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Abstract
As a research hotspot in the field of molecular biology, N6-methyladenosine 
(m6A) modification has made progress in the treatment of colorectal cancer 
(CRC), leukemia and other cancers. Numerous studies have demonstrated that 
the tumour microenvironment (TME) regulates the level of m6A modification in 
the host and activates a series of complex epigenetic signalling pathways through 
interactions with CRC cells, thus affecting the progression and prognosis of CRC. 
However, with the diversity in the composition of TME factors, this action is reci-
procal and complex. Encouragingly, some studies have experimentally revealed 
that the intestinal flora can alter CRC cell proliferation by directly acting on m6A 
and thereby altering CRC cell proliferation. This review summarizes the data, 
supporting the idea that the intestinal flora can influence host m6A levels through 
pathways such as methyl donor metabolism and thus affect the progression of 
CRC. We also review the role of m6A modification in the diagnosis, treatment, 
and prognostic assessment of CRC and discuss the current status, limitations, and 
potential clinical value of m6A modification in this field. We propose that 
additional in-depth research on m6A alterations in CRC patients and their TME-
related targeted therapeutic issues will lead to better therapeutic outcomes for 
CRC patients.
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Core Tip: This review summarizes the interactions of N6-methyladenosine (m6A) modification in colorectal cancer (CRC) 
with a variety of the tumour microenvironment factors such as metabolism, hypoxia, inflammation, and immunity and 
supports the idea that intestinal flora can influence the progression of CRC by regulating the level of m6A modification. 
Additionally, this review also summarizes the clinical applications of m6A modifications in CRC and suggests possible 
future research directions.

Citation: Jiang TQ, Wang H, Cheng WX, Xie C. Modulation of host N6-methyladenosine modification by gut microbiota in colorectal 
cancer. World J Gastroenterol 2024; 30(38): 4175-4193
URL: https://www.wjgnet.com/1007-9327/full/v30/i38/4175.htm
DOI: https://dx.doi.org/10.3748/wjg.v30.i38.4175

INTRODUCTION
Colorectal cancer (CRC) is the third most common malignant tumour worldwide, and its onset is associated with factors 
such as lifestyle and dietary habits. It is widely distributed in regions such as Asia and Latin America[1-3]. In recent 
years, the incidence of CRC has been steadily increasing, with a trend towards a younger age of onset[4]. The pathological 
mechanisms primarily involve chromosomal instability and mutations in oncogenes, tumour suppressor genes, and 
mismatch repair-related genes caused by CpG methylation, thereby facilitating the occurrence and progression of cancer
[3,5]. Due to the continuous increase in the global incidence and mortality rates of CRC in recent decades, the prevention 
and treatment of this disease have become increasingly crucial for human health[6,7].

RNA modifications are widely found in various types of RNA in organisms and constitute a class of epigenetic 
modifications at the RNA level. These modifications include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 
N7-methylguanosine, 5-methylcytidine, 2-o-methylation, pseudouridine, and inosine[8,9]. Currently, there are many 
studies on m6A modification, which refers to adenylate methylation at the 6th N position in an RNA molecule[10]. This 
modification is enriched mainly near the termination codon, in long internal exons, in the 5' and 3' untranslated regions, 
and in the shared sequence RRACH (R = G/A and H = A/C/U). Currently, m6A is the most prevalent and abundant 
internal chemical and epigenetic modification known in eukaryotic RNA molecules[11] and is important in the regulation 
of RNA splicing[12], translation[13], stability[14], and DNA damage repair[15], which in turn affects cellular differen-
tiation[16], embryonic development[17], sex determination[18], cancer occurrence[19,20] and other processes.

The CRC tumour microenvironment (TME) is composed mainly of tumour cells, blood vessels, lymphocytes, fibro-
blasts, myeloid-derived suppressor cells, and signalling molecules[21]. Many proinflammatory factors and antitumour 
immune responses are present in localized foci in cancer patients, and both are often exacerbated and worsened by 
metabolic and hypoxic factors[21,22]. The onset and progression of CRC are often associated with metabolic factors in 
CRC, which often involve the gut microbiota[23]. The gut microbiota can regulate m6A-related enzymes (e.g., methyl-
transferase-like 3) through their metabolites (e.g., methyl donors), which can lead to the alleviation or exacerbation of 
CRC[24,25].

There is a strong correlation between the gut microbiota and the production and utilization of methyl donors by the 
body. Methyl groups are produced mainly by the single-carbon metabolic pathway and are involved in m6A RNA 
methylation through the folate cycle and methionine cycle pathways, and the substances that provide methyl groups are 
known as methyl donors. Among them, S-adenosylmethionine (SAM) is the most prominent methyl donor, and other 
common methyl donors are methionine, betaine, choline, folate, cobalamin, and pyridoxine[26]. All of these methyl 
donors can be ingested through the diet or produced from the gut microbiota, and their metabolism is also influenced by 
the gut microbiota. Their metabolites are involved in the synthesis of nucleotides, proteins, and lipids in the body 
through epigenetic mechanisms[27]. In addition, several other B vitamins are important for these pathways, and their 
production and metabolism are also influenced by the gut microbiota[28]. The balance of the distribution state of the gut 
microbiota is important for maintaining the normal functioning of human metabolism[29].

In this review, we focus on the role of the intestinal flora, which is an important factor in TME and an important 
upstream factor related to m6A during CRC occurrence and development, and leads to alterations in host m6A me-
thylation levels by affecting the supply of methyl donors and other possible pathways, which ultimately affects the 
progression of CRC and summarize the possible underlying mechanisms. We also summarize and discuss the current 
status and possible future research directions of m6A RNA methylation and the intestinal flora in the clinical diagnosis, 
treatment and prognostic assessment of human CRC.

https://www.wjgnet.com/1007-9327/full/v30/i38/4175.htm
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M6A METHYLATION IN NORMAL ORGANISMS
m6A, the most common RNA modification in organisms, mediates gene expression and is involved in many life 
processes. m6A modification is achieved through regulatory proteins such as writers, erasers, and readers (Table 1)[30-
45], which can play roles in the methylation, demethylation, and recognition, respectively, of m6A on bound RNAs[46]. 
The specific processes by which m6A methylation regulates RNA modification in cells can be summarized as follows: In 
the nucleus, m6A methylation is accomplished by a complex consisting of METTL3, METTL14, WTAP, RBM15/15B, 
VIRMA, ZC3H13, or METTL16, and removal of the m6A modification is performed by the demethylation of erasers, 
including FTO and ALKBH5. After RNA methylation, the readers recognize m6A and perform posttranscriptional 
regulation, in which HNRNPs in the nucleus regulate mRNA splicing and translation, HNRNPA2B1 regulates mRNA 
splicing and processing, YTHDC1 regulates mRNA splicing, IGFBPs in the cytoplasm regulate mRNA stability, 
YTHDF1/3 and YTHDC2 regulate mRNA translation, and YTHDF2 regulates mRNA decay.

m6A RNA modification plays both a promoting and inhibitory role in CRC tumour differentiation, angiogenesis, 
metastasis, and immunity[47]. In addition, m6A modification, as an epigenetic regulator, can be used to detect disease 
progression in a variety of solid tumours, including CRC, gastric cancer, breast cancer, liver cancer, and other diseases
[48]. Due to its biological function and molecular mechanism, m6A RNA is a promising target site for CRC therapy and is 
valuable for further research[32].

