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Abstract
Pancreatic cancer (PaCa) has the highest death rate 

and incidence is increasing. Poor prognosis is due to 
late diagnosis and early metastatic spread, which is 
ascribed to a minor population of so called cancer 
stem cells (CSC) within the mass of the primary tumor. 
CSC are defined by biological features, which they 
share with adult stem cells like longevity, rare cell 
division, the capacity for self renewal, differentiation, 
drug resistance and the requirement for a niche. 
CSC can also be identified by sets of markers, which 
for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, 
Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and 
claudin7. The functional relevance of CSC markers is 
still disputed. We hypothesize that Pa-CSC markers play 
a decisive role in tumor progression. This is fostered by 
the location in glycolipid-enriched membrane domains, 
which function as signaling platform and support 
connectivity of the individual Pa-CSC markers. Outside-
in signaling supports apoptosis resistance, stem cell 
gene expression and tumor suppressor gene repression 
as well as miRNA transcription and silencing. Pa-CSC 
markers also contribute to motility and invasiveness. By 
ligand binding host cells are triggered towards creating 
a milieu supporting Pa-CSC maintenance. Furthermore, 
CSC markers contribute to the generation, loading and 
delivery of exosomes, whereby CSC gain the capacity 
for a cell-cell contact independent crosstalk with 
the host and neighboring non-CSC. This allows Pa-
CSC exosomes (TEX) to reprogram neighboring non-
CSC towards epithelial mesenchymal transition and 
to stimulate host cells towards preparing a niche for 
metastasizing tumor cells. Finally, TEX communicate 
with the matrix to support tumor cell motility, invasion 
and homing. We will discuss the possibility that CSC 
markers are the initial trigger for these processes and 
what is the special contribution of CSC-TEX.
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for early PaCa detection[10]. Thus, the search for 
additional biomarkers is still ongoing[11]. To name a 
few, mucin 1 (Muc-1), which is also detected in other 
malignancies, showed a minor improvement compared 
to CA19-9[12]. It is suggested to be suited for early 
stage detection[13]. DJ-1 (Parkinsonism associated 
deglycase) and combinations of regenerating family 
member 1β, syncoilin, anterior gradient 2 with CA19-9 
improve sensitivity and specificity[14,15]. A serum 
proteome analysis of patients with PaCa showed 
significant upregulation of 40 proteins. Several of these 
proteins revealed disease associations to TP53[16,17]. In 
addition, upregulation of galectin-1, gelsolin, lumican, 
14-3-3σ, cathepsin D, cofilin, moesin and plectin were 
described in PaCa patients. Gelsolin and lumican were 
suggested as markers to differentiate PaCa from chronic 
pancreatitis (CP)[18-20]. The search for early serum 
PaCa markers also includes genetic and epigenetic 
markers[21-23]. DNA methylation of basonuclin and ADAM 
metalloproteinase with thrombospondin type 1 motif 
1 (ADAMTS1) in serum indicate prognostic valence[24]. 
Recovery of hypermethylated TNFR superfamily member 
10c, and apoptotic chromatin condensation inducer 1[25] 
and of long noncoding (lnc) RNA metastasis associated 
lung adenomcarcinoma transcript 1 are predictors of 
poor survival[26]. Recovery of miR-21, miR-210, miR-155 
and miR-196a in the serum allows differentiating 
PaCa patients from healthy donors. Recovery of these 
miRNA correlates with PaCa progression[27]. When 
combining the evaluation of CA19-9, miR-155, miR-
181a/b and miR-196a stage Ⅰ PaCa could be detected 
and differentiated from CP[28]. Serum miR-20a, miR-21, 
miR-24, miR-25, miR-99a, miR-185 and miR-191 
allowed to differentiate PaCa from CP patients and 
healthy donors[29]. A panel of 10 free serum miRNA 
indicated discrimination between tumor stages[30]. 
A statistical meta-analysis confirmed free serum 
miRNA as a diagnostic tool in PaCa. However, none 
of these miRNA are selective for PaCa[31]. Recently, 
TEX in serum, which allow concomitantly evaluating 
PaCa-promoted genetic, epigenetic, lipidomic and 
proteomic alterations[23], received increased interest. 
A first report based on mutations in KRAS and TP53 
revealed promising results[32]. Another study reports on 
the recovery of miR-17-5p and miR-21 in serum TEX. 
Recovery of miR-17-5p and miR-21 in serum exosomes 
differs between PaCa and CP patients and correlates 
with tumor progression[33]. The finding that glypican-1+ 
can be detected with 100% specificity and 100% 
sensitivity in serum TEX of PaCa patients attracted 
much attention. Notably, this included reliable detection 
of PanIN (pancreatic cancer in situ). Furthermore, the 
level of glypican-1+ TEX correlated with tumor burden 
and survival time. A mouse model with specific KRAS 
mutations promoting spontaneous PaCa development, 
confirmed recovery of glypican-1+ TEX at the stage 
of intraepithelial lesions[34]. We were concerned about 
the recovery of Pa-CSC protein markers (CD44v6, 
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Core tip: Cancer progression relies on a small population 
of cancer stem cells (CSC), characterized by longevity, 
self renewal, drug resistance and requirement of a 
niche. In addition, CSC abundantly deliver exosomes 
(TEX) allowing CSC a long distance communication. At 
the descriptive level, CSC are characterized by a set of 
so called CSC markers. We here discuss for pancreatic 
cancer that the CSC markers CD44v6, c-Met, Tspan8, 
alpha6beta4, EpCAM, claudin7, CXCR4 and prominin1 
can in a concerted activity account for all CSC features. 
This includes CSC TEX activity due to the engagement 
of CSC markers in TEX biogenesis and enrichment in 
TEX.
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INTRODUCTION
Pancreatic cancer (PaCa) has a dismal prognosis due 
to late diagnosis and early metastatic spread. Thus, 
there is an urgent need for improving diagnosis and for 
a better understanding of the mechanisms underlying 
PaCa progression. We briefly outline the state of the 
art in concern about diagnosis with emphasis on 
tumor exosomes (TEX) as a promising diagnostic tool 
and proceed to introduce cancer stem cells (CSC) 
including the processes of epithelial mesenchymal 
transition (EMT) and premetastatic niche formation. 
After introducing exosomes, we outline the functional 
activity of Pa-CSC markers and how they contribute to 
the dismal prognosis of PaCa.

