OPINION REVIEW
5387 COVID-19 pandemic and challenges in pediatric gastroenterology practice
Kriem J, Rahhal R

MINIREVIEWS
5395 Treatment of eosinophilic esophagitis with swallowed topical corticosteroids
Nennstiel S, Schlag C

Artificial intelligence in gastric cancer: Application and future perspectives
Niu PH, Zhao LL, Wu HL, Zhao DB, Chen YT

ORIGINAL ARTICLE
Basic Study
5420 Granulocyte-macrophage colony-stimulating factor protects mice against hepatocellular carcinoma by ameliorating intestinal dysbiosis and attenuating inflammation
Wu YN, Zhang L, Chen T, Li X, He LH, Liu GX

Retrospective Study
5437 Transitioning patients with inflammatory bowel disease from hospital-based to rapid home-based infliximab: A stepwise, safety and patient-orientated process towards sustainability
Bohra A, Rizvi QAA, Keung CYY, Vasudevan A, van Langenberg DR

5450 Histopathological validation of magnifying endoscopy for diagnosis of mixed-histological-type early gastric cancer

Observational Study
5463 Major gastrointestinal bleeding and antithrombotics: Characteristics and management
Bouget J, Viglino D, Yvetot Q, Oger E

5484 Motility index measured by magnetic resonance enterography is associated with sex and mural thickness
Månsson S, Ekberg O, Ohlsson B

5498 Impact of B-mode-ultrasound-guided transhepatic and transperitoneal cholecystostomy tube placement on laparoscopic cholecystectomy
Prospective Study

5508 Effects of early oral feeding after radical total gastrectomy in gastric cancer patients

CASE REPORT

5520 SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma mimicking solid pseudopapillary neoplasm: A case report and review of the literature
Hua Y, Soni P, Larsen D, Zreik R, Leng B, Rampisela D

5527 Solitary peritoneal metastasis of gastrointestinal stromal tumor: A case report
Sugiyama Y, Shimbara K, Sasaki M, Kouyama M, Tazaki T, Takahashi S, Nakamitsu A
ABOUT COVER
Editorial board member of *World Journal of Gastroenterology*, Dr. José M Ramia is Head of Department (Surgery) in Hospital General Universitario de Alicante (Spain), since June 2020. Dr. Ramia undertook his surgical residency program at Hospital 12 de Octubre (Madrid) (1991-1995), receiving his PhD in 1999 (Universidad Complutense, Madrid). He has published 310 articles in medical journals and 25 books chapters. His research interests involve every surgical topic of liver, bile duct and pancreas diseases and liver transplantation. He is the current President of the Spanish Chapter of International Hepato-pancreato Biliary Association (HPBA), member of the Educational Committee and Scientific and Research Committee of European-African HPBA, and examiner for the HPB FEBS Board. Dr Ramia is a fellow of the American College of Surgeons, Royal College of Surgeons (England) and European Board of Surgery-HPB. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of *World Journal of Gastroenterology* (*WJG, World J Gastroenterol*) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. *WJG* mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The *WJG* is now indexed in Current Contents®, Clinical Medicine, Science Citation Index Expanded (also known as ScSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 edition of Journal Citation Report® cites the 2019 impact factor (IF) for *WJG* as 3.665; IF without journal self cites: 3.534; 5-year IF: 4.048; Ranking: 35 among 88 journals in gastroenterology and hepatology; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Liang Zhang; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
September 28, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.tltpublishing.com
SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma mimicking solid pseudopapillary neoplasm: A case report and review of the literature

Yinan Hua, Piyush Soni, Douglas Larsen, Riyam Zreik, Bing Leng, Debby Rampisela

Abstract

BACKGROUND
SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is a very aggressive tumor that is rarely reported in the literature. The tumor has a predominant rhabdoid cell component and different patterns of growth have been reported.

