REVIEW

3621 Autoimmunity as the comet tail of COVID-19 pandemic
 Talotta R, Robertson E

3645 Gender medicine: Lessons from COVID-19 and other medical conditions for designing health policy
 Machluf Y, Chaiter Y, Tal O

MINIREVIEWS

3669 Complexities of diagnosis and management of COVID-19 in autoimmune diseases: Potential benefits and detriments of immunosuppression
 Georgiev T, Angelov AK

ORIGINAL ARTICLE

Retrospective Study

3679 Incidental anal 18fluorodeoxyglucose uptake: Should we further examine the patient?

 D’Urbano F, Fabbri N, Koleva Radica M, Rossin E, Carcoforo P

3697 Somatostatin receptor scintigraphy in the follow up of neuroendocrine neoplasms of appendix
 Saponjski J, Macut D, Sobic-Saranovic D, Ognjanovic S, Pavlović D, Artiko V

3708 Efficacy of stool multiplex polymerase chain reaction assay in adult patients with acute infectious diarrhea

3718 Comparison of gemcitabine plus nab-paclitaxel and FOLFIRINOX in metastatic pancreatic cancer
 Han SY, Kim DU, Seol YM, Kim S, Lee NK, Hong SB, Seo HI

3730 Shear wave elastography may be sensitive and more precise than transient elastography in predicting significant fibrosis
 Yao TT, Pan J, Qian JD, Cheng H, Wang Y, Wang GQ

3743 Radioactive 125I seed implantation for locally advanced pancreatic cancer: A retrospective analysis of 50 cases
 Li CG, Zhou ZP, Jia YZ, Tan XL, Song YY

3751 Active surveillance in metastatic pancreatic neuroendocrine tumors: A 20-year single-institutional experience
 Gao HL, Wang WQ, Xu HX, Wu CT, Li H, Ni QX, Yu XL, Liu L
Contents

World Journal of Clinical Cases

Semimonthly Volume 8 Number 17 September 6, 2020

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3763</td>
<td>Clinical efficacy of tocilizumab treatment in severe and critical COVID-19 patients</td>
<td>Zeng J, Xie MH, Yang J, Chao SW, Xu EL</td>
</tr>
<tr>
<td>3774</td>
<td>Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 is a diagnostic and prognostic biomarker for hepatocellular carcinoma</td>
<td>Cai Y, Zheng Q, Yao DJ</td>
</tr>
<tr>
<td>3804</td>
<td>Portal gas in neonates; is it always surgical? A case report</td>
<td>Altokhais TI</td>
</tr>
<tr>
<td>3808</td>
<td>Large lingual heterotopic gastrointestinal cyst in a newborn: A case report</td>
<td>Lee AD, Harada K, Tanaka S, Yokota Y, Mima T, Enomoto A, Kogo M</td>
</tr>
<tr>
<td>3814</td>
<td>Osteochondral lesion of talus with gout tophi deposition: A case report</td>
<td>Kim T, Choi YR</td>
</tr>
<tr>
<td>3835</td>
<td>Diagnosis of an actively bleeding brachial artery hematoma by contrast-enhanced ultrasound: A case report</td>
<td>Ma JJ, Zhang B</td>
</tr>
<tr>
<td>3841</td>
<td>Lung adenocarcinoma harboring rare epidermal growth factor receptor L858R and V834L mutations treated with icotinib: A case report</td>
<td>Zhai SS, Yu H, Gu TT, Li YX, Lei Y, Zhang HY, Zhen TH, Gao YG</td>
</tr>
<tr>
<td>3847</td>
<td>Gastroduodenitis associated with ulcerative colitis: A case report</td>
<td>Yang Y, Li CQ, Chen WJ, Ma ZH, Liu G</td>
</tr>
<tr>
<td>3853</td>
<td>Majocchi's granuloma caused by Trichophyton rubrum after facial injection with hyaluronic acid: A case report</td>
<td>Liu J, Xin WQ, Liu LT, Chen CF, Wu L, Hu XP</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3881</td>
<td>Gallbladder sarcomatoid carcinoma: Seven case reports</td>
<td>Qin Q, Liu M, Wang X</td>
</tr>
<tr>
<td>3890</td>
<td>Surgical strategy used in multilevel cervical disc replacement and cervical hybrid surgery: Four case reports</td>
<td>Wang XF, Meng Y, Liu H, Hong Y, Wang BY</td>
</tr>
<tr>
<td>3911</td>
<td>Diagnosis and treatment of mixed infection of hepatic cystic and alveolar echinococcosis: Four case reports</td>
<td>A JD, Chai JP, Wang H, Gao W, Peng Z, Zhao SY, A XR</td>
</tr>
</tbody>
</table>
ABOUT COVER