Pancreatic cancer diagnosis
PaCa still holds the highest mortality rate, which is due 
to late diagnosis, early metastatic spread and drug 
and chemoresistance[1]. Though the survival rate of 
patients with a tumor of < 1 cm is close to 100% and 
about 50% fo patients with a tumor of < 2 cm survive, 
the 5-year survival rate for locally advanced PaCa 
is 9% and for metastatic PaCa 2%[2], which is very 
demanding for approaching early diagnosis[3-9]. 

Imaging advices (computed tomography, endoscopic 
ultrasound, emission tomography and combined com
puted tomography/positron emission tomography) are 
well established for therapy control. These new imaging 
advices have strongly improved PaCa detection, yet 
are still suboptimal for early detection[3]. Therefore, 
imaging is frequently combined with additional serum 
biomarkers. The most common marker, carbohydrate-
associated antigen 19-9 (CA19-9) is helpful in response 
monitoring and in taking a decision on resectability, 
but shows insufficient sensitivity and specificity 



Tspan8, EpCAM, β4 integrin) in serum TEX. Additionally, 
microarray screenings of PaCa serum and tumor line 
derived TEX suggested a panel of miR-1246, miR-4644, 
miR-3976, miR-4306 to be suited for PaCa diagnosis. 
Two findings should be mentioned. TEX-enclosed 
miRNA is recovered at a significantly higher level than 
free serum miRNA. Second, we recommend to evaluate 
both protein and miRNA markers, which improved 
sensitivity (100%) and specificity (80%)[35].

These few studies on serum TEX require large 
scale controls. Yet, results so far appear promising for 
the long awaited early diagnosis of PaCa, where late 
diagnosis of PaCa becomes particularly vicious due 
to the early spread of PaCa[36]. To shed light on the 
unexpected power of TEX, we introduce CSC including 
the process of epithelial mesenchymal transition 
(EMT) and the establishment of a premetastatic niche 
in advance of reasoning on the suggested linkage 
between Pa-CSC markers, TEX and tumor progression.