CASE SUMMARY
A 59-year-old woman presented with diffuse abdominal pain, increasing in severity and accompanied by weight loss, nausea, and vomiting. Imaging showed a pancreatic head mass. Fine needle aspiration demonstrated atypical epithelioid cells with a pseudopapillary growth pattern suggestive of solid pseudopapillary neoplasm. The excised neoplasm showed monotonous epithelioid and focally spindle cells with pseudopapillary structures, rhabdoid features, and loss of SMARCB1 protein expression with wild-type KRAS, consistent with a SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma. The patient’s condition deteriorated rapidly following surgery and she expired 3 mo post operation.

CONCLUSION
In this article, we report the first case of SMARCB1/INI1-deficient undifferentiated pancreatic rhabdoid carcinoma mimicking solid pseudopapillary neoplasm.

Key Words: Pancreatic undifferentiated rhabdoid carcinoma; Solid pseudopapillary neoplasm; SMARCB1/INI1; KRAS; Case report
Core Tip: The presence of a pseudopapillary architectural pattern in pancreatic tumors sampled via fine needle aspiration commonly leads to solid pseudopapillary neoplasm as the primary diagnostic consideration, particularly in middle-aged women; however, an inconclusive immunohistochemistry profile may suggest an alternative diagnosis. Our case highlights that while SMARCB1/INI1-deficient pancreatic undifferentiated carcinomas may mimic solid pseudopapillary neoplasm, recognition of this aggressive malignancy is important as these rare tumors impart a dismal prognosis.

INTRODUCTION
Pancreatic undifferentiated carcinoma is a group of neoplasms comprised of pleomorphic giant cell carcinoma, sarcomatoid carcinoma, rhabdoid carcinoma, and round cell carcinomas. Pancreatic undifferentiated rhabdoid carcinoma, characterized by a predominant rhabdoid cell component, is a very rare tumor with high lethality. Patients often die within weeks or months of diagnosis. The first case of pancreatic rhabdoid carcinoma was reported in 1997.[1] A recent study by Agaimy et al.[2] reported the phenotypic and molecular heterogeneity of pancreatic undifferentiated rhabdoid carcinoma. Two subtypes of the tumor were described based on the tumor’s KRAS status and SMARCB1 expression. The pleomorphic giant cell subtype displays KRAS alterations with preservation of SMARCB1 expression; in contrast, the anaplastic monomorphic subtype shows absence of KRAS alterations with loss of SMARCB1 expression. To our best knowledge, eight SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinomas have been reported in the literature[2-8]. Our case is the first reported case with a solid and pseudopapillary growth pattern mimicking solid pseudopapillary neoplasm (SPN).

CASE PRESENTATION

Chief complaints
A 59-year-old woman presented to the clinic with diffuse abdominal pain.

History of present illness
The patient complained of diffuse abdominal pain with increased intensity for approximately 4 wk, accompanied by weight loss, nausea, and vomiting.

History of past illness
The patient had a past medical history of back pain, gastroesophageal reflux disease, allergic rhinitis and hepatitis A; and a past surgical history of appendectomy, cholecystectomy, Cesarean section, and ovarian cyst removal.

Physical examination
The abdomen was soft, nondistended, but tender to palpation in the right upper quadrant with no rebound or guarding. A well-healed scar was noted below the umbilicus midline, intersecting with a Cesarean section scar.

Laboratory examinations
The patient had elevated laboratory values of alkaline phosphatase and aspartate aminotransferase.

Imaging examinations
The patient underwent a computed topography (CT) scan of abdomen and pelvis, and an abdominal magnetic resonance imaging (MRI) scan. CT scan revealed a hypodense
region in the head of the pancreas, and the follow-up MRI revealed a 3.1 cm pancreatic head mass. Endoscopic ultrasound-guided fine needle aspiration (FNA) of the pancreatic mass was performed and a diagnosis of low-grade neoplasm with papillary features most suggestive of a SPN was rendered.

