulate 
their gene expression profile and supporting their re-myelination[15,17,65,66]. Exosome-based treatment also exerts 
neuroprotective effects via PI3/Akt signaling activation[67]. Currently, “smart exosomes” are being developed by 
reprogramming and modulating their surface characteristics for efficient, targeted uptake by the recipient cells and 
manipulating their payload for delivery to the recipient cells[68]. For example, one of the essential entities in the payload 
are miRNAs, small, ncRNA molecules with mega functions as cell function regulators[69], that get delivered to the 
injured neurons during cellular communication[64,70]. They affect neuron differentiation, proliferation, angiogenesis, 
axonal regrowth, and other cellular functions[71]. For example, MSCs’ exosome-derived miR-21, miR-124, and miR-133 
have been attributed to promoting neuronal regeneration[72].
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Figure 3  Payload manipulation of mesenchymal stem cells-derived exosomes.

In the neural injury model, MSCs-derived exosomes overexpressing miRNA-133b transferred miRNA-133b to injured 
neuronal cells, promoting post-stroke neuronal remodeling and functional recovery[73]. Furthermore, MSC exosomes 
have demonstrated benefits in brain injury, accelerating recovery through neurosynaptic remodeling, neurogenesis, and 
angiogenesis[74]. Besides miRNAs, circRNAs are resistant to degradation, act as miRNA sponges in neural apoptosis, 
angiogenesis, and synaptic plasticity modulation, and hold immense promise for neuroregeneration[75]. MSC-derived 
exosomal lncRNAs have been reported to enhance neuronal survival and promote axonal regeneration after nerve injury. 
Notably, lncRNA HOTAIR and MALAT1 have shown significant potential in promoting neuroregeneration by modula-
ting several molecular pathways involved in nerve repair.

MSCS AND THEIR EXOSOMES FOR PNI IN CLINICAL SETTINGS
PNI, arising from a diverse range of etiologies such as trauma and underlying medical conditions, poses substantial 
challenges in both clinical management and subsequent restoration of functional capacity. MSC-derived exosomes, 
assessed in clinical settings for treating various disease conditions[76,77], have also progressed to clinical application for 
treating PNI as a part of the cell-free therapy approach. There are at least five registered clinical trials for the safety and 
efficacy assessment of SCs, MSCs, and their derived exosomes, although their current status remains unknown (Table 2). 
MSCs focus on diverse tissue sources, i.e., adipose tissue, BM, and human amniotic membrane (HAM), due to their 
superior biology, paracrine activity, and differentiation characteristics[78].

Mossakowski Medical Research Council Polish Academy of Sciences has registered a clinical trial entitled “Intraop-
erative ADSCs Administration During Nerve Release” (ClinicalTrials.gov Identifier: NCT04346680). The trial proposes 
autologous adipose-derived stem cell (ADSC) transplantation in six patients with failure to reconstruct peripheral nerves. 
ADSCs will be delivered during a last-chance surgery (neurolysis and nerve release) on a previously reconstructed nerve. 
The patients included in the study will be subjected to clinical and electrophysiological assessment. The patients will 
receive ten microinjections of ADSC along the injured nerve, and safety, adverse events, and efficacy, i.e., electromy-
ography (EMG) and sensory threshold, will be assessed. On the other hand, the second registered study, “BMAC Nerve 
Allograft Study” (ClinicalTrials.gov Identifier: NCT04346680), will adopt a combinatorial approach involving an avance 
nerve graft combined with BM aspirate concentrate delivery. The third study, “Clinical Outcomes of Human Amniotic 
Membrane and Allogeneic Mesenchymal Stem Cells Composite Augmentation for Nerve Transfer Procedure in Brachial 
Plexus Injury Patients” (ClinicalTrials.gov Identifier: NCT04654286), will investigate the safety and efficacy of a 
composite between HAM and allogeneic ADSCs as a wrapping in the nerve transfer procedure of upper traumatic 
brachial plexus injury patients, with a focus on the augmentation of axonal regeneration. Another phase I study is entitled 
“Safety and Efficacy of Autologous Human SCs Augmentation in Severe Peripheral Nerve Injury” (NCT05541250) at the 
University of Miami, United States. The study, with primary safety and efficacy endpoints, is still in the recruitment 
stage.

Unlike the aforementioned clinical trials, pilot study data reported by Civelek et al[20] is unique in using MSCs-derived 
exosomes for therapeutic intervention as part of the cell-free therapy approach. The authors rationalized using exosomes 
and anticipated that exosomes would deliver their miRNA payload to the injured nerve, leading to the repair and 
regeneration of the nerve and reducing the inflammatory activity in the injured area via anti-inflammatory cytokines. The 
authors used 1 mL exosomes divided into four doses, with 1.25 billion vesicles each, delivered epineurally, after using a 
sural autograft. Functional sensory and motor recovery were observed as early as the 10th-wk post-grafting, and 
indications of re-innervation were evidenced by neurological examination and control EMG during a six-month follow-
up. These data enhance our understanding of the neurobiological consequences of peripheral nerve damage and 
emphasize the potential of MSC-derived exosomes, offering avenues for future clinical advancements. Despite 
encouraging data from the study, it has its limitations. Firstly, it is a pilot study that includes only one patient. Hence, the 
data needs to reflect the safety and efficacy of the treatment approach, which necessitates more extensive studies 
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involving more participants with a control arm for comparison. Besides, the rationale for exosome dose selection has little 
justification. There has yet to be an attempt to profile the exosome payload composition, i.e., miRNA, cytokines, growth 
factors, etc. The authors, therefore, assumed that specific miRNAs might have participated merely based on the published 
data. These limitations certainly make it challenging to comprehend the underlying mechanism. Nevertheless, despite 
these limitations, the study is a leap forward in neural repair and regeneration.

CONCLUSION
In conclusion, the recent advances in cell-based (especially MSC- and its derived exosomes) have shown promise in both 
preclinical and clinical settings; however, the field is still evolving and needs further research before it can be adopted as 
a routine therapeutic modality for PNI repair and neural regeneration. The pilot trial report from Civelek et al[20] is a leap 
forward in the clinical arena that has already started evolving but warrants a more extensive, systematic, and well-
defined study. A few challenges encountered in using exosomes in neural repair and regeneration necessitating particular 
focus include optimizing an efficient isolation and purification protocol for clinical-grade exosome preparation, a method 
to achieve a well-defined payload of exosomes, and an optimal exosome delivery method for treating PNI. Given the 
complexity of an injured nerve’s repair and regeneration process, it would be prudent to adopt a combinatorial approach 
by combining exosome delivery with other emerging PNI treatment approaches. For example, it can be integrated with 
the nanoparticle-based approach, which gives encouraging results in promoting peripheral nerve repair and neuropro-
tection, besides efficient drug delivery methods[79]. On the same note, synergizing the therapeutic potential of exosomes 
as a bio-drug with other treatment approaches, including surgical end-to-end anastomoses, is worth exploiting for 
optimal therapeutic benefits.
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