Cancer stem cells and the epithelial mesenchymal 
transition
The propensity to metastasize relies on the small 
subpopulation of CSC, named according to several 
joint features with embryonic and adult SC[37]. CSC 
are long lived, can self renew and differentiate, 
slowly progress through the cell cycle, are radiation 
and drug resistant and account for primary tumor 
growth and metastatic spread[38]. CSC and ESC 
share several signaling pathways, particularly over-
expression of Oct4 (POU class5 homeobox1), Nanog 
(Nanog homeobox) and avian myelocytomatosis viral 
oncogene homolog (c-Myc)[39] and signaling via Notch, 
Wnt and Hedgehog[40], frequently initiating activation 
of the Ras-Raf-MAPK and PI3K-Akt pathway[41].

The metastatic cascade of epithelial tumors is 
initiated through EMT[42,43]. EMT essentially depends 
on CSC[44,45]. The hallmarks of EMT are loss of cell-
cell adhesion, via E-cadherin downregulation and 
gain in motility by remodeling of the cytoskeleton and 
formation of new cell-substrate contacts supported 
by intermediate filament proteins like vimentin[43]. 
Initiation of the EMT program depends on a mul
titude of signals received from the environment 
that activate a corresponding array of intracellular 
signaling cascades[46-48], which force expression of 
EMT transcription factors Twist, Snail, Slug, Zeb1 
and others[49]. Transforming growth factor (TGF)β is 
the major EMT inducer[50], which signals through its 
receptors phosphorylating SMAD2 and SMAD3 that 
bind to SMAD4, the complex translocating to the 
nucleus[50,51]. Wnt signals activate β-catenin that support 
Snail, but also vimentin transcription[52-54]. Activation 
of the EMT program through receptor tyrosine kinase 
(RTK) ligands like HGF, EGF, FGF and PDGF (hepatocyte-, 
epidermal, -fibroblast, -platelet-derived growth factor), 
appears to be content dependent[55-57].

EMT is initiated by downregulation of E-cadherin at 
the transcriptional and posttranscriptional level. EMT 
transcription factors are recruited to the E-cadherin 
promoter and repress transcription[58]. Histone 
modifying enzymes cooperate in E-cadherin promoter 
repression. This includes polycomb group proteins, 
which form polycomb repressive complexes silencing 
transcription via modifying histones and recruiting 
additional repressors[59]. Another important factor 
is Bmi1 that is upregulated in CSC and supposed to 
facilitate the EMT phenotype. Bmi1 downregulates 
Pten, which leads to activation of the PI3K/Akt 
pathway and posttranslational stabilization of Snail[60]. 
Furthermore, Twist can bind to the Bmi1 promoter and 
upregulate its expression[61]. Histone deacetylases are 
also engaged in E-cadherin silencing. They are either 
recruited by Snail[62] or by Twist directly associated 
with the histone deacetylase complex[63]. MiRNA 
presents the second major epigenetic mechanism 
engaged in the EMT process. In most instances 
miRNA binds to the untranslated region of their target 
genes, which prohibits target gene translation[64]. The 
engagement of miRNA in EMT was first described for 
the miR-200 family. This family comprises miR-200a/
b/c, miR-141 and miR-429. Decreased expression 
of the miR-200 family is accompanied by enhanced 
Zeb1 and Zeb2 expression[65]. Additional miRNAs 
regulating EMT transcription factors are miR-29b, 
miR-30a, miR-205[66-68]. Other EMT targets of miRNAs 
are E-cadherin (miR-9), N-cadherin (miR-194), Nestin 
and Star1 (miR-661), pulmonary adenoma resistance 
3 (miR-491-5p), which is engaged in tight junction 
(TJ) distortion and p120 (catenin δ1) (miR-197)[69-73]. 
Notably, some miRNA concomitantly regulate CSC 
and EMT. miR-200c becomes activated via p53, which 
binds to the miRNA promoter. As a consequence 
tumorigenicity and metastasis are suppressed[74,75]. 
Also, by depletion of miR-21 the number of CSC 
decreases and EMT is reverted[76]. In this context, it 
is important to remember that in epithelial cancer 
the process of EMT is transient[77]. In line with this, 
the epithelial phenotype can be restored by a double-
negative feedback loop, between Zeb, Snail1 and 
Gata3 and miR34a or miR-200[78,79]. A similar feedback 
loop was described for miR-203 and Snail1[80].