The specific process and role of m6A in the normal human body are shown in the following schematic diagram 
(Figure 1).

M6A MODIFICATION AND THE TME IN CRC
Numerous studies have confirmed that aberrant m6A modification of cancer-related genes is closely associated with 
cancer progression[49]. CRC, which is closely related to the gastrointestinal tract, is the third most common cancer in the 
world and the second leading cause of cancer-related death[50,51]. The focus of this review is on the associations of gut 
flora-mediated m6A changes in CRC patients with cancer development and progression. Hypoxia, immunity, and inflam-
mation are also discussed as components of the TME.

Tumour progression and m6A levels in CRC patients
The onset of CRC is characterised by an invasive cancer process that originates from epithelial cells and is intricately 
linked to the replacement of normal tissues within the intestinal wall by cancer cells[52]. The main aetiologies of CRC 
include benign adenomatous malignancy and inflammatory bowel disease (IBD). This section focuses on these two 
aetiologies to discuss their relationship with m6A modification.

Adenoma-related CRC: The developmental trajectory of adenoma-related CRC can be succinctly described as normal 
mucosa–adenoma–CRC[53]. Throughout this process, numerous RNA methylation modifications, including m6A, m1A, 
and N2-methylguanosine, actively participate in modulating the antitumour immune function of the patient. Their 
regulatory role involves either fostering or inhibiting the expression of corresponding genes, thereby influencing the 
occurrence of CRC[54].

To date, researchers have conducted targeted experimental studies on the expression levels and potential roles of 
certain m6A regulators in this sequence of changes. Pan et al[55], after contrasting the differential expression levels of 
METTL3 in normal, adenoma, and CRC tumour tissues, reported significant increases in m6A and METTL3 Levels in 
adenoma and CRC tissues compared with normal tissues. Moreover, they reported that the m6A content was greater in 
adenomas than in CRC tissues. This observation suggests that METTL3 may exhibit increased expression during the 
adenoma-CRC process, thereby promoting the onset of CRC. By comparing the differences in ALKBH5 Levels between 
tumour tissues and normal intestinal mucosal tissues in the colon adenocarcinoma (COAD) patient database, Yang et al
[56]. reported decreased expression of ALKBH5 in tumour tissues. Building upon this finding, researchers established an 
in vivo CRC metastasis model in nude mice, revealing that mice in the ALKBH5 overexpression group presented fewer 
lung metastatic nodules. These findings indicate that ALKBH5 potentially exerts an inhibitory effect on tumour invasion 
and metastasis[56]. In a study on colon cancer, researchers identified a potential correlation between low ALKBH5 
expression and high YTHDF1 expression. This correlation may contribute to the transformation of cold tumours into hot 
tumours during the adenomatous lesion-COAD process, thereby promoting the occurrence of CRC. These effects are 
mediated through the modulation of the patient's immune environment, affecting the expression levels of immune cells 
such as CD4+ T cells, CD8+ T cells, NK cells, dendritic cells, and macrophages[57].

While some researchers have conducted experiments on certain m6A regulators, the existing reports remain quite 
limited. Nevertheless, data analysis allows researchers to discern differences in the expression levels of common m6A 
regulators between tumour and nontumor tissues in patients with COAD. Ji et al[58] team performed an analysis on data 
from The Cancer Genome Atlas (TCGA) database and revealed that regulators such as METTL3, WTAP, METTL16, 
VIRMA, RBM15, YTHDC1, YTHDF1/2, IGF2BP1/2/3, and FTO were expressed at relatively high levels in COAD 
tumour tissues, whereas ALKBH5 was expressed at relatively low levels. However, there was no significant difference in 
the expression of METTL14 and YTHDC2/3. Kuai et al[59] also utilized the TCGA database and reported significant 
differential expression of regulatory genes associated with YTHDF1, IGF2BP1/3, and EIFB3 in both adenomas and CRC 
tissues compared with normal tissues (P < 0.0001). Interestingly, the mRNA expression levels governed by these four 
related genes were found to be significantly upregulated only in CRC, with no apparent difference in adenomas. In a 
comprehensive analysis of data from the TCGA, Gene Expression Atlas, and Human Protein Atlas databases, Liu et al[60] 
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Table 1 Functions of N6-methyladenosine regulators

Types Regulators Functions Ref.

METTL3 Catalyses m6A modification [30,31]

METTL14 Provides structural support and recognizes target RNAs [30,31]

WTAP Contributes to the orientation of MTC [32,33]

VIRMA/KIAA1429 Recruits m6A complexes to specialized RNA sites [32,33]

m6A writers ZC3H13 Bridges WTAP to Nito [32,33]

RBM15 Binds to the m6A complex and recruits to specialized RNA sites [32,33]

CBLL1/HAKAI Contributes to the stabilization of MTC [32,34]

METTL16 Catalyses m6A modification [35]

FTO Affects RNA splicing stabilization and deletes m6A modifications [36]

m6A erasers ALKBH5 Regulates RNA export and splicing, and deletes m6A modifications [36]

IGF2BPs Enhances mRNA stability and translation [37]

YTHDC1 Mediates RNA splicing and export [38]

YTHDC2 Enhances target RNA translation and reduces RNA abundance [39]

YTHDF1 Enhances mRNA translation [40]

YTHDF2 Promotes mRNA degradation [40]

m6A readers YTHDF3 Synergizes with YTHDF1 and YTHDF2 to enhance translation and degradation [40]

ELF3 Enhances mRNA translation [41]

FMR1 Promotes mRNA degradation [42]

HNRNPs Mediates mRNA splicing and translation [43]

HNRNPA2B1 Mediates mRNA splicing and miRNA processing [44]

ELAL1/HuR Improve translation efficiency and stability of mRNA [45]

m6A: N6-methyladenosine.

reported that, in contrast with normal tissues, CRC tumour tissues presented lower expression levels of METTL14. 
Notably, WTAP, METTL16, HNPNPC, and YTHDC1 are highly expressed in COAD but not in rectal adenocarcinoma
[60]. In summary, the majority of m6A regulators play crucial roles in the normal mucosa-adenoma-CRC process.

