Contents

MINIREVIEWS

5934 Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications
Huang YY, Zhang XY, Zhu P, Ji L

5946 Strategies and challenges in treatment of varicose veins and venous insufficiency
Gao RD, Qian SY, Wang HH, Liu YS, Ren SY

5957 Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks
Rout M, Kour B, Vuree S, Lulu SS, Medicherla KM, Suravajhala P

ORIGINAL ARTICLE

Clinical and Translational Research

5965 Identification of potential key molecules and signaling pathways for psoriasis based on weighted gene co-expression network analysis
Shu X, Chen XX, Kang XD, Ran M, Wang YL, Zhao ZK, Li CX

5984 Construction and validation of a novel prediction system for detection of overall survival in lung cancer patients
Zhong C, Liang Y, Wang Q, Tan HW, Liang Y

Case Control Study

6001 Effectiveness and postoperative rehabilitation of one-stage combined anterior-posterior surgery for severe thoracolumbar fractures with spinal cord injury
Zhang B, Wang JC, Jiang YZ, Song QP, An Y

Retrospective Study

6009 Prostate sclerosing adenopathy: A clinicopathological and immunohistochemical study of twelve patients
Feng RL, Tao YP, Tan ZY, Fu S, Wang HF

6021 Value of magnetic resonance diffusion combined with perfusion imaging techniques for diagnosing potentially malignant breast lesions
Zhang H, Zhang XY, Wang Y