Editorial board member of World Journal of Clinical Cases, Dr. Elia de Maria is Adjunct Professor of Arrhythmology Lab in the Cardiology Unit, Ramazzini Hospital in Carpi, Italy. He graduated in Medicine and Surgery from the University of Napoli in 1999, continuing on to obtain specialization in Cardiology in 2003. He also holds the distinction of High Degree Master in Electrophysiology and Cardiac Stimulation. Since 2005, he has practiced as a Permanent Consultant Cardiologist in the Italian Public Hospitals, and since 2015 as an External Contract Professor in the Faculty of Medicine and Surgery of University of Verona. His clinical and research interests encompass pharmacological therapy in acute and chronic cardiac conditions, temporary and definitive pacing, thoracentesis and pericardiocentesis, and hemodynamic monitoring. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yun-Xiaoqian Wei; Editorial Office Director: Jin-Lei Wang.
Osteochondral lesion of talus with gout tophi deposition: A case report

Taeho Kim, Young-Rak Choi

ORCID number: Taeho Kim 0000-0003-2070-1317; Young-Rak Choi 0000-0002-8037-2650.

Author contributions: Choi YR was the patient’s orthopaedic surgeon, reviewed the literature and contributed to manuscript drafting; Kim TH reviewed the literature and contributed to manuscript drafting and analyzed and interpreted the imaging findings; all authors issued final approval for the version to be submitted.

Supported by (partially) the Korea Health Technology R&D Project through the National Research Foundation of Korea (NRF) grant funded by the Korea government, No. NRF-2017R1C1B5017705.

Informed consent statement: Written informed consent was obtained from the patient’s mother for publication of this case report and any accompanying images.

Conflict-of-interest statement: The authors declared no potential conflict of interest with respect to the research, authorship, and/or publication of this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Abstract

BACKGROUND
Osteochondral lesion of talus is a broad term used to describe an injury or abnormality of the talar articular cartilage and adjacent bone. It arises from diverse causes, and although trauma is implicated in many cases, it does not account for the etiology of every lesion. Gout is a chronic arthritic disease caused by excess levels of uric acid in blood. Intraosseous deposition of monosodium urate in the clavicle, femur, patella and calcaneus was reported previously. Gout is common disease but rare at a young age, especially during teenage years. Osteochondral lesion caused by intra-articular gouty invasion is very rare.

CASE SUMMARY
We encountered a rare case of a 16-year-old male who has osteochondral lesion of the talus (OLT) with gout. He had fluctuating pain for more than 2 years. We could see intra-articular tophi with magnetic resonance image (MRI) and arthroscopy. We performed arthroscopic exploration, debridement and microfracture. Symptoms were resolved after operation, and bony coverage at the lesion was seen on postoperative images. We had checked image and uric acid levels for 18 mo.

CONCLUSION
It is rare to see OLT with gouty tophi in young adults. While it is challenging, the accuracy of diagnosis can be improved through history taking, MRI and arthroscopy.

Key words: Ankle; Gout; Osteochondral lesion of the talus; Tophi; Magnetic resonance image; Arthroscope; Case report
Core tip: Osteochondral lesion of talus (OLT) is usually known as a posttraumatic or repetitive stress lesion. It is rare to see OLT caused by gout tophi deposition. Furthermore, it is extremely rare in young adult or the adolescent. This case highlights the thorough history taking, radiologic study and arthroscopic finding for diagnosis.