In summary, during the process of normal mucosa evolving into adenoma and further progressing to CRC, the 
majority of associated m6A regulatory factors exhibit expression patterns in adenoma and CRC tissues that differ from 
those in normal tissues. Despite initial advancements in understanding the role of m6A modification in the pathological 
development of CRC, further targeted experiments are necessary to confirm the specific roles played by these m6A 
regulatory factors in this intricate process.

IBD-related CRC: IBD, which includes mainly ulcerative colitis (UC) and Crohn's disease (CD), is another major cause of 
CRC, and it also plays an important role in the development of CRC and influences the level of m6A modification in the 
host[19]. m6A methylation is closely associated with the development of IBD and the transition from IBD to CRC through 
the regulation of RNA metabolism and the immune cells in intestinal mucosal immunity[19]. Some researchers have 
analysed the interaction network between m6A genes and IBD risk genes and reported that there is a significant 
interaction between them, which also reaffirms that m6A methylation plays a broad regulatory role in the occurrence and 
development of IBD from the perspective of data analysis[26].

To date, some m6A regulatory factors have been observed in experimental studies to have clear disease-promoting or -
inhibiting effects on the pathogenesis of IBD. Fang et al[61] reported that METTL3 is highly expressed in the nuclei of 
intestinal epithelial cells from IBD patients, which is consistent with the oncogenic effect of METTL3 during the 
progression of CRC. Lu et al[62] utilized colitis experiments in a mouse model and reported that the absence of METTL14 
in T cells led to spontaneous colitis, resulting in features such as increased inflammatory cell infiltration and increased 
Th1 and Th17 cytokine levels in mice, which is consistent with the oncogenic role of METTL14 during CRC progression. 
Similarly, Zhang et al[63] verified that the absence of METTL14 Led to severe colitis and suggested that m6A modification 
could be a potential therapeutic target for IBD. Motawi et al[64] compared different m6A regulators among UC patients, 
CD patients and healthy volunteers and reported that METTL3 was more frequently expressed in CD patients and had 
good diagnostic accuracy, whereas the expression of WTAP demonstrated good discrimination between UC patients and 
CD patients.
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Figure 1 N6-methyladenosine modifications occurring on RNA. m6A: N6-methyladenosine. Created with BioRender.com (Supplementary material).

Some researchers have also analysed data to compare the differences in m6A modification levels between IBD patients 
and the healthy controls. For example, Chen et al[65] reported that the expression of IGF2BP1 and IGF2BP2 was lower in 
CD tissues than in normal tissues and that the expression of IGF2BP2 was similarly lower in UC tissues than in normal 
tissues.

Taken together, the results of the above experimental studies and data analyses suggest that the expression levels of 
multiple m6A regulators in the organisms of IBD patients differ significantly from those of healthy controls and that this 
difference in turn correlates with the process of the transition from IBD to CRC. In addition, dysregulation of the 
intestinal flora is considered one of the main reasons for the disruption of the immune response in the intestines of IBD 
patients and is worth exploring more deeply as a link in the pathogenesis of IBD-CRC[66].

The gut microbiota and m6A modifications in CRC patients
As a pivotal factor in the metabolic microenvironment, the intestinal flora plays a crucial role in the onset and progression 
of CRC; not only does the intestinal flora modulate CRC through bacterial surface receptors and the secretion of 
metabolites, but more significantly, it also engages in reciprocal interactions with m6A modifications through 
mechanisms such as gene expression programs[67]. This section primarily elaborates on the process by which the 
intestinal flora influences the progression of CRC by impacting m6A modification levels.

Currently, many studies have unequivocally demonstrated the intimate relationships between several intestinal flora, 
such as Fusobacterium nucleatum (F. nucleatum), enterotoxigenic Bacteroides fragilis (B. fragilis), and Escherichia coli, and the 
onset and progression of CRC. Additionally, other intestinal bacteria, including Enterococcus faecalis and Salmonella enterica
, participate in mechanisms that promote CRC cell proliferation. Beneficial bacteria, such as Lactobacillus acidophilus, next-
generation probiotics, such as Akkermansia muciniphila, and other protective bacteria, exert inhibitory effects against CRC. 
Several typical gut bacteria that have been described to promote or inhibit CRC development and progression are listed 
in Table 2[68-80].

In the process of exerting the aforementioned physiological effects, the most crucial mechanism by which the intestinal 
flora influences the m6A modification level is as an upstream regulator of m6A modification. Through various pathways, 
the intestinal flora modulates the m6A modification level, thereby either promoting or inhibiting CRC. One of the more 
commonly observed regulatory pathways is the methyl donor pathway. Under normal circumstances, the gut microbiota 
participates in the generation and metabolism of numerous methyl donors, including SAM, MET, betaine, choline, and 
folate. Disruption of the gut microbiota due to factors such as dietary changes alters the supply of methyl donors. SAM, 
the most crucial methyl donor, interacts with the writers METTL3 and METTL16, and changes in SAM levels directly 
impact their activity. Although METT14 Lacks methyltransferase activity, it is indirectly influenced by gut microbiota 
regulation, as it typically forms an MTC with METTL3 to exert methylation effects. Research has confirmed that the 
suppression of METTL3 in CRC cells results in the inhibition of CRC. Mechanistically, METTL3 inhibits antitumour 

https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf
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Table 2 The role of the gut microbiota in colorectal cancer

Gut microbiota Roles Functions Mechanism Ref.