6032 Scar-centered dilation in the treatment of large keloids
Wu M, Gu JY, Duan R, Wei BX, Xie F

6039 Application of a novel computer-assisted surgery system in percutaneous nephrolithotomy: A controlled study
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6050</td>
<td>Influences of etiology and endoscopic appearance on the long-term outcomes of gastric antral vascular ectasia</td>
<td>Kwon HJ, Lee SH, Cho JH</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>6060</td>
<td>Evaluation of the clinical efficacy and safety of TST33 mega hemorrhoidectomy for severe prolapsed hemorrhoids</td>
<td>Tao L, Wei J, Ding XF, Ji LJ</td>
<td>Randomized Clinical Trial</td>
</tr>
<tr>
<td>6069</td>
<td>Sequential chemotherapy and icotinib as first-line treatment for advanced epidermal growth factor receptor-mutated non-small cell lung cancer</td>
<td>Sun SJ, Han JD, Liu W, Wu ZY, Zhao X, Yan X, Jiao SC, Fang J</td>
<td></td>
</tr>
<tr>
<td>6082</td>
<td>Impact of preoperative carbohydrate loading on gastric volume in patients with type 2 diabetes</td>
<td>Lin XQ, Chen YR, Chen X, Cai YP, Lin JX, Xu DM, Zheng XC</td>
<td></td>
</tr>
<tr>
<td>6091</td>
<td>Efficacy and safety of adalimumab in comparison to infliximab for Crohn's disease: A systematic review and meta-analysis</td>
<td>Yang HH, Huang Y, Zhou XC, Wang RN</td>
<td>META-ANALYSIS</td>
</tr>
<tr>
<td>6105</td>
<td>Successful treatment of acute relapse of chronic eosinophilic pneumonia with benralizumab and without corticosteroids: A case report</td>
<td>Izhakian S, Pertzov B, Rosengarten D, Kramer MR</td>
<td>CASE REPORT</td>
</tr>
<tr>
<td>6119</td>
<td>Hepatic epithelioid hemangioendothelioma after thirteen years' follow-up: A case report and review of literature</td>
<td>Mo WF, Tong YL</td>
<td></td>
</tr>
<tr>
<td>6128</td>
<td>Effectiveness and safety of ultrasound-guided intramuscular lauromacrogol injection combined with hysteroscopy in cervical pregnancy treatment: A case report</td>
<td>Ye JP, Gao Y, Lu LW, Ye YJ</td>
<td></td>
</tr>
<tr>
<td>6136</td>
<td>Carcinoma located in a right-sided sigmoid colon: A case report</td>
<td>Lyu LJ, Yao WW</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>6148</td>
<td>Overlapping syndrome of recurrent anti-N-methyl-D-aspartate receptor encephalitis and anti-myelin oligodendrocyte glycoprotein demyelinating diseases: A case report</td>
<td>Yin XJ, Zhang LF, Bao LH, Feng ZC, Chen JH, Li BX, Zhang J</td>
<td></td>
</tr>
<tr>
<td>6163</td>
<td>Disseminated strongyloidiasis in a patient with rheumatoid arthritis: A case report</td>
<td>Zheng JH, Xue LY</td>
<td></td>
</tr>
<tr>
<td>6168</td>
<td>CYP27A1 mutation in a case of cerebrotendinous xanthomatosis: A case report</td>
<td>Li ZR, Zhou YL, Jin Q, Xie YY, Meng HM</td>
<td></td>
</tr>
<tr>
<td>6175</td>
<td>Postoperative multiple metastasis of clear cell sarcoma-like tumor of the gastrointestinal tract in adolescent: A case report</td>
<td>Huang WP, Li LM, Gao JB</td>
<td></td>
</tr>
<tr>
<td>6192</td>
<td>Presentation of Boerhaave’s syndrome as an upper-esophageal perforation associated with a right-sided pleural effusion: A case report</td>
<td>Tan N, Luo YH, Li GC, Chen YL, Tan W, Xiang YH, Ge L, Yao D, Zhang MH</td>
<td></td>
</tr>
<tr>
<td>6205</td>
<td>Nontraumatic convexal subarachnoid hemorrhage: A case report</td>
<td>Chen HL, Li B, Chen C, Fan XX, Ma WB</td>
<td></td>
</tr>
<tr>
<td>6211</td>
<td>Growth hormone ameliorates hepatopulmonary syndrome and nonalcoholic steatohepatitis secondary to hypopituitarism in a child: A case report</td>
<td>Zhang XY, Yuan K, Fang YL, Wang CL</td>
<td></td>
</tr>
<tr>
<td>6218</td>
<td>Vancomycin dosing in an obese patient with acute renal failure: A case report and review of literature</td>
<td>Xu KY, Li D, Hu ZJ, Zhao CC, Bai J, Du WL</td>
<td></td>
</tr>
<tr>
<td>6227</td>
<td>Insulinoma after sleeve gastrectomy: A case report</td>
<td>Lobaton-Ginsberg M, Sotelo-González P, Ramirez-Renteria C, Juárez-Aguilar FG, Ferreira-Hermosillo A</td>
<td></td>
</tr>
<tr>
<td>6234</td>
<td>Primary intestinal lymphangiectasia presenting as limb convulsions: A case report</td>
<td>Cao Y, Feng XH, Ni HX</td>
<td></td>
</tr>
<tr>
<td>6241</td>
<td>Esophagogastric junctional neuroendocrine tumor with adenocarcinoma: A case report</td>
<td>Kong ZZ, Zhang L</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 10 Number 18 June 26, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6247</td>
<td>Foreign body granuloma in the tongue differentiated from tongue cancer: A case report</td>
<td>Jiang ZH, Xu R, Xia L</td>
</tr>
<tr>
<td>6261</td>
<td>Management of type IIIb dens invaginatus using a combination of root canal treatment, intentional replantation, and surgical therapy: A case report</td>
<td>Zhang J, Li N, Li WL, Zheng XY, Li S</td>
</tr>
<tr>
<td>6277</td>
<td>De novo brain arteriovenous malformation formation and development: A case report</td>
<td>Huang H, Wang X, Guo AN, Li W, Duan RH, Fang JH, Yin B, Li DD</td>
</tr>
<tr>
<td>6283</td>
<td>Coinfection of Streptococcus suis and Nocardia asiatica in the human central nervous system: A case report</td>
<td>Chen YY, Xie XH</td>
</tr>
<tr>
<td>6289</td>
<td>Dilated left ventricle with multiple outpouchings — a severe congenital ventricular diverticulum or left-dominant arrhythmogenic cardiomyopathy: A case report</td>
<td>Zhang X, Ye RY, Chen XP</td>
</tr>
<tr>
<td>6307</td>
<td>Thyroid follicular renal cell carcinoma excluding thyroid metastases: A case report</td>
<td>Wu SC, Li XY, Liao BJ, Xie K, Chen WM</td>
</tr>
<tr>
<td>6314</td>
<td>Appendiceal bleeding: A case report</td>
<td>Zhou SY, Guo MD, Ye XH</td>
</tr>
<tr>
<td>6319</td>
<td>Spontaneous healing after conservative treatment of isolated grade IV pancreatic duct disruption caused by trauma: A case report</td>
<td>Mei MZ, Ren YF, Mou YP, Wang YY, Jin WW, Lu C, Zhu QC</td>
</tr>
<tr>
<td>6325</td>
<td>Pneumonia and seizures due to hypereosinophilic syndrome—organ damage and eosinophilia without synchronisation: A case report</td>
<td>Ishida T, Murayama T, Kobayashi S</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6338</td>
<td>Stem cells as an option for the treatment of COVID-19</td>
<td>Cuevas-González MV, Cuevas-González JC</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Cristina Tudoran, PhD, Assistant Professor, Department VII, Internal Medicine II, Discipline of Cardiology, "Victor Babes" University of Medicine and Pharmacy Timisoara, Timisoara 300041, Timis, Romania. cristina13.tudoran@gmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ying-Yi Yuan; Production Department Director: Xu Guo; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
June 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks

