Laparoscopic choledocholithotomy and transductal T-tube insertion with indocyanine green fluorescence imaging and laparoscopic ultrasound: A case report

Yoo D. Laparoscopic choledocholithotomy for bile duct stones

Daegwang Yoo
Abstract

BACKGROUND
Laparoscopic choledochotomy for a large impacted common bile duct (CBD) stone is a challenging procedure because of the technical difficulty and the possibility of postoperative complications, even in this era of minimally invasive surgery. Herein, we present a case of large impacted CBD stones.

CASE SUMMARY
A 71-year-old man showed a distal CBD stone (45 mm × 20 mm) and a middle CBD stone (20 mm × 15 mm) on computed tomography. Endoscopic retrograde cholangiopancreatography failed due to the large size of the impacted stone and the presence of a large duodenal diverticulum. Laparoscopic choledochotomy was decided, and we used a near-infrared indocyanine green fluorescence scope to detect and expose the supraduodenal CBD more accurately. After that, the location, size, and shape of the stones were detected using laparoscopic intraoperative ultrasound. The CBD was opened with a 2-cm-sized vertical incision. After irrigating several times, two CBD stones were removed with Endo BabcockTM. T-tube insertion was done for postoperative cholangiography and delayed the removal of remnant sludge. The patient had no postoperative complications.

CONCLUSION
Laparoscopic choledocholithotomy by transcholedochal approach and transductal T-tube insertion is a safe and feasible option for large-sized impacted CBD stones.

Key Words: Gallstones; Indocyanine green; Choledochostomy; Laparoscopy; Endoscopic Retrograde cholangiopancreatography; Case report
Yoo D. Laparoscopic choledocholithotomy and transduetal T-tube insertion with indocyanine green fluorescence imaging and laparoscopic ultrasound: A case report. *World J Clin Cases* 2023; In press

Core Tip: Laparoscopic choledochotomy for a large impacted common bile duct (CBD) stone is a challenging procedure, even in this era of minimally invasive surgery. A 71-year-old man showed a distal CBD stone (45mm) and a middle CBD stone (20 mm). Laparoscopic choledochotomy was performed with a near-infrared indocyanine green fluorescence scope and laparoscopic intraoperative ultrasound. Two CBD stones were successfully removed with Endo Babcock™, and T-tube insertion was done. This case shows that laparoscopic choledocholithotomy by the transcholedochal approach and transduetal T-tube insertion is a safe and feasible option for large-sized impacted CBD stones.

INTRODUCTION

Traditionally, choledocholithiasis that could not be treated by endoscopic retrograde cholangiopancreatography (ERCP) or PTC has been managed by open choledocholithotomy, even after laparoscopic surgery was adopted in the hepatobiliary surgery field, because of the technical challenges involved. However, advances in laparoscopic skills and technology have allowed surgeons to perform laparoscopic choledocholithotomy in patients with choledocholithiasis. Several recent studies also showed laparoscopic choledocholithotomy to be safe and feasible for these patients.

Many surgeons were reluctant to try laparoscopic choledochotomy in the early period of laparoscopic surgery because of the anticipated difficulties in patients with large common bile duct (CBD) stones who could not be treated by laparoscopic transcystic CBD exploration. Even in this era of minimally invasive surgery, laparoscopic choledochotomy for large impacted CBD stones is still a very challenging procedure because of the technical difficulty and the possibility of postoperative complications,
such as bile duct injury, which can result in diversion surgery (e.g., choledochojejunostomy).

In this case, we performed laparoscopic choledocholithotomy with transductal choledochotomy and T-tube insertion for large impacted CBD stones using indocyanine green (ICG) fluorescence imaging and intraoperative ultrasound. As this report was based on the retrospective analysis of de-identified patient data and did not involve any interventions or interactions, it was exempt from Institutional Review Board review.

5

CASE PRESENTATION

Chief complaints
A 71-year-old man visited our outpatient clinic because of right upper quadrant pain and jaundice.

History of present illness
He had right upper quadrant pain.