Coriobacteriaceae Promote Tumorigenesis, 
progression↑

CPT1A-ERK axis [68]

Clostridioides difficile Promote Tumorigenesis↑ Secrete toxin TcdB [69]

F. nucleatum Promote Tumorigenesis, metastasis↑ modulate TME [70,
71]

ETBF Promote Progression↑ Suppress the immune responses [72]

Escherichia coli Promote Proliferation, progression↑ Exert toxic effects on DNA [73]

Enterococcus faecalis Promote Tumorigenesis, 
progression↑

Secrete metabolite biliverdin [74]

Salmonella enterica Promote Tumorigenesis, 
proliferation↑

Express secretory protein AvrA [75]

Streptococcus bovis/gallolyticus Promote Tumorigenesis, 
progression↑

Promote inflammatory response [76]

Blautia producta Suppress Tumorigenesis, 
progression↓

Facilitate the immune surveillance [77]

Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactoba-
cillus casei

Suppress Migration, invasion↓ Reduce abnormal crypt foci [78]

Roseburia intestinalis Suppress Tumorigenesis, 
proliferation↓

Produce butyrate and induce CD8+ T 
cells

[79]

Akkermansia muciniphila Suppress Proliferation↓ Modulate CD8+ T cells [80]

TME: Tumour microenvironment; F. nucleatum: Fusobacterium nucleatum.

immunity and promotes CRC progression through the m6A-BHLHE41-CXCL1/CXCR2 axis[81]. One study demonstrated 
that METTL3 also increases the levels of m6A-modified HK2 and SLC2A1 via IGF2BP2/3, thereby promoting the 
progression of glycolysis and tumorigenesis in CRC[82]. There are limited findings regarding METTL16, and the current 
research suggests that METTL16 is highly expressed in CRC patients and that mechanistically, METTL16 can increase 
SOGA1 Levels through binding to IGF2BP1, with a consequent upregulation of PDK4, which promotes glycolytic me-
tabolic reprogramming and the progression of CRC[83]. In addition, METTL14 affects multiple pathways to inhibit CRC 
progression. For example, METTL14 Levels are decreased in CRC patients, along with a significant reduction in the m6A 
content of total RNA, whereas METTL14 can inhibit the growth and metastasis of CRC cells via the miR-375/SranP1 and 
miR-375/YAP1 pathways[84].

In addition to the methyl donor pathway, some experiments have revealed the ability of the gut flora to alter CRC cell 
proliferation by acting directly on m6A and thereby altering CRC cell proliferation. For example, METTL3 promotes CRC 
progression by increasing the m6A level of CCNE1, whereas butyrate, a metabolite of the gut microbiota, reduces the 
expression of METTL3 and thus inhibits CRC[25]. However, the role of METTL3 in CRC remains controversial. Another 
study demonstrated that F. nucleatum downregulates METTL3 levels via the YAP/FOXD3 axis and that downregulated 
METTL3 promotes CRC metastasis by increasing KIF26B expression through a reduction in m6A levels[24]. However, a 
recent study demonstrated that although F. nucleatum is also enriched in CRC patients, it increases the level of METTL3 
and exerts its oncogenic effects through the c-Myc pathway[85]. These reports demonstrate that the mechanism by which 
F. nucleatum regulates METTL3 and the corresponding m6A levels is contradictory and remains to be clarified by further 
studies. Mouse experiments have shown that m6A levels of METTL16 and its target mRNA Mat2a are downregulated 
under gut microbiota-deficient conditions[86], whereas METTL16 overexpression promotes the proliferation of CRC cells
[87]. In addition, ETBF can directly promote CRC cell proliferation through METTL14-mediated m6A downregulation of 
miR-149-3p[88].

In summary, the level of METTL3 and the corresponding m6A content in CRC cells are still controversial, and the 
prevailing view is that the level of METTL3 and the corresponding m6A content are increased, but a few other studies 
have suggested that the level of METTL3 and the corresponding m6A content are decreased. This discrepancy may not 
account for bias in individual experimental cases, such as differences in experimental methodology or limitations in the 
selection of assay targets. More experiments of greater consistency may be necessary to support a clear conclusion and 
allow for further exploration of the possibility of additional regulatory mechanisms. Furthermore, available studies have 
confirmed that METTL16 Levels and corresponding m6A levels are elevated in CRC patients. However, METTL14 Levels 
and corresponding m6A levels were significantly decreased. Studies related to the regulation of m6A by the gut 
microbiota in the progression of CRC are beginning to progress, but more experimental data are still needed to support 
these findings.
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Direct associations between the gut microbiota and erasers have rarely been reported, though it has been reported that 
FTO-deficient mice have increased levels of Helicobacter, Lactobacillus, and Porphyromonas in the intestinal tract[89]. Other 
upstream mechanisms have also been relatively infrequently studied, and the effects of ALKBH5 and FTO on CRC and 
the corresponding m6A levels are still under debate. On the one hand, some studies have indicated that high ALKBH5 
expression is closely associated with poor prognosis in CRC patients and that ALKBH5 promotes CRC by binding to the 
downstream target AXIN2 to reduce m6A levels and subsequently suppressing the immune system through the AXIN2/
Wnt/DKK1 axis[90]. On the other hand, it has also been observed that downregulation of ALKBH5 predicts a poor 
prognosis for CRC patients, and mechanistically ALKBH5 inhibits CRC by decreasing PHF20 m6A modification[91]. 
Studies on FTO have reported the two distinct findings of both promoting and inhibiting CRC progression[92-94]. After 
comparing the research methods and targets of the related papers, we hypothesise that ALKBH5 and FTO do not act 
directly on CRC tissues or cells but instead act indirectly on CRC tissues or cells by altering the m6A levels of various 
downstream targets, which may explain the conflicting results. In addition, studies have reported that the combination of 
ALKBH5 and FTO inhibits glycolysis and CRC cell proliferation and that a decrease in ALKBH5/FTO levels increases 
METTL3 levels while decreasing METTL14, which leads to accelerated CRC progression[95].

The mechanism by which the gut microbiota directly regulates readers has also not been reported; however, readers 
such as IGF2BP2 influence CRC progression via other upstream mechanisms. circEZH2/miR-133b first upregulates the 
level of IGF2BP2, which enhances the stability of CREB1 mRNA via IGF2BP2-mediated m6A modification, thereby 
promoting CRC progression[96]. YTHDF1 can inhibit antitumour immunity through the m6A-p65-CXCL1/CXCR2 axis, 
thereby promoting CRC progression[97]. KRT17 first degrades YTHDF2, and then YTHDF2 enhances T-cell infiltration by 
downregulating the level of m6A modification of CXCL10, preventing immune escape, and ultimately inhibiting CRC
[98]. The lncRNA H19 binds to HNRNPA2B1 and promotes CRC metastasis by promoting epithelial-to-mesenchymal 
transition through the m6A/Raf-1 mRNA/Raf-ERK axis[99]. Research on the associations of the remaining readers with 
CRC is ongoing.

In conclusion, the gut microbiota, as an important upstream mechanism regulating m6A modification, can alter the 
expression levels of m6A-related enzymes and thus promote or inhibit the progression of CRC in various ways. We 
summarize existing upstream mechanisms regulating m6A modification levels in CRC patients and their roles in CRC 
progression in Table 3[100-111] (which mainly include the gut flora), and the basic process by which the intestinal flora 
affects m6A modification in CRC patients is shown in Figure 2 and Table 3.

