Enhancement effect of TNF-α on hepatitis B virus in vitro infection of human choriocarcinoma JEGIII cells

Fu-Jun Li, Xue-Ping Wang, De-Zhong Xu, Yong-Ping Yan, Ke Men, Jing-Xia Zhang

Abstract

AIM: To study the in vitro infection of human choriocarcinoma JEGIII cells by hepatitis B virus (HBV) in the presence of TNF-α, and to provide some clues for the mechanism responsible for HBV intrauterine transmission.

METHODS: Human choriocarcinoma-derived JEGIII cells were exposed to HBV (2 × 10^12 HBV DNA/L) in the presence of TNF-α. After an overnight incubation, the cells were then trypsinized, extensively washed with PBS till the last washings were negative for HBsAg as identified by ELISA. The cells were re-inoculated and kept on subculturing with fresh medium. Then the specimens were collected at an interval of 12 hours. HBsAg in supernatants and cells was detected by Western blotting, immunohistochemistry and transmission electron microscopy.

RESULTS: After JEGIII cells were infected with HBV for 36 hours, HBsAg was positive in supernatants collected at different time points. The level of HBsAg was significantly higher in JEGIII cells infected by HBV in the presence of TNF-α than in the absence of TNF-α (20.40 ± 4.16 vs 7.40 ± 1.82, P < 0.01). HBsAg was mainly located in the cytolemma and/or the cytoplasm. Under electron microscope, HBsAg particles were observed in the dilated cisterns of rough surfaced endoplasmic reticulum of the cells.

CONCLUSION: Human choriocarcinoma JEGIII cells can be susceptibly infected by HBV in the presence of TNF-α in vitro, and this may provide some clues for further studying HBV intrauterine transmission.

Key Words: Hepatitis B virus; Intrauterine transmission; Choriocarcinoma cell line

世界华人消化杂志 2005;13(1):31-34

增效作用的TNF-α对HBV体外感染人绒毛膜癌JEGⅢ细胞的促进作用

李宏军, 王雪萍, 徐德忠, 倪永发, 门可, 张景霞

摘要

目的: 检测TNF-α存在条件下HBV体外感染人绒毛膜癌细胞的情况，为HBV宫内传播机制的研究提供细胞学基础。

方法: 在TNF-α存在条件下，绒毛膜癌JEGIII细胞与HBV阳性血清(2×10^{12}HBV DNA/L)共同孵育，感染后24 h，酶联免疫吸附试验，PBS充分洗涤，直至最后一步洗涤显示ELISA检测HBsAg阳性，重新接种细胞，加新鲜培养液继续培养，每12 h收集培养标本，分别用Western blotting，免疫细胞化学方法，透射电镜检测培养物中HBV标志物。

结果: HBV阳性血清感染JEGIII细胞36 h后，各时点收集的细胞上清标本中Western blotting均检测到阳性性的HBsAg条带，免疫细胞化学方法检测细胞铺片发现，在TNF-α存在的感染环境下，HBsAg呈阳性或强阳性表达，与TNF-α不存在的感染环境下相比有显著性差异(20.40 ± 4.16 vs 7.40 ± 1.82, P < 0.01)，而且HBsAg主要位于胞膜及/或胞质；透射电镜下，细胞扩增的胞质内核内腔内发现有杆状HBsAg颗粒。

结论: HBV体外可以感染绒毛膜癌细胞，体外细胞感染模型是深入研究HBV宫内传播机制的关键。

关键词: 乙型肝炎病毒；宫内传播；绒毛膜癌细胞
0 引言

HBV 感染是一个世界性的公共卫生问题。乙肝疫苗可以有效地预防乙肝，对控制 HBV 产中和产后母婴传播亦取得了令人满意的效果，但由于母亲宫内 HBV 传播，包括乙肝疫苗在内的现有措施却难以发挥作用。因此，随着乙肝疫苗的普遍使用，HBV 宫内感染的研究已成为控制乙肝流行的关键问题。HBV 必须穿过胎盘屏障才能到达胎儿循环和感染胎儿。其中，滋养层细胞将母血与胎儿血分开，并控制二者的物质交换，是 HBV 侵入胎盘的关键部位。因此，既往研究多以此为重点进行在体研究和流行病学研究[1-9]。现有证实胎盘滋养层细胞 HBV 呈阳性表达，然而，滋养层细胞不是 HBV 的靶细胞，表面蛋白 HB 表达表达量极低。因此，滋养层细胞体外到底能否被 HBV 感染，依然是有争议的。我们拟在离体条件下观察 HBV 感染人绒毛膜滋养层细胞的情况，为进一步研究其胞内转运过程和胎盘内细胞间传递过程奠定基础。

