MINIREVIEWS

143 Hepatotropic viruses: Is Roma population at risk?
Mrzljak A, Bajkovec L, Vilbic-Cavlek T

ORIGINAL ARTICLE

Basic Study

152 Triolein emulsion infusion into the hepatic artery increases vascular permeability to doxorubicin in rabbit liver
Kim YW, Kim HJ, Cho BM, Choi SH

Case Control Study

162 Detection of fucosylated haptoglobin using the 10-7G antibody as a biomarker for evaluating endoscopic remission in ulcerative colitis

Retrospective Cohort Study

176 Repeatedly elevated γ-glutamyltransferase levels are associated with an increased incidence of digestive cancers: A population-based cohort study
Lee CH, Han K, Kim DH, Kwak MS

Retrospective Study

189 Development of a computed tomography-based radiomics nomogram for prediction of transarterial chemoembolization refractoriness in hepatocellular carcinoma
Niu XK, He XF

Observational Study

208 Real-world disease activity and sociodemographic, clinical and treatment characteristics of moderate-to-severe inflammatory bowel disease in Brazil

Randomized Controlled Trial

224 Effect of probiotics on length of hospitalization in mild acute pancreatitis: A randomized, double-blind, placebo-controlled trial
Wan YD, Zhu RX, Bian ZZ, Sun TW
ABOUT COVER
Stanislav Sitkin, MD, PhD, Associate Professor, Senior Researcher, Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russia. drsitkin@gmail.com

AIMS AND SCOPE
The primary aim of *World Journal of Gastroenterology (WJG, World J Gastroenterol)* is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 edition of Journal Citation Report® cites the 2019 impact factor (IF) for WJG as 3.665; IF without journal self cites: 3.534; 5-year IF: 4.048; Ranking: 35 among 88 journals in gastroenterology and hepatology; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ji-Hong Liu; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
January 14, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Hepatotropic viruses: Is Roma population at risk?

Anna Mrzljak, Lucija Bajkovec, Tatjana Vilibic-Cavlek

ORCID number: Anna Mrzljak 0000-0001-6270-2305; Lucija Bajkovec 0000-0002-6727-1353; Tatjana Vilibic-Cavlek 0000-0002-1877-5547.

Author contributions: Mrzljak A and Vilibic-Cavlek T made contributions to the concept, design and writing of the manuscript; Bajkovec L was involved in writing the manuscript and creating the image; all authors approved the final manuscript.

Conflict-of-interest statement: No potential conflicts of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License/s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Croatia

Abstract

Roma people make up a significant ethnic minority in many European countries, with the vast majority living in Central and Eastern Europe. Roma are a vulnerable population group in social, economic, and political terms. Frequent migrations, life in segregated communities, substandard housing, poverty, and limited access to quality health care, including low immunization coverage, affect their health status and predispose them to various diseases, including viral hepatitis. Hepatitis A, B, and E are highly prevalent among Roma and mainly associated with low socioeconomic status. In contrast, hepatitis C does not seem to be more frequent in the Roma population. Enhanced efforts should be directed towards the implementation of screening programs, preventive measures, and treatment of viral hepatitis in Roma communities throughout Europe.

Key Words: Roma population; Hepatitis A virus; Hepatitis B virus; Hepatitis C virus; Hepatitis E virus; Europe

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Roma people constitute the most important transnational minority in Europe. They are a vulnerable population group in social, economic, and political terms. Low socioeconomic conditions and lack of quality health care predispose them to viral hepatitis, especially hepatitis A, B, and E. In the global attempt to eliminate viral hepatitis, Roma should be considered a high priority group for screening and treatment.
INTRODUCTION
Roma people are a distinct ethnic minority dispersed worldwide, with an estimated population of around 12 million. In Europe, they are the largest minority group (5.2 million), with the vast majority living in Central and Eastern Europe (Figure 1).[6-8]. However, the exact number is uncertain due to their nomadic life and historical lack of birth and death records.[6]. Roma are a vulnerable population group in social, economic, and political terms. This vulnerability is manifested in widespread poverty, unemployment, illiteracy, lack of formal education, segregation in the educational system, and substandard housing.[8]. Roma people have worse health status, higher infant mortality rates, shorter (10-15 years) life expectancy, and a higher prevalence of chronic diseases than the non-Roma.[9]. Unhealthy habits, smoking, and lack of physical activity are common in Roma population.[10]. Moreover, Roma experience difficulties accessing healthcare due to fear, lack of trust, and previous bad experiences with health providers.[11]. Poor socioeconomic factors predispose Roma to a number of various infectious diseases, including viral hepatitis.[12,13]. Moreover, many Roma believe in folk medicine and prefer home-made remedies, resulting in low immunization coverage and outbreaks of infectious diseases.[8].