Other TME factors and m6A modifications in CRC
Hypoxia: In addition to the gut microbiota, hypoxia is also closely related to the occurrence, progression, and prognosis 
of CRC[112]. Hypoxia is the most common component of the TME and affects a series of biological behaviours, such as 
genetic instability, proliferation, differentiation, metastasis, invasion, metabolism, apoptosis, and other biological 
behaviours of tumour cells, such as in CRC[113,114]. Moreover, hypoxia can promote neovascularization, i.e., tumour 
angiogenesis, by activating hypoxia-inducible factor-1 (HIF-1)[115]. In addition, hypoxia can directly or indirectly affect 
the methylation modification of m6A[116], and m6A modification, in turn, can affect hypoxia and its inducible factors
[100]. Further studies have shown that the pathway of hypoxia-regulated CRC progression is closely related to m6A 
regulatory factors[117], which supports the idea that hypoxia is also one of the upstream mechanisms of m6A regulation 
in CRC.

In a recent study that utilized controlled hypoxic conditions, activated HIF-1 induced high expression of the lncRNA 
STEAP3-AS1, and a large amount of STEAP3-AS1 further competed with the m6A reader YTHDF2 for binding to STEAP3 
mRNA, which resulted in the protection of STEAP3 mRNA from YTHDF2-mediated degradation. Stabilized expression 
of STEAP3 in turn activates Wnt/β-catenin, which ultimately promotes CRC cell proliferation and invasion. In summary, 
hypoxia inhibits m6A-mediated mRNA degradation and plays an important role in the malignant progression and poor 
prognosis of CRC[118]. Another study demonstrated that hypoxia promotes ubiquitin-mediated degradation of the m6A 
eraser FTO, which results in lower FTO protein levels, and that low expression of FTO fails to inhibit m6A methylation of 
metastasis-associated protein 1 transcripts, which stabilizes mRNA expression by binding to IGF2BP2 and thereby 
contributes to the metastasis of CRC cells[94]. In summary, hypoxia modulates the effect of m6A on CRC and is positively 
associated with the malignant progression of CRC. In addition, hypoxia has an important effect on the abundance of the 
gut microbiota, and hypoxia can regulate the type and amount of the gut microbiota[119], which in turn may affect CRC 
progression through the pathways previously described.

Inflammatory response: Many clinical experiments and epidemiological studies have demonstrated that there is a 
complex association between inflammation and the development and progression of malignant tumours[120]. Chronic 
intestinal inflammation is closely associated with the development of IBD and the proliferation and metastasis of CRC
[121], and IBD may increase the risk of CRC[122]. Inflammatory cells generated by long-term intestinal inflammation first 
activate the proinflammatory signalling pathway, which in turn releases cytokines and chemokines, ultimately forming 
an inflammatory microenvironment[123]. The increased methylation of m6A in the proinflammatory signalling pathway 
has been supported by studies[124], and it has also been shown that the expression of m6A and m6A regulatory factors 
may be increased in the inflammatory microenvironment[125]. In addition, some studies have summarized the relevant 
role of m6A in the development and progression of IBD[10], and other studies have analysed the interaction between 
m6A regulatory factors and IBD risk genes[26], which suggests a close relationship between m6A and IBD. In summary, 
intestinal inflammation also plays an important role in m6A regulation during CRC progression.

A study by Wang et al[126] revealed that under normal conditions, the deubiquitinase USP47 reduces the efficiency of 
YTHDF1-mediated c-Myc translation. Once USP47 is deficient, it leads to high c-Myc protein expression, as well as 
disruption of Treg cell metabolism, which in turn leads to inflammation and antitumour immunity, including anti-CRC. 
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Table 3 Relationships among N6-methyladenosine, colorectal cancer, and related mechanisms

m6A regulator Upstream mechanism Roles Functions Mechanism Ref.

METTL3 Gut microbiota Oncogene Glycolysis, chemo-resistance↑ METTL3↑/LDHA↑ [100]

METTL3 Gut microbiota Oncogene Proliferation, migration, invasion↑ METTL3↑/m6A↑/YTHDF2↑/CRB3↓/Hippo↓ [55]

METTL3 Gut microbiota Oncogene Glycolysis, progression↑ METTL3↑/m6A/GLUT1↑/mTORC1 ↑ [101]

METTL3 Gut microbiota Oncogene Invasion, migration↑ METTL3↑/m6A/circ1662↑/YAP1↑/SMAD3↓ [102]

METTL3 F. nucleatum Suppressor Metastasis↑ METTL3↓/m6A↓/YTHDF2/KIF26B↑ [24]

METTL16 Gut microbiota Oncogene Glycolysis, progression↑ METTL14↑/IGF2BP1/SOGA1↑/PDK4↑ [83]

METTL14 ETBF Suppressor Proliferation↑ METTL14↓/m6A/miR-149-3p↓/PHF5A/KAT2A [88]

METTL14 Gut microbiota Suppressor Proliferation, metastasis↑ METTL14↓/m6A↓/YTHDF2↓/lncRNA XIST↑ [103]

METTL14 Gut microbiota Suppressor Migration, invasion, metastasis↑ METTL14↓/m6A↓/YTHDF2/SOX4↑ [104]

ALKBH5 H3K27 Oncogene Glycolysis, progression↓ ALKBH5↓/JMJD8↓/PKM2↓ [105]

ALKBH5 Oncogene Proliferation, migration, invasion↑ ALKBH5↑/YTHDF2/RAB5A↑ [106]

ALKBH5 Suppressor Radiosensitivity↑ ALKBH5↑/YTHDF2/circAFF2↑/Cullin-NEDD8↓ [107]

ALKBH5 Suppressor Proliferation, migration, invasion↓ ALKBH5↑/PHF20↓ [91]

FTO Oncogene Chemo-resistance↑ FTO↑/YTHDF2/SIVA1↓ [92]

FTO miR-96 Oncogene Tumorigenesis, progression↑ AMPKα2↓/FTO↑/m6A↓/MYC↑ [93]

IGF2BP2 LINC00460 Oncogene Proliferation, metastasis↑ IGF2BP2-DHX9↑/HMGA1↑ [108]

YTHDF1 Oncogene Tumorigenesis, metastasis↑ YTHDF1↑/m6A/ARHGEF2↑ [109]

YTHDF2 miR-6125 Oncogene Proliferation, growth↓ YTHDF2↓/m6A/GSK3β↑ [110]

HNRNPA2B1 MIR100HG Oncogene Chemo-resistance, metastasis↑ hnRNPA2B1↑/m6A/TCF7L2↑ [111]

m6A: N6-methyladenosine; F. nucleatum: Fusobacterium nucleatum.