1 材料和方法

1.1 材料

绒毛膜癌细胞株 JEGIII 购自中国科学院研究

院动物研究所生工中心，Ham’s F12、DMEM 培养基和 EMPS 购自 Gibico 公司。甲乙蛋白酶和超级小牛血清购自杭州四季青公司，TNFα 购自 Promega 公司。ELISA 试剂盒、ABC 免疫组化试剂盒、Anti-HBs、兔抗 IgG 均购自华美生物工程有限公司。HBV 以血清采自乙型肝炎患者。应用 HBV 核酸扩增工具光检测法检测 HBV DNA 3 次，试剂盒购自日本达尔文生物工程有限公司，得血清浓度为 2×10^2 HBV DNA/L，将 HBV 阳性血清过滤装并后 -80℃ 冻存备用。

1.2 方法

1.2.1 JEGIII 细胞的培养

用含 100 mL/L 灭活小牛血清的 DM 培养液（含 10 g/L 的谷氨酰胺和 10 g/L 的丙酮酸）在 37℃，30 mL/L CO2 培养箱中培养，每 2 换液 1 次，每 4 周检查细胞观察，当细胞铺满 85-90% 时进行传代，等状态稳定后，液氮冻存 4 次，1 月后复苏检测，确保冻存成功后，进行后续实验。

1.2.2 HBV 感染 JEGIII 细胞

当细胞 50-80% 铺满时，加入 TNFα，终浓度为 10 mg/L，2 h 后，再加入 HBV 阳性血清，使其终浓度为 100 DNA/cell。孵育 24 h 后，弃掉培养液，用 PBS 洗 2 遍，0.125 g/L 胰酶消化，800 r/min 离心 10 min，PBS 洗 3 遍，直接至最后一遍洗液 ELISA 检测 HBsAg 阴性为止。接种细胞于含有盖玻片的培养板和/或培养瓶中继续培养，每隔 12 h 收集细胞和培养上清标本以备后续检测。同时设 HBV 阳性血清和 TNFα 均不加的空白对照组和不加 TNFα 的对照培养组。

1.2.3 Western blotting

每隔 12 h 收集细胞培养上清，行 SDS-聚丙烯酰胺凝胶电泳，电转移至 NC 膜，用 5 g/L Tweek-20 的 PBST 洗膜 5 min，含 50 g/L BSA 的封闭液于 37℃ 封闭 1 h，PBST 洗膜 15 min 三次，5 min 二次，加入 PBST 稀释好的一抗 anti-HBs（1：500），4℃ 过夜。PBST 洗膜 15 min 三次，5 min 二次，加入 PBST 稀释好的二抗液（1：3000），37℃ 孵育 1 h。PBST 洗膜 15 min 三次，5 min 二次。ECL 底物发光，X-光片观察对照。1.2.4 免疫组织化学检测 HBsAg

每隔 12 h 收集细胞洗片，PBS 洗 3 遍，纯丙酮固定，空气中干燥后置于 80℃ 保存待用。染色时按试剂盒说明书操作，染色完成后显微镜下观察并照相。并设立不加 HBV 阳性血清的空白对照细胞洗片，以及用 PBS 代替一抗的替换对照进行质量控制。在高倍镜下，共测 3 个视野，计算平均值。染色结果判定标准：阴性（-），无阳性细胞；弱阳性（+），阳性细胞数 1-25%；染色较浅；阳性（++），染色细胞数 26-75%；染色中等；强阳性（+++），染色细胞数>75%，染色较深。

1.2.5 HBV 感染 JEGIII 细胞的透射电镜观察

待细胞数 ≥5×10^6 时，常规经细胞消化，800 r/min 离心 10 min，PBS 洗 2 遍，收集细胞块，加 40 g/L 交联剂固定，4℃ 过夜，0.1 mL/L PB 洗 3 次，10 min/次，10 g/L 乙酸酸液固定 2 h，500 mL/L 0.001 M/L 液体乙酸洗，Epon 812 树脂包埋，60℃ 聚合 48 h，1 Kt3-Noa 型超薄切片机切片，饱和硝酸酸染色 10 min，构橼酸铅染色 10 min。JEM-2000EX 型透射电镜观察。