History of past illness
His medical history included paroxysmal atrial fibrillation, hypertension, and diabetes mellitus.

3

Personal and family history
He had no previous history of tuberculosis, hepatitis, or allergies. He also had no previous abdominal surgical history.

Physical examination
His abdomen was soft and flat, and mild tenderness was observed on the right upper quadrant.

Laboratory examinations
The patient was admitted to our center for further examinations. The total serum bilirubin concentration was 5.5 mg/dL, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations were 60 and 81 U/L, respectively. The gamma-GTP concentration was 619 U/L, and alkaline phosphatase was 351 U/L. The C-reactive protein (CRP) concentration was 6.56 mg/dL. Complete blood count and electrolyte values were within normal limits. The carbohydrate antigen 19-9 level was 251.5 U/mL.

Imaging examinations
He underwent abdominal computed tomography (CT), in which one large stone (45 mm × 20 mm) impacting the distal CBD and another stone (20 mm × 15 mm) in the middle CBD were found (Figure 1A). The diameter of the CBD was 24 mm. Gallbladder (GB) stones with tensile distension of the GB and diffuse wall thickening were also noted on the CT scan.

MULTIDISCIPLINARY EXPERT CONSULTATION
Initially, we planned to perform ERCP first, followed by laparoscopic cholecystectomy. The gastroenterologist tried ERCP to treat the stones but failed due to their large sizes and the presence of a large duodenal diverticulum (Figure 1B). The success rate of ERCP is low, and the complication rate is high when the papilla is located close to a periampullary diverticulum[10,11]. However, the gastroenterologist successfully inserted a plastic stent into the CBD. The total serum bilirubin level decreased to 1.7 mg/dL, and the AST and ALT levels were 26 and 44 U/L. The patient was transferred to the hepatobiliary pancreatic surgery department. We planned laparoscopic choledocholithotomy with cholecystectomy and transducal T-tube insertion.

FINAL DIAGNOSIS
Large-sized impacted CBD stones.
TREATMENT
Five trocars were inserted during surgery, including one multi-lumen port (Glove portTM, Nelis medical, Bucheon-si, South Korea) in the right upper quadrant (Figure 2). A near-infrared ICG fluorescence scope (10 mm, 30° scope, Stryker, MI, United States) was used to detect and expose the supraduodenal CBD more accurately. The near-infrared ICG fluorescence scope effectively showed the exact anatomy of the biliary tree and dilatation of the CBD in light green color during the surgery. After ligation of the cystic artery, we sutured the GB to the anterior abdominal wall with a barbed suture (StratafixTM, Johnson and Johnson Company, NJ, United States) for traction and straightening of the CBD (Figure 3A). After that, the location, size, and shape of the stones were detected using laparoscopic intraoperative ultrasound (Figure 3B). Surgical gauze was located at the right entrance of the foramen of Winslow to prevent the stones from slipping into the lesser sac. Then, the CBD was opened with a 2-cm-sized vertical incision. After irrigating several times, two CBD stones were removed with Endo BabcockTM (Medtronic, MN, United States) (Figure 3C and D). A choledochoscope was used to explore whether stones remained in the CBD. A T-tube was inserted and removed through the right upper quadrant trocar site. CBD closure around the T-tube insertion site was performed with nonabsorbable monofilament 5-0 interrupted sutures (Figure 3E). The near-infrared ICG fluorescence scope confirmed that there was no bile leakage from the suture site. Possible injury to another site of the bile duct was checked, and no injury was found.