Pathological findings

The FNA specimen was hypercellular with a prominent pseudopapillary growth pattern (Figure 1A). Abundant discohesive tumor cells were also present. The tumor cells were small to intermediate-sized, predominantly epithelioid with round to oval nuclei, inconspicuous to prominent nucleoli, and focal nuclear grooves. Some tumor cells exhibited eccentric nuclei, prominent nucleoli and large cytoplasmic vacuoles (Figure 1B). The tumor cells on the cell block section showed eosinophilic cytoplasm with no obvious rhabdoid features. Immunohistochemically, the tumor cells were diffusely positive for vimentin, very focally positive for synaptophysin and pankeratin (AE1/AE3), and negative for CD10, progesterone receptor, alpha 1-antitrypsin, CD56 and chromogranin. No nuclear beta-catenin stain was noted. Although the immunohistochemical profile was not conclusive, a diagnosis of a low grade neoplasm with papillary features most suggestive of SPN was made.

The enucleated pancreatic mass was received in two parts, measuring 3.4 cm x 2.4 cm x 1.1 cm and 2.0 cm x 1.0 cm x 0.4 cm. Histological sections showed a heterogeneous tumor with areas of solid and pseudopapillary growth and focal hemorrhage (Figure 2A). A subpopulation of the neoplastic cells was intermediate-sized, epithelioid and focally spindled with mild to moderate nuclear pleomorphism and indistinct to prominent nucleoli. Nuclear grooves were focally appreciated. However, a second subpopulation (approximately 60% of the neoplastic cells) showed rhabdoid features with eccentrically located nuclei, prominent nucleoli, abundant eosinophilic cytoplasm and eosinophilic cytoplasmic inclusions (Figure 2B). By immunohistochemistry, the neoplastic cells were diffusely positive for vimentin and focally positive for pankeratin (AE1/AE3), OSCAR keratin, CD34, Cyclin D1, synaptophysin and CD56. The tumor cells were negative for DOG1, CD117/KIT, desmin, STAT6, progesterone receptor, neuron-specific enolase, trypsin, chromogranin, CD99, CD10, SOX10, and S100. Beta-catenin immunostaining showed focal loss of membranous expression without nuclear expression. E-cadherin immunostaining showed patchy loss of membranous expression. The proliferation index Ki-67 demonstrated variable expression, ranging from less than 10% (non-rhabdoid cells) to over 50% (rhabdoid cells). PD-L1 highlighted less than 1% tumor cells, which was interpreted as negative for PD-L1 expression. SMARCB1/INI1 immunostaining showed complete loss of nuclear staining in all tumor cells. Next generation sequencing using the Ion AmpliSeqTM Cancer Hotspot Panel v2 confirmed loss of SMARCB1 gene with wild type KRAS gene.

FINAL DIAGNOSIS

The final diagnosis was SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma.

TREATMENT

The patient was treated with pancreatic mass enucleation approximately 4 mo after the initial presentation of abdominal pain.

OUTCOME AND FOLLOW-UP

The patient's post operation course was complicated by small mesenteric artery (SMA) thrombosis, small bowel ischemia, perforated small bowel and intra-abdominal abscess. She underwent a small bowel resection, an open thrombectomy of the SMA and a placement of a drainage for the abdominal abscess. She was readmitted twice to the hospital following episodes of upper gastrointestinal bleeding due to multiple ulcers, which were treated with epinephrine injections and cauteries. Follow up CT of the abdomen and pelvis 1 mo and 2 mo post-pancreatic mass enucleation showed multiple intrahepatic cystic masses that increased in size, suspicious for malignancy.
Subsequent core biopsy of the liver mass was consistent with a metastatic pancreatic undifferentiated rhabdoid carcinoma. The patient's condition deteriorated rapidly and she expired 3 mo after pancreatic mass enucleation.