INTRODUCTION

Osteochondral lesion of talus (OLT) is used to term abnormal lesion of talar articular cartilage and adjacent bone[1]. A lesion can also be categorized by its location on the articular surface of the talus as medial, lateral, or central with added subdivisions into anterior, central, or posterior as advocated by some authors[2]. While the exact incidence of symptomatic OLTs is unknown, they are quite prevalent and a significant source of ankle morbidity[3]. OLT arises from diverse causes, and although trauma is implicated in many cases, it does not account for the etiology of every lesion.

Gout is a chronic arthritic disease caused by abnormal uric acid metabolism. The findings of several studies suggest that the prevalence and incidence of gout has risen in recent decades[4]. A resurgence of gout across the population has been noted in recent years, and juvenile gout has also been reported, with many of the cases being due solely to known risk factors such as being overweight. Approximately 12%-35% of the gout patients develop tophi[5]. Although the disease normally results in the deposition of monosodium urate crystals in the connective tissue, kidney, and skin, intraosseous deposition of monosodium urate can occur in the clavicle, femoral condyle, metatarsal bone, sesamoid bone, phalanges, patella, calcaneus, vertebral body, and talus[6]. Osteochondral lesion caused by intra-articular gouty invasion is very rare. We were hard to find a similar case. We report the rare case of osteochondral lesion of the talus with gout in a teenage boy.

CASE PRESENTATION

Chief complaints
A 16-year-old male patient complained of a painful left ankle on the anteromedial side for more than 2 years. He presented to the out-patient department on November 2016.

History of present illness
Pain levels fluctuated, and the maximum pain was 7 on visual analogue scale and persisted over a week.

History of past illness
The patient’s height is 168 cm and weight is 75 kg (body mass index: 26.57 kg/m²). He did not have any underlying medical history. He visited local hospitals several times and was diagnosed with osteochondral lesion of the talus through radiologic study. The symptom was alleviated with medication or rest. He had no trauma history, genetic predisposition or degenerative joint disease.

Physical examination
The patient did not have limitation of ankle range of motion. He had problem of weight bearing walking due to pain.

Laboratory examinations
There were no specific findings in preoperative laboratory examination.
Imaging examinations

We found bony abnormalities, including OLTs in the equator of the medial talar dome with subchondral cyst, in the X-ray of ankle (Figure 1). Magnetic resonance image (MRI) was evaluated and found OLTs in the medial talar dome with subchondral cysts and subcortical depression. Also, we could see bony spurs at the anterior and posterior lips of the tibial plafond and tiny subchondral cyst at the anterior lip of the tibial plafond in MRI study (Figure 2).

Impression

The primary impression of the presented case is osteochondral lesion of the talus.

FINAL DIAGNOSIS

The final diagnosis of the case is osteochondral lesion of the talus due to gout tophi deposition.

TREATMENT

Operation was performed under supine position and spinal anesthesia. We used pneumatic tourniquet for preventing bleeding. Using an ankle arthroscopy device, we checked the ankle joint and the lesion. We found intra-articular gout tophi deposition in OLT during operation (Figure 3). Arthroscopic debridement was performed using ring curette. We performed synovectomy using shaver. Microfracture was performed using 60 degree awl. We excised the suspected lesions and sent the specimens for pathologic examination.

OUTCOME AND FOLLOW-UP

After operation, ankle motion exercise (plantar flexion, dorsiflexion) was started with non-weight bearing ambulation. Weight-bearing ambulation was allowed at postoperative 4 wk.

After operation, uric acid level was checked as 11.7 mg/dL for the first time. Pathologic examination show fragments of fibrocollagenous tissue with cystic myxoid degeneration (Figure 4). We use febuxostat 40 mg once a day for controlling uric acid level postoperatively.