There is some debate, whether non-CSC by turning 
into the mesenchymal phenotype acquire CSC features 
or whether CSC transfer the required messages 
towards non-CSC[44]. These options may not be 
mutually exclusive, taking the vision that CSC initiate 
the EMT phenotype in non-CSC, either by activating 
relevant signaling cascades by direct cell contact or 
via TEX, which could account for both binding initiated 
activation of signaling cascades and transfer of genetic 
and epigenetic information. The latter option has been 
most convincing demonstrated for the preparation of 
the premetastatic niche by CSC TEX.
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delivered by many cells and abundantly by tumor 
cells[102]. Exosomes biogenesis is initiated by the 
formation of early endosomes that become integrated 
as intraluminal vesicles (ILV) into multivesicular bodies 
(MVB). MVB can fuse with lysosomes for protein 
degradation. Alternatively, MVB fuse with the plasma 
membrane and release their ILV, which are termed 
exosomes[103].

MVBs are assembled from early endosomes sorted 
from the trans-Golgi network or from internalized 
membranes, where the endosomal sorting complex 
required for transport (ESCRT) plays an important 
role in vesicle traffic and loading. The ESCRT complex 
is composed of the subcomplexes ESCRT Ⅰ, Ⅱ and 
Ⅲ[104]. Tsg (tumor susceptibility gene)101 in the 
ESCRT complex Ⅰ binds ubiquitinated proteins and 
recruits ESCRT Ⅱ. ESCRT Ⅱ or Alix (ALG-2-interacting 
protein X) recruits ESCRT Ⅲ. ESCRT Ⅲ recruits a 
deubiquitinating enzyme that removes the ubiquitin 
tag from the cargo proteins prior to sorting into 
MVB[105]. Finally, the ATPase vacuolar protein sorting 
4 (Vsp4) dissociates the ESCRT Ⅲ complex from the 
membrane. Additional essential partners in ESCRT-
dependent exosome biogenesis are syndecans and 
transmembrane heparan sulfates, which interact with 
syntenin. Syntenin cooperates with CD63 and Alix[106]. 
Alternatively, cell membrane integrated tetraspanins 
and other proteins residing in glycolipid-enriched 
microdomains (GEM)[107] become incorporated into 
MVB, which is a sequel of the physical properties 
of GEM being prone for internalization[108]. Indeed, 
tetraspanins are essential for exosome generation 
as demonstrated by defective exosome secretion in 
CD9 knockout mice[109]. A third pathway proceeds 
via proteolipids (PLP). In cholesterol and ceramide-
rich compartments, the PLP colocalize with flotilin 
and glycosylphosphatidylinositol. Exosome biogenesis 
via PLP depends on ceramide production by neutral 
sphinomyelinase-2. Sphingosine-1-phosphatase and 
diaglycerol (DAG) are engaged in cargo sorting[110].

Early endosomes hike through the cytoplasm 
in advance of being released as exosomes. Rab 
proteins, a subfamily of small GTPases, associate 
via geranylgeranyl modifications with membranes, 
regulate vesicle budding, tethering and fusion. Rab4 
and rab5 mostly are recovered on early endosomes, 
rab11 is engaged in juxtanuclear recycling endosome 
traffic, rab7 and rab9 are recovered in late endosome 
and MVB. Rab35 and rab11 are engaged in endocytic 
recycling. Rab proteins regulate vesicle traffic via the 
interaction with actin and microtubules. Rab11 recruits 
myosin and dynein, moving of late endosomes along 
microtubules being dynein-dependent. Docking on the 
plasma membrane via kinesin is regulated by rab25. 
Rab GTPase activating proteins (GAP) and Rab27b are 
engaged in exosome release, where SNARE proteins 
(soluble-N-ethylmaleimide-sensitive fusion protein-
attachment protein receptors) (v-SNARE) pair with 