Madhusmita Rout, Bhumandeep Kour, Sugunakar Vuree, Sajitha S Lulu, Krishna Mohan Medicherla, Prashanth Suravajhala

Abstract
An emerging area of interest in understanding disease phenotypes is systems genomics. Complex diseases such as diabetes have played an important role towards understanding the susceptible genes and mutations. A wide number of methods have been employed and strategies such as polygenic risk score and allele frequencies have been useful, but understanding the candidate genes harboring those mutations is an unmet goal. In this perspective, using systems genomic approaches, we highlight the application of phenome-interactome networks in diabetes and provide deep insights. LINCO1128, which we previously described as candidate for diabetes, is shown as an example to discuss the approach.

Key Words: Type 1 diabetes; Gestational diabetes mellitus; Prostate cancer; Phenome; Type 2 diabetes; Pleiotropy
Core Tip: Comprehensive genome-wide phenome-interactome networks are essential to identify candidate biomarkers such as LINC01128.

Citation: Rout M, Kour B, Vuree S, Lulu SS, Medicherla KM, Suravajhala P. Diabetes mellitus susceptibility with varied diseased phenotypes and its comparison with phenome interactome networks. World J Clin Cases 2022; 10(18): 5957-5964
URL: https://www.wjgnet.com/2307-8960/full/v10/i18/5957.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i18.5957

INTRODUCTION

Diabetes mellitus occurs as a result of insufficient insulin production or impaired insulin sensitivity, and it has become a serious threat to people's health[1,2]. It is a heterogeneous problem with numerous aetiologies comprising three main types, viz., type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM). Understanding the biological mechanisms associated would allow us to identify candidate proteins and genes[3]. The emergence of genome-wide association studies (GWASs) has substantially enhanced our understanding of the genetic basis of disease risk in the past few years. Prior to the introduction of GWASs in 2006, very little information was available about the genes that influence common complicated or multifactorial diseases and quantitative traits. These research findings imply that susceptibility to prevalent diseases is influenced by a variety of genetic topologies, including common genetic variants with minimal effects and uncommon variants with substantial impact sizes[4-6]. Nevertheless, the combination of candidate T2DM genes discovered using GWASs does not fully confirm established features of disease pathogenesis. Several system-level approaches have been used to bridge the gap between genome and phenome correlation[7]. Computational analyses of disease linked genes using interactome and toxicogenomic data help us to connect T2DM candidate genes found in GWAS with disease pathophysiology, including abnormal pancreatic cell formation and function, and insulin sensitivity. On the other hand, computational predictions of potential proteins genes are less expensive and time-saving than experimental methods[8,9]. In order to unravel the genetic roots of common disorders, it is necessary to understand the complexity of the gene–phenotype connection. Recent research employing the human interactome and phenome has uncovered not just common phenotypic and genetic overlap between diseases but also a modular architecture of the genetic landscape of human diseases, opening up new avenues for reducing the complexity of human diseases[10,11]. Because diseases are rarely caused by the malfunction of a single protein, a more comprehensive and robust interactome is essential for identifying groups of interconnected proteins associated with disease aetiology[12].