OUTCOME AND FOLLOW-UP
The patient had no postoperative complications. On the third postoperative day, the total serum bilirubin level was decreased to 1.1 mg/dL, and the AST and ALT levels were 13 and 12 U/L. After two months, cholangiography was done through the T-tube, and remnant sludge and small stones were found and removed through a choledochoscope by a gastroenterologist.
DISCUSSION

Since Deaver et al first used and reported on the modified T-tube drain in 1904, transductal T-tube drain insertion after choledocholithotomy (open or laparoscopy) has been commonly used worldwide\cite{4,20}. The transductal T-tube enables efficient postoperative decompression of the CBD and can decrease the possibility of bile leakage caused by high intraductal pressure\cite{8}. Postoperative cholangiography can be done through the transductal T-tube, and the percutaneous removal of residual stones with a choledochoscope is also possible if tract maturation is completed after 4-8 wk post-surgery\cite{8,17,21}. However, laparoscopic transductal T-tube insertion needs high skillfulness in laparoscopic manipulation and suturing. Postoperative complications, such as bile leakage or tube dislodgement, can occur in the case of incomplete fixation suturing around the T-tube insertion site.

ICG fluorescence guidance during laparoscopic surgery has been used in laparoscopic cholecystectomy\cite{22-24}. ICG is a water-soluble molecule and binds to protein after intravenous administration\cite{23}. It is exclusively metabolized by the liver and excreted primarily through the biliary system\cite{23}. Because ICG fluorescence provides improved visualization of the biliary system, it also has many advantages in laparoscopic choledocholithotomy\cite{22,24}. Since the location of the choledochotomy is very important for laparoscopic choledocholithotomy, ICG fluorescence guidance enables easier exposure of the supraduodenal CBD and helps to identify the choledochotomy site more accurately\cite{22}. ICG fluorescence can also be used to confirm the secure closure of the choledochotomy site to prevent postoperative bile leakage\cite{22}. Although adverse reactions to ICG can occur, the adverse reaction rate is 0.2% to 0.34%, and the allergic reaction rate is approximately 0.05%\cite{25-27}. Also, the cost of a 10 mL vial of ICG is approximately $80, so the cost is not burdensome compared to its efficacy\cite{28}.

Laparoscopic intraoperative ultrasound has been used in laparoscopic biliary surgery in a variety of fields since its introduction\cite{29-31}. Several studies reported that laparoscopic intraoperative ultrasound could be used as an alternative to magnetic resonance cholangiopancreatography or intraoperative cholangiography\cite{29,30}. With the
aid of laparoscopic ultrasound, surgeons can detect the CBD stone's exact location, size, shape, and number. It helps to decide the accurate level of choledochotomy and the CBD incision size. While ICG fluorescence can show the exact anatomy of the biliary tree in superficial depth, deep structures can be detected by laparoscopic ultrasound. The detection of bile leakage is one of the unique features of ICG fluorescence guidance, whereas laparoscopic ultrasound provides a way to check the flow in vascular structures using the Doppler mode.

In our case, the patient had two CBD stones, including a very large-sized stone (45 mm). The larger stone was impacted in the distal CBD. He also had a large duodenal diverticulum near the ampulla of Vater, so endoscopic removal of the stone was almost impossible. Therefore, a laparoscopic transcholedochal approach was decided preoperatively. During surgery, the level and size of the choledochotomy were decided with the aid of ICG fluorescence guidance and laparoscopic intraoperative ultrasound. Although the large stone was not broken during surgery, some fragments were found in the distal CBD intraoperatively. Therefore, transductal T-tube insertion was performed. Choledochoscopic removal of remnant stones was performed after eight weeks, and no postoperative complications occurred.

CONCLUSION

Laparoscopic choledocholithotomy by the transcholedochal approach and transductal T-tube insertion with ICG fluorescence imaging and laparoscopic ultrasound is a safe and feasible option for patients with very large-sized and impacted CBD stones.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>www.f6publishing.com</td>
<td>13 words — 1%</td>
</tr>
<tr>
<td>3</td>
<td>rcastoragev2.blob.core.windows.net</td>
<td>12 words — 1%</td>
</tr>
<tr>
<td>4</td>
<td>Johannes Leonhardt, Sylvia Glüer. "A Rare Cause of Ileus in a Two-Year-Old Boy", Deutsches Ärzteblatt international, 2017</td>
<td>10 words — 1%</td>
</tr>
<tr>
<td>5</td>
<td>www.wjgnet.com</td>
<td>10 words — 1%</td>
</tr>
</tbody>
</table>