Figure 2 Diet and other environmental factors can provide nutrients for the gut microbiota to metabolize, which can affect the levels of 
their metabolites (various methyl donors), leading to changes in the level of N6-methyladenosine methylation in the host and ultimately 
triggering the occurrence of colorectal cancer, as well as the proliferation, metastasis, migration and invasion of tumours. SAM: S-
adenosylmethionine; m6A: N6-methyladenosine. Created with BioRender.com (Supplementary material).

Wang et al[109] further showed that high expression of YTHDF1 exacerbates inflammation, which promotes the 
progression and metastasis of inflammatory CRC. In addition, Zhang et al[127] developed two isoform systems, 
m6AregCluster and m6AsigCluster, for assessing the association of m6A regulators with TMEs such as inflammation in 
CRC, which helps elucidate the mechanisms and principles involved.

https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf
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Like hypoxia, intestinal inflammation also causes gut dysbiosis[128], and gut dysbiosis also regulates CRC progression 
through relevant pathways involving m6A. However, the difference is that gut dysbiosis also promotes intestinal inflam-
mation[129].

Immune response: Immune factors, as important components of the TME, can cause immune tolerance and immunosup-
pression by regulating immune cells such as dendritic cells and T cells and their signalling pathways, which in turn 
contribute to the evasion of CRC cells from the host immune system and the proliferation and metastasis of CRC[19]. 
m6A modification decouples T-cell proliferation from cell survival by controlling the IL-7-mediated JAK-STAT signalling 
pathway and the TCR-mediated ERK/AKT signalling pathway[130]. Deletion of METTL3 results in decreased infiltration 
of CD206+ m2-like TAMs and increased infiltration of CD103+ cDC1s and results in tumour suppressor activity, 
suggesting that METTL3 has a role in driving TME immunosuppression[131]. Chen et al[81] reported that METTL3 drives 
myeloid-derived suppressor cell (MDSC) accumulation, inhibits the proliferation of immune cells, such as CD4+ T cells 
and CD8+ T cells, and promotes CRC proliferation, which supports the role of METTL3 in driving TME immunosup-
pression. In METTL16-overexpressing CRC tissues, a significant decrease in the level of the proliferative biomarker Ki-67 
was detected, which was accompanied by an increase in the infiltration levels of CD4+ T cells and CD8+ T cells and 
increased antitumour activity[132]. Similar conclusions have been reached in studies concerning changes in m6A writers 
in the breast cancer TME. For example, the expression of METTL14 and ZC3H13 was significantly positively correlated 
with CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils in breast cancer tissues and exhibited 
some antitumour activity[133].

With respect to m6A erasers and altered immune responses in the TME, the lack of ALKBH5 increases the m6A 
modification of interferon-γ (IFN-γ) and C-X-C motif chemokine ligand 2 mRNAs, which decreases the stability of 
mRNAs in CD4+ T cells and increases their expression[134]. In a humanized mouse model, the knockdown of ALKBH5 
was able to reduce the MDSC content, promote increased levels of NK cells, CD4+ T cells, and CD8+ T-cell infiltration, 
and promote tumour suppressor activity[90]. FTO evades host immune surveillance by regulating glycolytic processes in 
tumour tissues. Knockdown of FTO impairs tumour cell glycolytic activity, enhances the degree of CD4+ T-cell and CD8+ 
T-cell infiltration, and restores the immune function of CD8+ T cells (elevated levels of IFN-γ and granzyme B), thereby 
inhibiting tumour proliferation[135].

To date, findings regarding the associations of m6A readers with changes in immune responses in the TME have not 
been reported. In knockout experiments, the expression of the vast majority of m6A regulators was positively correlated 
with the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in CRC 
tissues. High expression of FMR1, LRPPRC, METTL14, RBMX, YTHDC2, YTHDF2, and YTHDF3 in CRC patients is 
associated with a poor prognosis (Figure 3).

CLINICAL APPLICATIONS AND PROSPECTS OF M6A IN CRC
Currently, various types of m6A regulatory factors used as biomarkers of CRC have demonstrated great clinical value in 
their diagnosis and prognostic assessment, and great potential exists in their use as therapeutic targets for CRC. This 
section focuses on summarizing the progress of m6A in the diagnosis and prognostic assessment of CRC and discusses 
the possibility of m6A regulatory factors as therapeutic targets for CRC using leukaemia and other malignant cancers as 
examples.

Diagnosis and prognosis
On the basis of the increasing number of studies showing that aberrant m6A regulatory factors are closely associated with 
CRC progression, m6A regulatory factors are expected to become biomarkers of CRC and play important roles in the 
diagnosis and prognosis of CRC[136]. For example, many studies have reported high expression of METTL3 in CRC cells 
or patients and suggested a strong association with poor CRC prognosis[137,138], although a small number of studies 
reached the opposite conclusion[24]. Some reports have suggested that, considering the heterogeneity of METTL3, more 
easily detectable downstream target RNAs could be selected as new biomarkers[136], which may require more experi-
mental data support. The results of these limited studies support that METTL16 is elevated in CRC patients[83,87]. In 
addition, relevant experiments have demonstrated that METTL14 Levels are downregulated in CRC patients and suggest 
that METTL14 Levels are negatively correlated with CRC progression[88,103]. However, studies on the erasers ALKBH5 
and FTO are contradictory, and the levels of ALKBH5 and FTO fluctuate high and low in CRC tissues, making them 
currently unsuitable as biomarkers. Notably, the existing studies showing how readers such as IGF2BP2 and YTHDF1 
affect the progression of CRC are promising. In the foreseeable future, as research clarifies how m6A regulators are 
expressed in CRC, the next step will be to explore how m6A regulators can be used in the clinical diagnosis of CRC and 
assessment of prognosis.

Targeted therapy
Among the many studies on the effects of m6A regulatory factors on CRC progression, m6A regulatory factors and 
related pathways are promising therapeutic targets. In addition, several studies have investigated the effects of m6A 
regulatory factors on chemotherapeutic resistance and sensitivity to radiotherapy, as well as synergistic effects with PD-
1/PD-L1 inhibitors for the treatment of CRC. Therefore, the development of corresponding agonists or inhibitors of m6A 
regulatory factors seems to be a promising therapeutic strategy[139]. For example, METTL3 inhibitors are already in use, 
and METTL16 inhibitors and METTL14 agonists are envisioned. The roles of ALKBH5 and FTO in CRC progression are 
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Figure 3 A summary of the role of N6-methyladenosine in the occurrence and development of colorectal cancer among the four tumour 
microenvironment factors discussed in the text. CRC: Colorectal cancer; HIF-1: Hypoxia-inducible factor-1; SAM: S-adenosylmethionine; m6A: N6-
methyladenosine; MDSC: Myeloid-derived suppressor cell; F. nucleatum: Fusobacterium nucleatum. Created with BioRender.com (Supplementary material).

not yet clear, and whether they can be used as therapeutic targets still awaits follow-up studies. Therapeutic strategies 
targeting readers such as IGF2BP2 and YTHDF1, on the other hand, seem to be promising for future consideration.