At postoperative 1.5 years assessment (July 2018), pain was almost subsided as VAS 1, and the patient returned athletic activity. Uric acid level was well controlled (5.8 mg/dL) (Figure 5). We discovered improvement of OLT lesions through the bony defect coverage on postoperative X-ray (Figure 6).

DISCUSSION

OLT occur in the articular cartilage and subchondral bone of the talus and are commonly associated with ankle injuries, such as sprains and fractures. The etiology of OLTs in patients without a history of trauma remains unknown. The patient has no trauma history or congenital factors. Symptoms of OLT vary from complaints of severe pain to occasional findings of radiation without any symptoms. The patient complained of pain during walking, locking, edema of the ankle and other assorted ailments. The duration of symptoms is several minutes or days. The patient presented in our study had fluctuating pain.

Gout lesions with joint localization may cause destruction and deformities, and also tophi may be inflamed or ulcerated. The primary treatment of tophaceous gout is to control the disease by medical treatment (xanthine oxidase inhibitor, allopurinol). However, if there is cosmetic deformation, functional disorder, or sinus drainage, surgical intervention is inevitable. The patient had a family history of gout, with his father being diagnosed as well. We did not know exact family history at preoperative time.

If gouty tophi are present, MRI is able to detect this as a potentially differentiating characteristic. Tophi is typically seen low signal on T1-weighted (T1w) images and
Figure 1 The osteochondral lesion of talus of left ankle was found on medial talar dome (A and B).

Figure 2 T1-weighted images of ankle magnetic resonance image. Osteochondral lesion of the talus in medial talar dome is seen in axial (A), coronal (B), and sagittal view (C).

medium to high signal on T2-weighted (T2w) images, often seen surrounded cellular tissue and the crystalline mass. The vascularity of this tissue will influence the post-contrast enhancement MRI image, and calcification within the tophus can lead to regions of low signal on T2w images. The patient shows low signal on T1w images and high signal on T2w images. This could indicate suspicious tophi in OLT, but there is no massive tophaceous lesion in MRI.

Although MRI is considered highly accurate in determining cartilage status, Lee et al. reported that there was a difference between MRI and arthroscopic findings. Arthroscopy was essential in determining the treatment strategy besides MRI. Dual energy computed tomography (DECT) is a relatively new development in imaging of gout arthritis. DECT is a noninvasive method for the visualization, characterization, and quantification of monosodium urate crystal deposits. As a result, it helps the clinician in early diagnosis, treatment, and monitoring of this condition. Usability and usage have become increasingly widespread in recent years. Unfortunately, DECT was not used in the patient.

Some intra-osseous tophi lesion were reported. However, osteochondral lesion caused by intra-articular gouty invasion is extremely rare in young age. We did not find similar case anywhere. The patient’s MRI showed bony erosion produced by intra-articular tophaceous material. Suspicious tophi lesions might be overlooked. Therefore, a meticulous radiologic image check was needed for exact diagnosis.

CONCLUSION
It is rare to see OLT with gout in young adults. However, metabolic disease, such as gout, may be considered for diagnosis of OLT at a young age. While it is challenging, the accuracy of diagnosis can be improved through history taking, MRI and arthroscopy.
Figure 3 Images of arthroscope were taken during operation. A: Ankle arthroscopic findings shows tophaceous lesion in the ankle joint; B: Tophaceous lesion was removed. C: Osteochondral defect was checked; D: Microfracture was performed.

Figure 4 The histologic findings show fragments of fibrocollagenous tissue with cystic myxoid degeneration.
Figure 5 Postoperative uric acid level had decreased gradually.

Figure 6 Covered osteochondral lesion was seen on standing AP and lateral ankle X-ray images at 1.5 years after operation (A and B).

ACKNOWLEDGEMENTS

We would like to thank everyone who generously agreed to be interviewed for this research.

REFERENCES

Kim T et al. OLT with gout tophi deposition

13 Lee WC, Shim HC, Choi DS. MRI and arthroscopy of osteochondral lesion of the talus which was not visible on plain radiography. J Korean Society Foot Surg 2002; 6: 195-200 (in Korean)