统计学处理

检测数据以 mean ± SD 表示，组间差异采用单因素方差分析，SPSS12.0 软件进行分析，P < 0.05 为具有显著性差异。

2 结果

2.1 培养上清中 HBsAg 的 Western blotting 检测

培养混合物经过充分消化，最后一致洗液 HBsAg 阴性。在 TNFα 存在的感染环境下，HBV 感染后 36 h，上清中即可检测到 HBsAg，以后各时间点收集的培养上清中也均检测到阳性 HBsAg 条带（图 1）。2.2 细胞洗片中 HBsAg 和 HBcAg 免疫细胞化学染色

在 TNFα 存在的感染环境下，HBsAg 染色呈阳性或弱阳性（图 2），HBcAg 主要位于胞膜和/或胞质，各时间点之间染色强度差异不显著（P > 0.05），而在 TNFα 不存在的感染
环境下，HBsAg 染色呈阴性或弱阳性，二者差异显著 [(20.40 ± 4.16) vs (7.40 ± 1.82), P<0.01].

2.3 透射电镜对胞内 HBsAg 颗粒的检测 在 TNFα 存在的感染环境下，细胞扩张的粗面内质网腔内，发现有杆状 HBsAg 颗粒（图 3）。

3 讨论

HBV 从感染的母亲传给胎儿必须通过由绒毛滋养层、绒毛膜下层结缔组织、和绒毛内毛细血管内皮组成
的胎盘屏障。绒毛表面的滋养层在胚胎之间形成一连
续的物理屏障，具有选择性透通作用。避免了母体之
间免疫活性细胞的直接接触，对病原微生物也有一定
的阻挡作用。但某些病毒却会以某种方式通过胎盘屏
障到达胎儿血液循环[10]. 病毒通过胎盘屏障的机制目
前尚不清楚。由于胎盘屏障的第一层细胞是滋养层细
胞，该层细胞直接与母体血液接触，因此，滋养层细
胞在病毒宫内传播中的作用不容忽视[12-16]. 多位学
者对滋养层细胞进行体外培养，然后用病毒进行感
染，发现在离体状态下，某些病毒可感染合体滋养
层细胞[17-21]. 这些结果说明，滋养层细胞在离体情
况下可以被某些病毒感染，从而为病毒宫内感染机
制的研究指明了方向。

我们曾经报道了 HBV 可以感染体外培养的人绒毛
膜滋养层细胞，但感染效率很低[22, 23]. 对结果进行
分析，认为体外单纯地将滋养层细胞和 HBV 混合孵
育，或许不能更好地模拟体内细胞被病毒感染情况。
因此，有无可能更接近怀孕期间滋养层细胞体内生
存环境的体外感染方法。怀孕期间细胞的生理活动是
复杂而又有其自身特征的，其中一大特征是由孕体
和/或子宫的逐步调节方式产生一系列细胞因子，这
些因子在孕期发挥着重要作用[24-26]. 孕期胎盘微环
境中特异的细胞因子在调控细胞活性的同时，也促进
病毒的感染。肿瘤坏死因子 α 在 HIV 宫内传播中的
作用已引起研究人员的注意[27-29]. 首先，HIV 感染
胎盘组织中滋养层细胞上 TNFα 呈高表达，而且表达
量与滋养层细胞中 HIV Gag 转录体的数量呈现显著正
相关[27]. 第二，TNFα 预处理的滋养层细胞与淋巴细
胞的黏附力增强[29]. 第三，巨噬细胞与滋养层细胞间
的黏附可以上调由巨噬细胞分泌的 TNFα 调节的 HIV
的表达[29]. 而且，有趣的是 TNFα 发挥作用主要在怀
孕初期和分娩时，该时间点与 HIV 宫内传播高峰时间
段相一致[30]. 本研究结果也表明，在 TNFα 不存在的
感染系统中，滋养层细胞HBV感染标志物呈阴性或弱阳性，而在TNFα存在的感染系统中，滋养层细胞HBV感染标志物呈阳性或强阳性，提示HBV感染滋养层细胞在孕期可能也主要集中在两个时间点：怀孕初期，此阶段滋养层细胞高度增生和侵袭性移行；足月分娩时。本研究结果与我们的预期结果基本一致，初步证实了HBV体外可以感染培养的滋养层细胞，TNFα的存在，可以更好地模拟孕期体内滋养层细胞生存微环境，对其感染有促进作用。总而言之，我们建立的体外模型是进一步研究HBV宫内传播分子基础的有用工具。

致谢：感谢中科院动物所生中心庄临之、王雅玲教授在细胞培养方面给予的指导和帮助。感谢第四军医大学张伟博士在实验操作方面的帮助。

4 参考文献


