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1 Supplementary Methods

1.1 Data Normalisation
We use the standard Robust Multi-array Average (RMA) procedure, which was primarily designed
for analysing gene expression data from Affymetrix arrays to normalise our samples. Results
yielded before and after the normalisation are displayed in Fig. 1a to the whole sample and 1b
to only the MIMAT miRNAs respectively. The corrected Gaussian distributions are well-centred
around the median and present a proper kurtosis removing the unwanted variation of the original
data. This normalisation enables a proper later log2 transformation to better detect the small
differences among measures. The most right bottom panels in Fig. 1a and 1b still exhibit a
heterogenous expression affecting the sensitivity of the Euclidean-based measurements as shown
in the next section.

1.2 Unsupervised Hierarchical Clustering of Patients
In Fig. 2a we can observe the tree structure of the miRNA signature for all patients (CD and
UC). Contrary to the expected tree CD and UC patients are disposed in two different branches;
indeed, the tree was composed of three branches: first for CD cases, the second for UC cases, and
the third for the control patients. As demonstrated below, pairwise comparisons based on t− test
were computed in order to cluster patients in an unsupervised hierarchical classification.

1.3 Patients Stratification
Fig. 2b explains how our cohort of patients non-linearly clusters before using any analysis that
classifies them per strata. Details on the heatmaps with strategies 2 and 3 using the Euclidean
norm are shown in Fig. 3. The results plotted in those panels demonstrate similar qualitative
performances in the two cases.

1.4 Random Forests Setup
Herein we provide the description of the error propagation associated to random forests models
developed for the entire sample, Crohn and UC patients respectively. We reach a steady error
propagation as number of trees approaches 5000 Fig. 4. Regarding the performances of models
CD learns much more accurately compared to ALL patients model being UC an intermediate case,
but still displaying fair learning rates. On the other hand Fig. 5 shows error estimates, but using
the strategies 2 and 3 respectively.

1.4.1 Variable Importance Analysis

The plots in Fig. 6 explain VIMP of each group of patients for the RF models. Briefly, if a predictor
is important in the current model, then assigning other values for that predictor randomly but
“realistically” (i.e.: permuting this predictor’s values over your dataset), should have a negative
influence on prediction, i.e.: using the same model to predict from data that is the same except
for the one variable, should give worse predictions.
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(a) RMA normalisation of 216 miRNA candidates
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(b) RMA normalisation of those MIMAT among the
216 miRNA candidates

Figure 1: RMA normalisation of microarray data.
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(a) Tree structure of the MIMAT miRNAs (b) Strata of patients using PCA prior to use any analysis

Figure 2: Tree structure of selected transcript miRNA and patients early stratification.
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(b) Strategy 3

Figure 3: Unsupervised hierarchical clustering of all patients using strategies 2 and 3.
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Figure 4: Error propagation of our models: Random Forests with 5, 000 trees. Highlighted in red
one may observe cases, in green controls and in black the overall error.
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Figure 5: Error propagation of our models using strategies 2 and 3: Random Forests with 5, 000
trees. Highlighted in red one may observe cases, in green controls and in black the overall error.

So, we take a predictive measure (MSE) with the original dataset and then with the “permuted”
dataset, and then we compare them somehow. One way, particularly since we expect the original
MSE to always be smaller, the difference can be taken. Finally, for making the values comparable
over variables, these are scaled.

1.5 sparse Partial Least Square Discriminant Analysis
In this section the effect of our methodology combined with sPLSD analysis is particularly eval-
uated. We introduce the results yielded by RF and SVM learning models in terms of their Roc
curves Fig. 7a-7b as well as the study of their variable importance as plotted in Fig. 9.
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Figure 6: Variable Importance study of each Random Forests model. Due to the confidential
nature of our miRNA signature, the MIMAT labels are mock transcripts and therefore they are
not in accordance with the official miRNA symbols
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(a) Strategy 2
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(b) Strategy 3

Figure 7: Unsupervised hierarchical clustering of all patients using strategies 2 and 3 combined
with sPLSDA.
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(a) Crohn patients
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(b) Ulcerative Colitis patients

Figure 8: Unsupervised hierarchical clustering of Crohn and UC patients of the miRNA signature
selected by sPLSDA.
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Figure 9: Variable Importance study of each Random Forests model. Due to the confidential
nature of our miRNA signature, the MIMAT labels are mock transcripts and therefore they are
not in accordance with the official miRNA symbols.
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