PHENOME INTERACTION NETWORKS

The phenome interaction networks are used to study a wide range of phenotypic traits based on the analysis of the complete genome; it follows a genotypic to phenotypic approach in order to analyse the phenotypic traits[13]. The diseases with overlapping clinical signs can be predicted because of the mutation in different genes which are playing a role in similar functions. More recently, the studies on humans as well as model organisms have revealed that the primary or secondary association between proteins can also be one of the reasons of the same phenotype that means the mutation in particular protein along with its direct or indirect association with a single or multiple proteins can be responsible for overlapping of the clinical manifestations[14]. The opposite scenario can also be analysed using a phenome-interactome network, in case of pleiotropy, the cases in which a single gene is responsible for different phenotypic traits[15]. The protein-protein interaction (PPI) network models are used to analyse the phenomic traits, which in turn is helpful in understanding cell signalling and drug development in the diseased as well as normal cell physiology; basically, it is important to understand almost every process of the cell. PPI networks are the mathematical representation of physical interaction between similar or different proteins for the analysis of phenomes. The mathematical representation of interaction among different proteins in PPIs is based upon graph theory where the proteins are represented as nodes and edges to depict the type of interaction between two different interacting proteins[16]. PPI networks help to find the genes for a particular disease with a huge accuracy and when PPIs are implemented on the large datasets, it could lead to prediction of novel gene candidates[11]. The phenome interaction networks are quite important to understand and mine the genes associated with a particular disease. The genes that are responsible for similar functions have a higher chance of having the same phenotypes; therefore, understanding phenotypic as well as genotypic data is a must in order to understand the origination and development of a disease at the systems biology level for the better
treatment[17]. The origin and cause of several complex diseases including cancer, diabetes, and obesity can be understood by PPI network analysis[18].

GDM

GDM is categorised as insulin resistance leading to hyperglycemia during pregnancy, which mostly retracts after parturition. According to the World Health Organization, the prevalence rate is 15.8% accounting to about 20.4 million live births, with the majority of cases in pregnant women above the age of 35 years. The International Diabetes Federation in 2019 estimated a prevalence of 28.5% in India with incidence varying in each state due to challenges in screening strategies and paucity of consensus among physicians and healthcare providers in prepartum and postpartum management of GDM[19]. The diagnostic criteria may differ worldwide, and understanding the pathophysiology is crucial as it affects both the mother and the fetus during gestation, delivery, and later stages of life making them susceptible to diabetes, obesity, and cardiovascular complications in the long term[20]. Major challenges that have governed this disease are the guidelines for screening and diagnosis. The testing criteria are different with varying forms of oral glucose tolerance test being followed worldwide[21]. Management of GDM is another challenge as both the mother and fetus are at risk in their current milieu. Studies have highlighted the importance of treating GDM, reducing the risk of perinatal morbidity and improving post-delivery outcomes[22]. Glucose intolerance leads to the manifestation of the disease, hence the benchmark of GDM treatment should be glycaemic control which is achieved through lifestyle intervention such as diet and exercise, pharmacological intervention such as insulin, oral drugs, and herbal medicines, and finally postnatal management[23].

Pregnant women with GDM have an inherent risk of developing T2DM post-delivery or later on in life. The offspring is also susceptible to any form of diabetes postnatally or in the long term. The genetic factors responsible for GDM and future risk of developing T2DM through epidemiological and physiological studies reveal commonality in susceptibility loci, which implies that most of the diabetes genes are involved in causing GDM. The few key genes that share common variants are KCNJ11, GCK, HNF1A, TCF7L2, CDKAL1, KCNQ1, CDKN2A, MTNR1B, SRR, HHEX, TCF2, SLC30A8, and IGF2BP2[24, 25]. Genetic similarities between T1DM and GDM is less studied, and a study among Asian Indian women with GDM showed the presence of pancreatic autoantibodies like GAD which is a biomarker for T1DM[26]. Maturity onset diabetes of young (MODY) has different types and each type is characterised by a single gene, and few studies have shown that mutations in HNF1A and HNF4A are MODY genes which predispose to GDM[27].