In the attempt of global elimination of viral hepatitis,[14] preventive measures, linkage to care, and treatment process may be challenging in vulnerable populations. In this opinion review, we aim to summarize available data and address practical issues related to viral hepatitis in the European Roma population.

HEPATITIS A
According to the European Centre for Disease Prevention and Control,[9] there were 11296 hepatitis A cases in 2019 in the European Union. The incidence of hepatitis A globally decreases, but it is still high in developing countries and among minorities living in low socioeconomic conditions in developed countries.[10]. In low-income countries, almost 100% of older children and adults are seropositive.[11]. As hepatitis A virus (HAV) is transmitted by person-to-person contact or through contaminated water and food,[12], access to clean water and hygiene facilities contributes to the reduction of HAV prevalence.[13]. Socioeconomic factors are the most important predictors of HAV infection. Better living standards, including higher incomes and higher education degrees, as well as better housing conditions, significantly decrease the risk of HAV infection.[14]. Hepatitis A can be prevented with a vaccine that provides long-term immunity.[15].

Roma people are recognized as a high-risk group for HAV infection, in addition to migrants, travelers to endemic countries, and men who have sex with other men.[16,17]. In Slovakia and Greece, the countries with a significant number of Roma residents, several hepatitis A outbreaks were reported over the last 15 years.[18,19,20]. In the period between 2009 and 2018, 1193 cases of HAV infection were reported in Greece. Roma people accounted for approximately 20% of all infections, with 80.7% of cases affecting Roma children under 15 years old, whereas in the non-Roma population, the percentage of children was significantly lower (5.3%).[20]. Even though the HAV vaccine is mandatory for all children in Greece since 2008, the study from 2013 showed that only 22.6% of Roma children were vaccinated against HAV.[21]. In the Roma population, both genders were equally affected, whereas in the non-Roma population, infection predominantly occurred in males. Almost half of HAV clusters (2009-2018) were reported in the Roma population, which accounts for the minority of the Greek population.[21]. The study on the HAV outbreak in south-eastern Greece (2007) demonstrated that Roma are susceptible to HAV infection, which appears at an earlier
In Portugal, an outbreak of HAV was reported in 2005, which involved Roma children23. In 2008, there were 9 HAV outbreaks in Slovakia, and four of them took place in the districts predominantly inhabited by the Roma population. The biggest outbreak was registered in Lomnička village (298 cases), where 99\% of the residents are Roma. Living conditions in the village, inadequate clean water supplies, and sewage systems predisposed the outbreak21. The only data on hepatitis A in Roma from the Czech Republic derives from the European Commission Roma Health Report (2014), stating two epidemics; one in 2009 and the other in 2010 when 30\%-50\% of Roma from all reported cases developed symptoms1. In the Czech Republic, the vaccination against HAV is easily accessible but not obligatory and not free. The HAV vaccination rates among Roma are estimated as low1. In the Plovdiv region in Bulgaria, 3911 cases of HAV were documented between 2005 and 2008, most of them associated with Roma. Notification rate in groups of respondents living in worse socioeconomic conditions, mostly Roma, was remarkably higher than in those living in good sanitary conditions24. In France, the hepatitis A outbreak involved a total of 492 cases over the 2008-2009 period, including eight clusters of cases among communities living in sites with poor sanitation1. A seroepidemiological study conducted in 1995 in San Sebastian, Spain, showed that 82.2\% of Roma children were HAV seropositive compared to 9.3\% of non-Roma children25.

HAV infection in Roma differs from the non-Roma population in terms of the lower age of infection and equal distribution among genders16,19. The high prevalence is mainly due to poor socioeconomic factors, inadequate sanitary conditions, and sewage systems, contributing to easier transmission of the disease. Additionally, the vaccination coverage in Roma children is low22,26,27. In the attempt to lower the HAV incidence, better vaccination coverage and improvement of living conditions in Roma communities should be continuously and decisively implemented.

