MINIREVIEWS

318 Mesenchymal stem cell-derived exosomes: A novel and potential remedy for cutaneous wound healing and regeneration

ORIGINAL ARTICLE

Basic Study

330 Human amniotic fluid stem cell therapy can help regain bladder function in type 2 diabetic rats
Liang CC, Shaw SW, Huang YH, Lee TH

347 Soluble factors secreted by human Wharton’s jelly mesenchymal stromal/stem cells exhibit therapeutic radioprotection: A mechanistic study with integrating network biology
Maurya DK, Bandekar M, Sandur SK

LETTER TO THE EDITOR

362 Inhibition of glutathione metabolism can limit the development of pancreatic cancer
Cai PY, Ma ML, Zhang YF, Zhou ZX, Wang Y, He LP, Wang W
ABOUT COVER
Editorial Board Member of World Journal of Stem Cells, Andreas K Nussler, PharmD, Professor, Director of Siegfried Weller Institute for Trauma Research, BG Trauma Clinic, Department of Trauma Surgery at Eberhard Karls University Tubingen, Schnarrenbergstr. 95, Tubingen 72076, Germany. andreas.nuessler@med.uni-tuebingen.de

AIMS AND SCOPE
The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is to provide scholars and readers from various fields of stem cells with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJSC publishes articles reporting research results obtained in the field of stem cell biology and regenerative medicine, related to the wide range of stem cells including embryonic stem cells, germline stem cells, tissue-specific stem cells, adult stem cells, mesenchymal stromal cells, induced pluripotent stem cells, embryonal carcinoma stem cells, hemangioblasts, lymphoid progenitor cells, etc.

INDEXING/ABSTRACTING
The WJSC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Biological Abstracts, BIOSIS Previews, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJSC as 5.326; IF without journal self cites: 5.035; 5-year IF: 4.956; Journal Citation Indicator: 0.55; Ranking: 14 among 29 journals in cell and tissue engineering; Quartile category: Q2; Ranking: 72 among 195 journals in cell biology; and Quartile category: Q2. The WJSC’s CiteScore for 2020 is 3.1 and Scopus CiteScore rank 2020: Histology is 31/60; Genetics is 205/325; Genetics (clinical) is 64/87; Molecular Biology is 285/382; Cell Biology is 208/279.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Liang Zhang, Production Department Director: Xu Guo, Editorial Office Director: Ze-Mao Gong.
Inhibition of glutathione metabolism can limit the development of pancreatic cancer

Pei-Yuan Cai, Mei-Lin Ma, Yang-Fen Zhang, Zi-Xuan Zhou, Yan Wang, Lian-Ping He, Wei Wang

Abstract
Pharmacological inhibitors of glutathione synthesis and circulation, such as buthionine-sulfoximine, inhibit glutathione metabolism. These drugs decrease the aggressiveness of pancreatic cancer, inhibit tumor stem cell survival, and reduce chemotherapy resistance. Nevertheless, buthionine-sulfoximine also decreases the content of glutathione in normal cells, disrupts the balance between reactive oxygen species and glutathione, and eventually induces cell apoptosis. Pancreatic cancer is usually diagnosed at an advanced stage and has a poor prognosis. Consequently, the use of biomarkers to screen high-risk patients can be an effective method.

Key Words: Cancer stem cells; Chemoresistance; Pancreatic cancer; Pancreatic ductal adenocarcinoma; Redox

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: To reduce side effects, pharmacological inhibitors of glutathione synthesis and circulation, such as buthionine-sulfoximine and 6-aminonicotinamide, can be assessed by in vivo models of pancreatic cancer. Evaluating the impact of different organs on metabolic processes and the invasiveness of cancer stem cells may provide new avenues for therapeutics targeting tumor metabolism.
TO THE EDITOR

We read a valuable article by Jagus et al[1] that highlights the role of glutathione (GSH) metabolism in pancreatic cancer stem cells (CSCs). The article provided valuable insight that a high GSH content is vital to retain the functionality of CSCs in terms of self-renewal and chemoresistance and provided a new direction for the treatment of pancreatic cancer. However, some issues require further discussion.

The balance between reactive oxygen species and GSH is essential for maintaining normal cell physiological activity[2]. Drugs used to interfere with the redox balance of the cell can cause adverse reactions and eventually lead to oxidative stress-induced cell death. Furthermore, imbalance in reactive oxygen species/GSH[3] can lead to oxidative stress, thereby promoting the occurrence and development of diseases. Buthionine-sulfoximine (BSO), a pharmacological inhibitor of GSH synthesis and circulation, can deplete intracellular GSH, thereby impairing CSC functions such as self-renewal and chemoresistance. However, the effects of BSO are limited, and it has no targeting effect on the regulation of cellular GSH. BSO reduces the content of GSH in normal cells and disrupts the redox balance of cells, thereby exacerbating the side effects of radiotherapy and chemotherapy. Further research is needed to explore the mechanism underlying the targeted metabolic vulnerability of aggressive cancer cell subpopulations characterized by extensive intratumoral heterogeneity. We suggest that the authors evaluate the therapeutic effects of pharmacological inhibitors of GSH synthesis and circulation such as BSO and 6-aminonicotinamide in a pancreatic cancer in vivo model.

Pancreatic cancer is usually detected at an advanced stage and eventually develops into a systemic disease[4]. Most treatment options are not effective, leading to a poor overall prognosis. Optimizing the adjuvant and neoadjuvant methods of conventional chemotherapy and radiotherapy[5] is of great significance to prolong the median survival of patients with pancreatic cancer. However, there are few long-term survivors of pancreatic cancer. In addition, the prognostic impact and quality of life of pancreatic cancer should be fully considered. Therefore, early detection of tumors, such as finding high-risk patients through new biomarkers and screening tools, and early preventive treatment may be more effective. We recommend that the authors monitor the GSH content of pancreatic CSCs and the expression of multiple genes in the GSH metabolic pathway. These can be used as biomarkers of pancreatic cancer for the early screening of high-risk patients, which may open up new possibilities for treatments targeting tumor metabolism.

Pancreatic ductal adenocarcinoma[6] metastasizes to distant organs, which is the main cause of death. CSCs and cell metabolism play a key role in metastasis. There is a strong link between different CSC subtypes and organ-specific colonization[7], and different CSCs adapt to the unique metabolic characteristics of organ metastasis. Pancreatic cancer can easily develop into a systemic disease. Therefore, the authors should consider the influence of different organs on the metabolic programming of CSCs and increase the samples of pancreatic ductal adenocarcinoma cells grown in different organ mimic models to improve the credibility and reliability of the article.

FOOTNOTES

Author contributions: Wang W and He LP contributed to conceptualization and formal analysis; Cai PY, Ma ML, Zhang YF, Wang Y, and Zhou ZX contributed to writing of the original draft, writing, reviewing, and editing. All authors participated in drafting the manuscript and have read, contributed to, and approved the final version of the manuscript.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Pei-Yuan Cai 0000-0001-6766-9356; Mei-Lin Ma 0000-0002-5689-7756; Yang-Fen Zhang 0000-0003-4066-391X; Zi-Xuan Zhou 0000-0003-1478-3440; Lian-Ping He 0000-0002-9627-5599; Wei Wang 0000-0001-5630-3287.
Cai PY et al. Glutathione metabolism affects pancreatic cancer

REFERENCES