Cancer stem cell niches and exosomes
CSC share with embryonic and adult SC dependence 
on a crosstalk with a special surrounding, called 
niche[81,82]. Adult SC and CSC niches, which are 
important to maintain stemness, consist of epithelial 
and mesenchymal cells and extracellular substrates[83]. 
An important contributor in the CSC niche are cancer-
associated fibroblasts (CAF). CAF provide HGF, 
interleukin (IL)6, PDGFβ, prostaglandins (PG) and 
proteases, which jointly remodel the extracellular 
matrix (ECM)[84,85]. Other important players are 
mesenchymal stem cells (MSC)[86], which cooperate 
with CAF and macrophages (Mφ)[87]. MSC are 
stimulated by tumor cell-derived IL1 to secrete PGE2, 
which operates in an autocrine manner promoting 
cytokine secretion and induces β-catenin signaling. 
These signaling cascades promote CSC conversion 
of adjacent non-CSC tumor cells[88]. Stroma cell-
derived tumor necrosis factor (TNF)α and IL6 sustain 
TGFβ production and attract MSC to produce CSC 
supportive CXCL7[89]. Tumor-derived growth factors 
stimulate resident fibroblasts to secrete fibronectin 
promoting CSC attachment. Stromal fibroblasts- and 
CAF-derived CXCL12 (stroma-derived factor 1, SDF1) 
attracts CXCR4 expressing hematopoietic, endothelial 
cell progenitors and CSC[90]. c-Met becomes involved 
via HGF expressing MSC and β-catenin that together 
with the Tcf/Lef (lymphoid enhancer binding factor 
1) complex translocates to the nucleus and initiate 
transcription of cell cycle related genes like cyclin D1 
and c-Myc[91]. Activated integrin-linked kinase (ILK) 
further supports nuclear translocation of β-catenin, 
where ILK activation is promoted by matrix-bound 
β1 integrins and costimulatory signals from the 
environment[92]. Finally, there is evidence that niche 
maintenance is supported by a mutual exchange 
of miRNA between CIC and niche cells[93-95]. Thus, 
SC actively recruit and activate those cells that in a 
feedback support their survival.

CSC also shape a niche for metastasizing tumor 
cells in selective organs in advance of tumor cell 
arrival, known as premetastatic niche. Tumor-derived 
growth factors stimulate resident fibroblasts to 
secrete fibronectin, which promotes attachment of 
hematopoietic progenitors expressing VEGF receptor 
(R)1 and α4. In addition, stromal fibroblasts-derived 
CXCL12 attracts CXCR4 expressing hematopoietic 
progenitors and CSC[96]. Meanwhile it is well established 
that TEX are the central actors in establishing a 
premetastatic niche in epithelial cancer[97-99] including 
PaCa[100,101].

Taken together, CSC maintenance depends on a 
crosstalk with the surrounding matrix and nearby as 
well as distant cells. There is strong evidence that TEX 
are the major player in this crosstalks. 

Exosomes
Exosomes are small 40-100 nm vesicles. They are 
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SNARE-binding partners (t-SNARE) on vesicles[111]. 
Finally, during the invagination of early endosomes into 
MVB, the exosome cytoplasm receives its cargo (Figure 
1A).

Exosomes are composed of a lipid bilayer con
taining transmembrane proteins. The small plasma 
contains proteins, mRNA, non-coding RNA and DNA. 
The potential cargo is estimated to approximately 100 
proteins and 10000 nucleotides[102]. The origin of the 
early endosomes determines the membrane lipid and 
protein composition of exosomes. Loading of the small 
plasma is a non-random, selective process that is not 
yet fully clarified.

As reviewed[112], exosomes contain phosphatidyl
choline, phosphatidylethanolamine, phosphatidy
linositol, prostaglandins, and lysobisphosphatidic 
acid and are enriched in sphingomyelin, cholesterol, 
GM3, and phosphatidylserine[113]. Phosphatidic acid, 
diglycerides, and ceramides, lipid second messengers 
are involved in exosome biogenesis, where proteins 
of the ESCRT machinery interact with various lipids or 
lipid-related enzymes. Vps4 interacts with an oxysterol 
binding protein[114] making a link with cholesterol 
metabolism. In fact, lipids in general, and more 
specifically sterols and fatty acids play a key role in 
Golgi/endosome/vacuole sorting[115]. Furthermore, 
the high content of sphingomyelin, cholesterol and 
GM3 increase overall rigidity and stability[116,117]. 
Phosphatidylserine facilitates exosome fusion and 
fission[118] and lysobisphosphatidic acid is involved 
in intracellular fusion and budding[119]. Packaging of 
miRNA into exosomes requires the neutral sphingomye
linase2[120].