Hepatitis B

Hepatitis B virus (HBV) infection has a chronic course and leads to fibrosis, cirrhosis, and hepatocellular carcinoma. The pattern of HBV transmission is vertical and horizontal by infected blood or sexual contact28. The HBV vaccine prevents HBV infection and has significantly decreased HBV-related mortality29. As HBV infection is associated with poor socioeconomic conditions28,30, Roma living in communities with poor hygiene are predisposed to have a higher incidence of HBV infection31,32.

Several studies addressed the prevalence of HBV in Slovakia, where the Roma minority is very numerous. It is estimated that approximately 400000 Roma people live in Slovakia, which accounts for 7.5\% of the Slovak population8. Their socio-
economic (lower education, unemployment, social benefits) and living conditions (lack of standard household facilities such as sewage system, water supply, flush toilet, bathroom or shower, electricity) are significantly worse compared with the majority[34]. In 2008-2009, a study was conducted in 9 districts of Eastern Slovakia, comparing districts with higher (> 5%) and lower (< 5%) Roma population. There was no significant difference in the overall prevalence of HBsAg (1.95% vs 1.62%). However, pregnant women showed a higher prevalence of HBV infection in districts with a higher Roma population (2.72% vs 0.98%)[35]. In addition, a cross-sectional epidemiological study on hepatitis B was conducted in 2011 among randomly sampled Roma and non-Roma populations. Roma population had a significantly higher prevalence of HBsAg (12.4% vs 2.8%) and anti-HBc (52.8% vs 15.9%) than the non-Roma population. Furthermore, HBsAg positive Roma population was more commonly HBV DNA positive compared to HBsAg positive non-Roma population (94.3% vs 70.0%). Tattooing, economic factors (unemployment, elementary education, poverty), and male sex were found to be risk factors for HBV positivity[38,39]. Furthermore, targeted testing in primary care demonstrated a high prevalence of HBV infection within the Slovak-Roma population in Sheffield, United Kingdom. The HBsAg positivity was found to be 9.4%, while 28% had evidence of cleared past HBV infection (anti-HBc positive)[40]. One Greek study (2002) analyzed the prevalence and risk factors of hepatitis B in Roma and non-Roma children who lived in a deprived suburb of Athens. Among Roma children, 22.0% were identified with evidence of past HBV infection (anti-HBc positive), of whom 4.2% were chronic carriers (HBsAg positive), whereas no past infection was detected among the non-Roma. The evidence of HBV vaccination (anti-HBs positive) was detected in only 13.6% Roma, but in 95.9% non-Roma children. Among possible risk factors, unfavorable living conditions, frequent residency change, lack of child insurance and primary healthcare delivery were significantly associated with HBV seroprevalence among Roma[36]. Although overall vaccination coverage in Roma children is low[22], it varies in different European countries. For instance, in Slovakia, 59.2% of Roma children are vaccinated against HBV[37]. In the Doctors of the World report (2011) the HBV vaccination coverage in Roma children under two years of age was 43.5%[23]. On the other hand, in the Czech Republic, 95% of Roma children are vaccinated for obligatory diseases, including HBV[38]. Tattooing, blood transfusions, drug use, and imprisonment carry a high risk for HBV and are more common in Roma people[39]. However, it is considered that sexual intercourse is more significant for horizontal transmission of HBV among Roma, since a minority of them use preventive methods against sexually transmitted diseases[39,40]. Vaccination against HBV is less common in Roma; it is not completed because of lack of compliance[40]. Lastly, the efficacy of HBV treatment in Roma is concerning, mainly due to non-compliance and poor availability of healthcare[39].

HEPATITIS C

Hepatitis C virus (HCV) is a widespread cause of acute and chronic hepatitis and a significant risk factor for liver cirrhosis and hepatocellular carcinoma. Around 71 million people worldwide are suffering from chronic hepatitis C infection[39]. It is a blood-borne virus, most commonly transmitted by contaminated needles (intravenous drug users), through blood transfusions or sexual intercourse[39,40]. Vertical transmission is also possible[40]. Some of the risky behaviors appear to be common among Roma. For instance, studies reported an increase in Roma women participating in sex work and a higher prevalence of injection drug use among Roma[39,40]. In 2010, a seroprevalence study on HCV was conducted among Roma youth aged 15–24 years in two cities in Serbia-Belgrade (the nation’s capital and largest city with 1.2% of residents estimated to be Roma) and Krugujevac (the fourth largest city in Serbia with up to 14% Roma by estimates). Although some of the risk factors were highly prevalent (intravenous drug use, 0.5%-3%; experience with sex workers, 5%-10%; tattooing in non-sterile conditions, 2%-14%; the use of a condom with a constant partner, 1%-25%), only four of 240 (1.7%) participants tested positive for HCV antibodies. Two reported intravenous drug use and three reported having a tattoo[40]. Similar results were found in Slovakia among 441 Roma with HCV seropositivity of 0.7% (1.5% in the general population). Predisposing factors for HCV were tattooing, blood transfusions, and having more sexual partners[40]. In a study conducted among students of two elementary schools in Greece (2002), none of the 118 Roma children...
involved were positive for HCV antibodies[36]. According to these studies, HCV infection is not as frequent as other hepatitis viruses among Roma.