Dysregulation of m6A modification occurs to varying degrees in patients with various types of cancer. m6A RNA 
modification plays a role as tumour promoters or tumour suppressors in vivo. On this basis, it is possible to consider 
targeting different m6A writers, erasers, or readers by designing corresponding inhibitors or agonists and combining 
them with other therapies to enhance tumour immunity and improve clinical benefits. Although practical reports on the 
application of relevant drugs in CRC treatment are lacking, many drugs (e.g., FTO inhibitors) have been widely invest-
igated for the treatment of malignant diseases, such as AML, to improve the clinical benefit (Table 4).

The targeted drug STM2457 specifically inhibits METTL3, reduces the m6A levels of METTL3-dependent core 
leukaemia m6A substrates (including HOXA1018 and MYC19), and decreases the protein translation levels of BRD4 and 
SP1. Ultimately, STM2457 inhibits AML and has almost negligible toxic effects[140]. Another drug that targets METTL3, 
UZH1a, exerts inhibitory effects on METTL3 activity by binding to its SAM site to reduce m6A levels and inhibit mRNA 
transcription[141].

In addition to m6A erasers, several targeted drugs with applications in other types of cancers that could be used in 
attempts to treat CRC have emerged[142]. Most of these drugs are FTO inhibitors. CS1, a selective FTO inhibitor, has 
shown potent antileukaemic efficacy by blocking the binding of FTO to MYC, CEBPA, and RARA[143]. R-2-Hydroxy-
glutaric acid, a tumour suppressor drug that directly inhibits FTO, targets the FTO/m6A/MYC/CEBPA signalling 
pathway, increases m6A levels and has antitumour effects[144]. Meclofenamic acid is a highly selective inhibitor of FTO 
that is able to bind FTO and inhibit its demethylation, thus exerting anticancer effects[145]. The mechanism of action of 
FB23 is similar to that of CS1, which is able to negatively regulate the expression of ASB2, RARA, MYC, and CEBPA and 
upregulate the level of m6A in AML cells, exerting antitumour effects[146]. In Zhao et al's review[147] of the therapeutic 
potential for liver disease, Rhein was proposed as a promising drug for the treatment of hepatocellular carcinoma, which 
competitively binds to the substrate-binding site of FTO and increases the m6A level, thus exerting antitumour effects. To 
date, few targeted therapeutic agents against ALKBH5 have been developed. 2-[(1-Hydroxy-2-oxo-2-phenylethyl) 

https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9e7a0774-70f2-49e7-9652-5df24b0511f7/97626-supplementary-material.pdf


Jiang T et al. Gut microbiota modulates N6-methyladenosine in CRC

WJG https://www.wjgnet.com 4185 October 14, 2024 Volume 30 Issue 38

Table 4 Summary of the molecules of action, inhibitory concentration values, and mechanisms of action of existing anticancer drugs 
for N6-methyladenosine-targeted therapy

Drug Role in 
cancer

Cancer 
type Target IC50 Mechanism Ref.

STM2457 Tumour 
inhibitor

AML METTL3 16.9 
nM

m6A↓/HOXA1018↓/MYC19↓ [142]

UZH1a Tumour 
inhibitor

AML METTL3 4.6 μM Inhibits METTL3 catalytic activity and decreases m6A 
level and mRNA transcription level

[143]

CS1 Tumour 
inhibitor

AML FTO m6A↑/LILRB4↓/MYC↓/CEBPA↓/RARA↑/ASB2↑ [145]

FB23 Tumour 
inhibitor

AML FTO 0.8-1.5 
μM

m6A↑/MYC↓/CEBPA↓/RARA↑/ASB2↑ [148]

MA Tumour 
inhibitor

AML FTO 17.4 
μM

Binds to FTO and inhibits demethylation [147]

R-2HG Tumour 
inhibitor

AML FTO m6A↑/FTO↓/MYC↓CEBPA↓ [146]

Rhein Tumour 
inhibitor

Liver 
cancer

FTO/ALKBH5 30 mM Competitive binding of FTO to substrate binding sites 
and increased m6A levels

[149]

2-[(1-hydroxy-2-oxo-2-phenylethyl) 
sulfanyl] acetic acid

Tumour 
inhibitor

AML ALKBH5 0.84 
μM

Binds ALKBH5 and decreases m6A levels [150]

4-{[(furan-2-yl) methyl]amino}-1,2-
diazinane-3,6-dione

Tumour 
inhibitor

AML ALKBH5 1.79 
μM

Binds ALKBH5 and decreases m6A levels [150]

M6A: N6-methyladenosine; IC50: Inhibitory concentration.

sulfanyl] acetic acid and 4-{[(furan-2-yl) methyl] amino}-1,2-diazinane-3,6-dione are two unnamed tentative ALKBH5 
inhibitors that bind to ALKBH5 and inhibit its activity, reducing m6A levels and exhibiting antiproliferative activity in 
AML cell lines[148].

There is a lack of research reports on targeted therapeutic agents against m6A readers for cancer treatment, but among 
them, YTHDF1 and FMR1 are also expected to be new targets in CRC m6A-targeted therapies. In Transwell experiments, 
after the YTHDF1 gene was knocked down in CRC cells derived from CRC patients, the growth of HCT116 and HT-29 
cells in vitro was inhibited, which significantly reduced the ability of CRC cells to migrate and invade in vitro[109]. The 
upregulation of FMR1 increased EGFR mRNA expression and activated the ERBB signalling pathway in CRC cells, 
promoting cancer cell proliferation and metastasis[149]. These findings suggest that m6A readers can also be used as 
targets for CRC therapy and have potential for targeted therapy.