Integrating phenotypic data with genotypic data through a computationally created high-confidence interaction network to analyse human diseases concurrently defines a phenome-interactome network[14]. An organized study on genes expressed in thigh subcutaneous adipose tissue of Asian Indian Type 2 Diabetes Mellitus revealed evidence of “sick thigh fat” as a causative disease. The phenome-interactome network had a significant correlation of differentially expressed genes (DEGs) and hub proteins with its phenotypic traits obtained at the clinical, biochemical, and radiological, cellular, and molecular levels, thus enumerating their role in T2DM, T1DM, and obesity[28]. RNA-seq analysis enables identification of differentially expressed genes and their role in a disease. The depth of the literature available on RNA-seq analysis performed on pregnant ladies with GDM is negligible. The GDM is a condition in which the intrauterine milieu, especially the placenta, plays a central role in altering the course of the fetus. Hence, having an understanding of the key genes regulated in the placenta is paramount for the disease diagnosis. Most of the literature available on RNA-seq analysis is centred on identifying DEGs in the placenta, umbilical cord, and amniocytes[29-32]. Studies have identified that non-coding RNAs such as long non-coding (lnc)RNAs, microRNAs, and circular RNAs play a central role in GDM pathogenesis. MicroRNAs have been identified as non-invasive early diagnostic biomarkers for GDM[33]. LncRNA-associated feed-forward loops network had a strong correlation between dysregulated glucose metabolism and hormone regulation in GDM cases[34]. The mechanism governing the pathophysiology of the disease is still not clear and the studies available are limited. Hence, the current problem is to understand the genetic background that affects both the mother and fetus with changes in the intrauterine environment and thus identify early diagnostic biomarkers. GDM is associated with a number of comorbidities due to the multifactorial nature of the disease. A study to identify key genes involved in GDM maternal and placental milieu revealed associations with T2DM, T1DM, obesity, hyperglycaemia, preeclampsia, neonatal diabetes, MODY, neurological disorders, cardiovascular disease, preeclampsia, hepatitis C, rheumatoid arthritis, and neoplasms[35]. Hence, the need to identify genes governing this disease and the variations that might affect the phenotype needs to be understood.
PROSTATE CANCER AND DIABETES, LINCO1128

As glucose level in the body is regulated by insulin, a hormone (peptide) which increases the glucose uptake and its assimilation. However, insulin resistance is stated when it becomes unable to perform this function in a diabetic patient. On the other hand, the beta cell continuously secretes insulin to make up and maintain balance but it results in hyperinsulinemia[36]. This increased level will trigger the production of IGF-1 from liver cells. IGF-1 will then bind to its tyrosine kinase receptor IGF-1R and stimulate various metabolic and mitogenic signalling pathways to control processes like cancer cell proliferation, differentiation, and apoptosis. Later, some downstream targets like PI3KB and rat sarcoma-mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathways get stimulated. PI3KB signaling has a role in cancer cell survival and migration, while the rat sarcoma mitogen-activated protein kinase/extracellular signal regulated kinase signaling pathway controls cancer cell proliferation and metabolism[37]. Hence, patients who have diabetes show increased levels of IGF-1, bringing in them more susceptibility towards a higher risk of developing different cancers like breast, prostate, and colorectal cancer[38]. However, the growth factor IGF-II which shares locus with IncH19 (IGF-II/H19) forms an imprinted gene. This silencing is found disrupted in different cancers including prostate cancer. The association of adipose tissue and obesity is a known risk factor for both T2DM and prostate cancer by disturbing cellular environments. As a result, hyperglycaemia or inflammatory metabolic situations are hypothesized to be the cause of this loss of imprinting (LOI)[39]. Differentially expressed IncRNA (LINCO1128) is already known to increase the rate of cervical cancer progression and is also predicted as a biomarker of gestational hypertension[40,41]. Similarly, Pradeep Tiwari et al[28] in 2019 suggested that LINCO1128 could serve as a biomarker for diabetes diagnosis and prognosis (Figure 1). Metformin, an antidiabetic drug from several studies, has been proved to not only effect on glucose metabolism but also show interactions with androgen receptors. It plays a role in stabilizing prostate specific antigen (PSA) levels[42]. In certain therapy, another commonly used method for T2DM, it is reported that glucagon-like peptide-1 receptor expression plays an anti-prostate cancer effect. It is helping in attenuating cell cycle progression. So, its forceful activation to express can be a potential therapeutic approach[43]. Therefore, both metformin and certain therapies help in blocking cell cycle progression by reducing mTOR activity[44]. Hypogonadism (decrease in level of testosterone) is also found associated with both diabetes and prostate cancer (PCa). A fall in its serum level is capable of causing high graded PCa. Hence, T2DM is suggested to be a crucial predictor of high graded PCa especially with benign prostatic hyperplasia[45]. For early possible detection, PSA levels are broadly used, but its concentration shows variation due to several other comorbidities, age, and lifestyle, which makes it to demand more precise analysis of test results. Based on a linear aggression analysis, there is a fall in PSA in patients who are taking antidiabetics and obese people on hemodilution. This establishes an inverse relationship between diabetes obesity and PSA level. Such study suggests to deliberately check the PSA level, especially in diabetic and obese patients[46]. Both PCa and DM incidence is rising parallel with age. Despite the fact diabetes mellitus reduces the risk of PCa, DM can also increase its mortality[47]. The understanding of association between DM and PCa is still insufficient. Moreover, obesity makes its pathophysiology a more complex situation[48].