HEPATITIS E

Hepatitis E virus (HEV) is an emerging viral disease, with 20 million infection cases and 55000 deaths worldwide. Its prevalence is higher in developing countries; however, lately, it has been recognized as a significant cause of hepatitis in resource-rich countries[45]. HEV can be transmitted through contaminated water; however, food-borne, blood transfusion-related transmission by gained significant attention in recent decades[45-49].

The data about HEV among Roma in Europe are scarce and conducted only in Slovakia. The Roma population’s HEV prevalence ranged from 21.5% to 45.5%, and the only significant risk factor appeared to be the consumption of raw meat[47,48].

CONCLUSION

In 2016, the World Health Organization adopted the first Global Health Sector Strategy on Viral Hepatitis, calling for its elimination as a public health threat. The strategy presented a target for 2030–of reducing new hepatitis B and C infections by 90% and mortality by 65%[14]. Roma constitute the most important transnational minority in Europe and a highly vulnerable population affected by viral hepatitis. Based on their epidemiological and social context, living conditions, lack of access to clean water, safe food, and medical services to maintain effective infection control measures, Roma should be considered a high priority group in managing viral hepatitis.

Screening is of particular importance as data on viral hepatitis prevalence in European Roma are scarce and limited to specific regions (Table 1). In Roma, hepatitis B prevalence is high, and mother-to-child transmission is likely a major mode of transmission and early childhood infection based on low vaccination. In addition, the fecal-oral and/or food-borne hepatitis (HAV and HEV) are more common in Roma than in the non-Roma population. In contrast, HCV infection does not seem to be more frequent in Roma.

The challenges in the Roma population are high. However, in the attempt to improve Roma’s health and reduce health inequalities, viral hepatitis screening programs, facilitated linkage to care with access to affordable antivirals and vaccines should be continuously implemented through Roma communities. Effectively combating viral hepatitis may also reduce maternal and child mortality, as the mortality from non-communicable diseases. This strategy and its far-fetched implications may alleviate poverty and facilitate further development in terms of managing sanitation and water, reducing inequality in access to services, and promoting non-discrimination.

All European countries approved the WHO strategy, and now we have just one decade left to reach the goals and fulfill these promises.
Table 1 The epidemiology of hepatitis A, B, C and E among Roma population in Europe