DISCUSSION

SMARCB1/INI1, ubiquitously expressed in the nuclei of all normal cells, is an important player in the SWI/SNF ATP-dependent chromatin-remodeling complex[7]. Cell biology studies have revealed a wide spectrum of signaling cascades regulated by SMARCB1, including p16-RB pathway, canonical WNT pathway, sonic hedgehog pathway, and polycomb pathway[8]. More importantly, aberrant expression of SMARCB1 has been found in a variety of tumors[7,9]. In particular, malignant rhabdoid tumor, epithelioid sarcoma, sinonasal carcinoma, renal medullary carcinoma, and pancreatic undifferentiated rhabdoid carcinoma can exhibit complete loss of SMARCB1 expression. SMARCB1 immunohistochemistry has been well established as a highly sensitive and specific tool for detecting malignant rhabdoid neoplasms[9].

SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is an aggressive and rare primary malignancy of the pancreas. According to the current World Health Organization classification of pancreatic tumors, undifferentiated pancreatic carcinoma is defined as a malignant epithelial neoplasm in which a
Hua Y et al. SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma mimicking SPN

To our best knowledge, eight SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinomas have been reported in the literature (Table 1). Eight of the nine cases (including our case) had clinical data. The patients consisted of three males and five females, ranging from 35 to 76 years. Tumor sizes ranged from 1.9 cm to 10 cm. Five cases originated in the pancreatic head, two in the tail, and one in the body. Six cases had distant metastases and three were not specified. Six cases had follow up and all of the patients died of disease either post-operatively or within 2 wk to 7 mo following the initial diagnosis (mean: 3.6 mo, median: 3.5 mo). The histologic patterns of the tumors were heterogeneous with pseudopapillary acantholytic gland-like spaces, angiosarcoma-like, proximal-type epithelioid sarcoma-like, solid/diffuse, mucoid/myxoid stromal and solid patterns. Our case had solid and pseudopapillary features mimicking SPN. All nine cases had complete loss of SMARCBI by immunohistochemistry. Six cases had wild-type KRAS, one was positive for KRAS mutation, and two cases were not tested. PD-L1 immunostaining were performed on two cases including our case, and both cases were negative for PD-L1 expression. Based on the limited number of the cases, the prognosis of SMARCBI/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma is dismal.

SPN is a rare low-grade malignant pancreatic neoplasm composed of poorly cohesive epithelial cells forming solid and pseudopapillary structures that lack of a specific line of pancreatic epithelial differentiation. The histology shows solid nests of poorly cohesive cells forming a cuff surrounding blood vessels, resulting in a pseudopapillary architecture. The stroma usually shows various degrees of hyalinization or evidence of degeneration such as hemorrhage, foamy macrophages, calcification and cholesterol clefts. The tumor cells usually have a moderate amount of eosinophilic cytoplasm with perinuclear vacuoles, relatively uniform nuclei with finely textured chromatin, inconspicuous nucleoli and longitudinal grooves, and often containing intracytoplasmic hyaline globules. High-grade malignant transformation of SPN with an aggressive clinical course has been reported[20,21]. The morphological features predicting high-grade transformation include diffuse growth pattern, extensive tumor necrosis, significant nuclear atypia, high mitotic rate and presence of an undifferentiated component[29], while typical histologic architecture and cytological features of a SPN are always present. The tumor cells of SPN express vimentin, CD56, alpha 1-antichymotrypsin, alpha 1-antitrypsin, cyclin D1, CD10 and progesterone receptor. The tumor cells may also show focal immunoreactivity for synaptophysin and cytokeratins. The tumor always shows beta-catenin mutation with nuclear and cytoplasmic staining for beta-catenin immunostaining, including areas of high-grade transformation[21-23]. On the other hand, majority of the pancreatic undifferentiated carcinoma shows only diffuse positivity for vimentin and focal for cytokeratin[26] with no nuclear immunoreactivity for beta-catenin. Although our case showed solid/pseudopapillary architecture and cytological features mimicking SPN, especially on the FNA specimen, the immunostaining pattern and molecular findings on the enucleation specimen did not support the diagnosis of SPN. The findings were consistent with a SMARCB1/INI1-deficient undifferentiated rhabdoid carcinoma.