On the other hand, the distribution and metabolic profile of the gut microbiota also affect the effect of tumour 
immunity in the body. As one of the important upstream mechanisms of m6A, the gut microbiota also has great potential 
as a biomarker and therapeutic target for CRC. There have been literature reviews on the research progress of gut 
microbiota biomarkers in the early diagnosis of CRC, especially F. nucleatum[128], and the application of gut microbiota 
therapies in the prevention and treatment of CRC, especially via faecal microbiota transplantation[150]. In addition, gut 
microbiota metabolites have a potential role in the diagnosis of CRC[151,152]. A study on the influence of the gut 
microbiota on m6A modification revealed that the presence of large amounts of butyrate, a metabolite of intestinal 
microorganisms, can reduce the level of METTL3 and the expression of cyclin E1, which in turn reduces the level of m6A 
in CRC cells and inhibits their proliferation and metastasis[25]. Some researchers have noted that killing B. fragilis and 
bacteria associated with mucin degradation, inflammation, and DNA methylation via antibiotics can reverse the dysreg-
ulated intestinal microecology in patients and inhibit CRC progression[153]. Notably, if antibiotic therapy disrupts the 
original intestinal ecological balance, it can instead cause an intestinal inflammatory response and exacerbate the 
development of intestinal tumours, causing disease progression[154]. In these cases, regulating the gut microbiota profile 
with drugs and combining it with m6A-targeted therapy may be a novel idea for the treatment of CRC, but antibiotics 
should also be used carefully to reduce the destruction of the original probiotic flora of the host to avoid disease exacer-
bation. In addition, the interaction between the host gut microbiota and m6A RNA modification is complex, and the 
mechanism is still not completely clear. The specific process of regulating the balance of the host gut microbiota to 
influence the level of host m6A modification and play an anticancer role as a possible therapeutic approach still needs 
more in-depth research (Table 4).

DISCUSSION
The morbidity and mortality of CRC in young patients have been gradually increasing in recent decades. m6A 
modification of RNA-mediated posttranscriptional regulation plays an important role in the development of CRC. In this 
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Figure 4  To analyze the correlation between different N6-methyladenosine regulators and colorectal cancer progression.

process, TME factors such as metabolism, hypoxia, inflammation, and immunity are closely related to the progression of 
CRC, in which the intestinal flora plays an important role.

On the basis of the above findings, we propose that the intestinal flora can participate in the regulation of m6A 
regulators through the methyl donor pathway and other possible pathways, which in turn affects the progression of CRC 
through various pathways. In other words, the intestinal flora is one of the important upstream mechanisms by which 
m6A modification affects CRC progression.

Notably, few studies have directly demonstrated the involvement of the intestinal flora as an upstream mechanism of 
m6A in the process of CRC. In addition, most existing studies have focused on the regulation of writers, such as METTL3, 
by the gut flora to affect CRC, and there is a relative gap in studies on the associations between the gut flora and erasers 
and readers. The former still needs to be supported by more high-quality experimental data, and the latter needs new 
studies to fill this gap. Moreover, the relationship between METTL3 and CRC progression is still debated, although most 
experiments support the conclusion that METTL3 is an oncogenic factor. The promotion or inhibition of CRC progression 
by ALKBH5 and FTO appears to be contradictory. There are relatively few studies on the direct regulation of CRC by 
readers such as METTL16 and IGF2BP2; however, IGF2BP2 and YTHDF2 are widely involved in the mechanism of CRC 
regulation by writers and erasers, and METTL14 has essentially been proven to be an oncogenic factor.

In order to verify the correctness of the above, we grouped and generated a heatmap based on the dataset of two 
molecular analysis-based articles on CRC[48,155], according to the gender of the patients in the samples, the origin of the 
tissues, the TNM classification, and the vital status. As can be seen from the heatmap below (Figure 4), compared with 
normal tissues: M6A regulators such as METTL3, WTAP, VIRMA, ZC3H13, CBLL1, METTL16, IGF2BP1/2/3, YTHDF1/
2, FMR1, HNRNPA2B1, etc., showed different degrees of increase in the expression level in the tumor tissues and 
exhibited oncogenic effects. The expression levels of m6A regulators such as METTL14 and YTHDC1/2 decreased to 
different degrees in tumor tissues and exhibited cancer-suppressing effects. The relationship between the expression 
levels of m6A regulators such as ALKBH5, FTO, YTHDF3, ELF3, and RBM15 and the progression of CRC is still unclear, a 
situation similar to the results of earlier studies by other scholars. It may be related to the sampling method of the data 
samples, which deserves more experiments to explore and repeat the validation.

In addition, we selected some representative CRC-associated oncogenes/tumor suppressor genes and generated a box 
plot based on the RNA-Seq data of COAD and rectum adenocarcinoma from the TCGA database to analyze the 
differences in their expression levels during CRC progression. From this box plot (Figure 5), it can be seen that compared 
with normal tissues: The transcript levels of KRAS and SMAD4 increased to different degrees in tumor tissues and 
showed oncogenic effects; the transcript levels of TP53 and PAQR3 decreased to different degrees in tumor tissues and 
showed cancer-suppressing effects; the transcript levels of NRAS and BRAF did not increase significantly in tumor 



Jiang T et al. Gut microbiota modulates N6-methyladenosine in CRC

WJG https://www.wjgnet.com 4187 October 14, 2024 Volume 30 Issue 38

Figure 5  To analyze the correlation of different oncogenes/tumor suppressor genes with colorectal cancer progression.

tissues, which may be due to the fact that different tissues were sampled at the time of sampling. The reason for this 
result may be due to a certain degree of mixing of cells from different tissue sources at the time of sampling, resulting in 
no significant difference in expression in the final data.

CONCLUSION
On the basis of these findings above, future research can first consider more experimental studies that focus on the 
influence of the intestinal flora on CRC progression by altering the expression levels of different m6A regulators. Second, 
research can continue to elucidate the relationship between other individual m6A regulators and CRC progression, 
resolve controversial issues and fill in gaps in related research, which may help to explain the mechanism by which 
multiple regulators act together in CRC. m6A regulators and the gut microbiota have shown great potential as diagnostic 
biomarkers and therapeutic targets for CRC, and we highlight some of the therapeutic advances in the former. For 
example, although m6A-targeted therapies have not yet been applied to the treatment of CRC, METTL3 inhibitors, FTO 
inhibitors, and ALKBH5 inhibitors have already shown good efficacy in the treatment of other malignant tumours, 
especially AML. However, many challenges remain. For example, the efficacy and risk of the existing m6A regulator 
inhibitors used in the clinic for CRC therapy are not yet known, and other inhibitors or agonists that target m6A 
regulators still need to be developed. In addition, the combination of m6A-targeted therapies with gut microbiota 
therapies, as well as influencing the level of m6A modifications in the host by regulating the balance of the host gut 
microbiota and exerting anticancer effects, is promising and may help to improve the treatment of CRC.
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