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Population, N</th>
<th>(Sero) Prevalence</th>
<th>Acute cases/outbreaks</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece</td>
<td>2004–2013</td>
<td>295 Roma/995 confirmed cases</td>
<td>Median age 5.9 yr; 2007 outbreak: 139 cases, 82% Roma</td>
<td>Ref.</td>
<td>Mellou et al.[20], 2015</td>
</tr>
<tr>
<td>Greece</td>
<td>2009-2018</td>
<td>240 Roma/1193 confirmed cases</td>
<td>51.2% males, 80.4% < 15 years old, median age 7 yr; 20 clusters recorded among Roma; 2013: Greatest outbreak, 112 cases among Roma</td>
<td>Ref.</td>
<td>Mellou et al.[21], 2020</td>
</tr>
<tr>
<td>Athens, Greece</td>
<td>1999-2013</td>
<td>467 children hospitalized with hepatitis A, age 0-14 yr</td>
<td>Total anti-HAV 82.2 %, total anti-HAV 90% in children 2-5 yr, total anti-HAV 92.7% in children > 5 yr</td>
<td>Ref.</td>
<td>Papaevangelou et al.[22], 2016</td>
</tr>
<tr>
<td>Western Athens, Greece</td>
<td>2002</td>
<td>216 children from two elementary schools, 118 Roma</td>
<td>Anti-HAV IgG: Roma children 98%, non-Roma children 33%</td>
<td>Ref.</td>
<td>Michos et al.[23], 2008</td>
</tr>
<tr>
<td>Slovakia</td>
<td>2008</td>
<td>667 cases reported to Epidemiological Information System database</td>
<td>HBsAg overall 2.18%-9.07%; pregnant women 0.82%-4.13%</td>
<td>Ref.</td>
<td>Hrivniaková et al.[24], 2009</td>
</tr>
<tr>
<td>South Bulgaria</td>
<td>2005-2008</td>
<td>3911 patients with hepatitis A treated in Clinics of Infectious Diseases, Plovdiv</td>
<td>HBsAg 12.4%; anti-HBc 52.8%; HBV DNA 94.3%</td>
<td>Incidence rate in group living in poor hygienic conditions (mostly Roma): 450.66/100000; Outbreak in Stolipinovo quarter (2006); 1004 cases, mostly Roma</td>
<td>Ref.</td>
</tr>
<tr>
<td>San Sebastian, Spain</td>
<td>1995</td>
<td>73 Roma, age 2-16 yr</td>
<td>HBsAg 9.4%; anti-HBc 28%</td>
<td>Ref.</td>
<td>Stoycheva et al.[25], 2011</td>
</tr>
<tr>
<td>Eastern Slovakia (9 regions)</td>
<td>2008-2009</td>
<td>59279 serum samples (13798 were part of the pregnancy screening)</td>
<td>HBsAg 4.2%; anti-HBs 13.6%; anti-HBc 22.0%</td>
<td>Ref.</td>
<td>Cilla et al.[26], 1995</td>
</tr>
<tr>
<td>Eastern Slovakia</td>
<td>2011</td>
<td>452 Roma, adult population</td>
<td>HBsAg 12.4%; anti-HBc 52.8%; HBV DNA 94.3%</td>
<td>Ref.</td>
<td>Kristian et al.[27], 2013</td>
</tr>
<tr>
<td>Sheffield, United Kingdom</td>
<td>2007-2013</td>
<td>436 Slovak-Roma adult population</td>
<td>HBsAg 9.4%; anti-HBc 28%</td>
<td>Ref.</td>
<td>Drazilova et al.[28], 2018</td>
</tr>
<tr>
<td>Western Athens, Greece</td>
<td>2002</td>
<td>118 Roma children</td>
<td>HBsAg 4.2%; anti-HBs 13.6%; anti-HBc 22.0%</td>
<td>Ref.</td>
<td>Gregory et al.[29], 2014</td>
</tr>
<tr>
<td>Serbia (Belgrade and Kragujevac)</td>
<td>2010</td>
<td>240 Roma, age 20-24 yr</td>
<td>Anti-HCV 1.7%</td>
<td>Ref.</td>
<td>Djonic et al.[30], 2013</td>
</tr>
<tr>
<td>Eastern Slovakia, Košice region</td>
<td>2011</td>
<td>441 Roma, age 18-55 yr</td>
<td>Anti-HCV 0.7%</td>
<td>Ref.</td>
<td>Veselínová et al.[31], 2014</td>
</tr>
<tr>
<td>Western Athens, Greece</td>
<td>2012</td>
<td>216 children from two elementary schools, age 5-15 yr, 118 Roma</td>
<td>Anti-HCV 0%</td>
<td>Ref.</td>
<td>Michos et al.[32], 2008</td>
</tr>
<tr>
<td>Eastern Slovakia</td>
<td>2011</td>
<td>195 Roma living in Roma settlements, age 18-55 yr</td>
<td>Total anti-HEV 21.5%, highest in Roma men-29.4%</td>
<td>Ref.</td>
<td>Halánková et al.[33], 2018</td>
</tr>
<tr>
<td>Košice, eastern</td>
<td>2018</td>
<td>175 patients hospitalized in Department of</td>
<td>Total anti-HEV 45.5%</td>
<td>Ref.</td>
<td>Paraličová et al.[34], 2018</td>
</tr>
</tbody>
</table>
HAV: Hepatitis A virus; HBV: Hepatitis B virus; HCV: Hepatitis C virus; HEV: Hepatitis E virus.

REFERENCES

Mržljak A et al. Roma population and hepatitis

Halámová M; HepaMeta Team. Socioeconomic characteristics of the population living in Roma settlements and their association with health and health-related behaviour. Cent Eur J Public Health 2014; 22 Suppl: S57-S64 [PMID: 24847616 DOI: 10.21101/cejph.a3903]

34 Drazilová S, Janicko M, Kristian P, Schrötter I, Halanová M, Urbancikova I, Madarasova-Geckova A,