CONCLUSION

In conclusion, here we report a rare case of SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma with cytological and architectural features mimicking SPN. Recognition of this entity is very important due to the poor prognosis.
Table 1 Summary of SMARCB1 deficient pancreatic undifferentiated rhabdoid carcinoma cases in the literature along with our case

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Age/gender</th>
<th>Size/pancreatic location</th>
<th>Histology</th>
<th>Treatment</th>
<th>Metastasis</th>
<th>Outcome</th>
<th>KRAS mutation</th>
<th>SMARCB1 (IHC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agaimy et al</td>
<td>76/M</td>
<td>5 cm/head</td>
<td>Rhabdoid</td>
<td>Surgery</td>
<td>NS</td>
<td>DOD in 1 mo</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Agaimy et al</td>
<td>44/F</td>
<td>6 cm/head</td>
<td>Rhabdoid, angiosarcoma-like</td>
<td>Surgery</td>
<td>NS</td>
<td>NS</td>
<td>Positive (pGly12Asp)</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Agaimy et al</td>
<td>72/M</td>
<td>4 cm/head</td>
<td>Rhabdoid, pseudopapillary acantholytic gland-like spaces</td>
<td>Surgery</td>
<td>Liver, lymph nodes</td>
<td>DOD post-operatively</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Agaimy et al</td>
<td>61/M</td>
<td>5 cm/tail</td>
<td>Rhabdoid, prominent neoplasms and focal glandular formation</td>
<td>Surgery</td>
<td>Intra-abdominal, stomach</td>
<td>NS</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Sano et al</td>
<td>68/F</td>
<td>10 cm/body, tail</td>
<td>Rhabdoid</td>
<td>Palliative</td>
<td>Liver, kidneys, lungs, right adrenal gland, omentum, peritoneum</td>
<td>DOD in 2 wk</td>
<td>NS</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Ohiike et al</td>
<td>35/F</td>
<td>6 cm/head</td>
<td>Rhabdoid, solid/diffuse</td>
<td>Chemo</td>
<td>Liver</td>
<td>DOD in 7 mo</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Tahara et al</td>
<td>67/F</td>
<td>1.9 cm/body</td>
<td>Rhabdoid, solid/diffuse</td>
<td>Chemo</td>
<td>Liver, lung, bone, tongue, right thigh</td>
<td>DOD in half year</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Lehrke et al</td>
<td>NS</td>
<td>NS</td>
<td>Rhabdoid</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Complete loss</td>
</tr>
<tr>
<td>Our case</td>
<td>59/F</td>
<td>3.1 cm/head</td>
<td>Rhabdoid, pseudopapillary-like</td>
<td>Surgery</td>
<td>Liver</td>
<td>DOD in 7 mo</td>
<td>Wild type</td>
<td>Complete loss</td>
</tr>
</tbody>
</table>

KRAS: KRAS proto-oncogene GTPase; Chemo: Chemotherapy; DOD: Died of disease; NS: Not specified; IHC: Immunohistochemistry.

Our case et al., Lehrke et al., Tahara et al., Ohike et al., Sano et al., and our case cases demonstrate the diversity in tumor characteristics and treatment outcomes for SMARCB1-deficient pancreatic undifferentiated rhabdoid carcinoma. The presence of undifferentiated rhabdoid carcinoma compared to SPN, which has much better prognosis. More studies are warranted for the better understanding of pancreatic undifferentiated rhabdoid carcinoma, particularly the SMARCB1/INI1-deficient subtype.

ACKNOWLEDGEMENTS

We thank Dr. Rondell Graham at Mayo Clinic for his expertise.

REFERENCES

9. Agaimy A. The expanding family of SMARCB1(INI1)-deficient neoplasms: implications of phenotypic
Hua Y et al. SMARCB1/INI1-deficient pancreatic undifferentiated rhabdoid carcinoma mimicking SPN.