LINCO1128

In a study, GEO datasets of osteosarcoma (OS) were analysed for LINCO1128 expression to clear its oncogenic role. It revealed that increased expression of LINCO1128 in OS patients is accompanied with their shorter survival. However, its knockdown turned down the proliferation, migration, and invasion. In OS, LINCO1128 is identified to work as a sponge in triggering Wnt/β-Catenin signaling by promoting MMP2 expression through miR-299-3p[49]. In promoting cervical cancer development again, it functions as a sponge for miR-383-5p[50]. In cervical cancer tissues, the expression of LINCO1128 is found significantly high and its fall suggests that it might lower the SFN (stratifin) at both the mRNA and protein levels. SFN, a known potential biomarker in cervical cancer, is also majorly expressed in the early stage of lung adenocarcinomas. It clearly explains how LINCO1128 could accelerate cell processes like cell proliferation, migration, and invasion, and even can inhibit the apoptosis through SFN upregulation and release by binding miR-383-5p and also working as its antagonist[51,52]. miR-383 is under regulation of LINCO1128. However, overexpression of miR-383 in T2DM serum reverses the cell apoptosis under high glucose in mouse β cells by TLR4 and APOC3 suppression[53]. Also, high LINCO1128 was seen in stage III-IV CRC and mediated PRMT5 function, which is a mediator of methylation of proteins[54]. In pancreatic cancer, it was found as an EMT-LPS (epithelial mesenchymal transition related IncRNA prognostic signature) molecule[55].
Researchers have chosen interesting genes based on P value, heuristics, and contextuality, and then used CHAT analysis to find high-dimensional gene expression data for confirmation. Many critical genes, as well as their enriched pathways, were discovered to be involved in the molecular processes of obesity, lupus, adipose tissue, and fatty acid pathways. A: Phenome interactome networks of diabetes represented earlier (Tiwari et al. [28], 2018); B: LncRNA NONHSAT224539.1 (LINC01128 representative) expression in various tissues, largely seen in the heart, thyroid, kidney, and prostate.

CONCLUSION
The phenome-interactome networks have been a powerful approach to understand and characterize networks. There is a greater scope of relevance underlying the pathophysiology mentioned above. To fully comprehend the importance of phenome-interactome networks and diabetes associated metabolism, it is vital to ensure that there is a healthy diet regimen followed which also addresses the clinical implications of its absorption, bioavailability, and human health benefits. Integrated systems approaches can be used to discover the novel genes and pathways with an emphasis on the molecular physiological insights gained through systems/nutrigenomic modules and thereby candidate DEGs could be detected. Furthermore, standard operating procedures, recommendations, and guidelines in consideration of the aforementioned diabetes phenotypes for better dissemination of phenome-interactome predictions will help avoid the risk of over/under treatment. In addition, post next generation sequencing, a large focus nowadays should be on the development of NGS/genotyping panels which can set a precedent for a global consortium effort bridging the gap between the nutritional deficiency diseases and diabetes.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge Arvinpreet Kaur, Mehak Chopra, Berenice, Kiran Telukunta, Anshu Bharadwaj, Harpreet Singh, and Purnima Sharma for subtle scientific deliberations.

FOOTNOTES
Author contributions: Rout M wrote the first draft; Kour B wrote the sections on diabetes; Suravajhala P proofread the manuscript with sections on phenome-interactome networks; all authors chipped in laterally; Kour B and Rout M are equal contributing first authors.

Conflict-of-interest statement: The authors declare no conflict of interest for this article.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license
their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: India

ORCID number: Madhusmita Rout 0000-0001-6011-5887; Bhumadeep Kour 0000-0003-2061-9272; Suganakar Vuree 0000-0002-3262-434X; Sajitha S Lulu 0000-0002-3392-4168; Krishna Mohan Medicherla 0000-0001-7099-7721; Prashanth Suravajhala 0000-0002-8535-278X.

S-Editor: Liu JH
L-Editor: Wang TQ
P-Editor: Liu JH

REFERENCES

41 Xu J, Fan L, Qi F, Xiu X. Screening of Biomarkers for Hypertension Susceptibility in Pregnancy Proc Anticancer Res. 2020; 4