Exosomes contain approximately 7000 proteins[121,122]. 
Constitutive exosomal proteins are structural vesicle 
components and proteins involved in vesicle biogenesis 
and trafficking. For GEM-derived exosomes, including 
tetraspanin networks, higher order oligomerization is 
important[123]. There is strong evidence that exosomes 
derived from tetraspanin-enriched microdomains 
contain the unchanged membrane complex including 
attached cytoplasmic components[124], which may 
account for GEM-derived exosomes in general. In raft-
derived exosomes ceramide forming sphingolipids play 
an important role in exosome loading[125]. Otherwise, 
mono-ubiquitination, acylation or myristoylation are 
known to facilitate sorting of proteins into exosomes[126,127].

Tetraspanins are the most abundant exosome 
component[107]. They are enriched 7-124 fold in 
exosomes compared to the parental cells[128]. Additional 
abundantly recovered exosome components are 
adhesion molecules, proteases, MHC molecules, 
heat shock proteins (HSP), TSG101, Alix, annexins, 
cytoskeleton proteins (actins, cofilin-1, ezrin/radixin/
moesin, profilin-1, tubulins), metabolic enzymes, 
cytosolic signal transduction molecules and ribosomal 
proteins. Some of these constitutive exosomal proteins 
are recruited via their association with proteins engaged 
in exosome biogenesis, which is well explored for 

tetraspanin-associated integrins and proteases[129,130], 
HSP-associated transferrin receptor and cytosolic 
proteins associated with transmembrane proteins or 
attached to the inner membrane of invagination prone 
GEM[131]. Cell type-specific exosomal proteins are 
most comprehensively explored for cancer/CSC-TEX. 
Melanoma TEX contain MART1, epithelial cancer cell-
derived TEX contain EpCAM and gastrointestinal cancer 
derived TEX contain cld7, glioblastoma TEX contain 
EGFRVIII and TEX of docetaxel-resistant prostate 
cancer cells contain multidrug resistance gene 1[132-134]. 
TEX also contain c-Met, mutant KRAS and tissue 
factor[132,135,136]. Notably, all CSC markers are recovered 
in TEX[137,138].

Exosomes also contain mRNA, rRNA, tRNA, miRNA, 
lncRNA, mitochondrial DNA and short DNA sequences of 
retrotransposons[139-141], protected from degradation by 
the double lipid membrane[142,143]. RNA and DNA sorting 
into exosomes required further elaboration. Annexin-2 
recruits specific RNAs by binding [144]. A zip code in the 
3’-UTR guides miRNA recruitment. It is facilitated by 
coupling of the RNA-induced silencing complex (RISC) 
to sorting complex components. GW182 containing GW 
bodies promote continuous assembly/disassembly of 
membrane-associated miRNA-loaded RISC. Finally, a 
specific EXO motif (GGAG) controls miRNA loading by 
binding to the heterogeneous ribonucleoprotein A2B1 
(hnRNPA2B1), where sumoylated hnRNPA2B1 binds 
to an RNA transport signal (RTS or A2RE) in the 3′
UTR containing the EXOmotifs[145]. The mechanisms for 
selective recruitment of lncRNA into exosomes remains 
to be explored[146].

Though next-generation sequencing can be 
expected to shortly unravel exosomal DNA, coding 
and noncoding RNA[147], microarray analysis already 
provided some valuable information, particularly on 
exosomal miRNA. MiRNA constitutes only 1%-3% 
of the human genome, but due to multiple targets, 
miRNA control about 30% of the coding genes. With 
perfect base pairing, mRNA is cleaved by Argonaut 
(AGO), upon imperfect binding, translation is 
repressed[148]. Knowledge on miRNA greatly fostered 
progress in oncology. Selected miRNA could be linked 
to prognosis, disease progression, recurrence and 
metastasis[149]. miRNA plays an important role in 
EMT[150], maintenance of CSC[151], tumor invasion, 
migration and angiogenesis[152]. Most studies being 
not specifically concerned about TEX CSC miRNA, 
two publications should be mentioned that described 
selective TEX miRNA recovery in a subtype of 
CD44+ breast cancer cells[153] as well as a report on 
CD133+ melanoma TEX that revealed 49 miRNA not 
detected in TEX from the parental cells, 20 of these 
selectively recruited miRNA displaying cancer related 
function[154]. lncRNA makes up approximately 3% of 
the exosomal RNA. It also is transferred into host cells. 
Deep sequencing results are awaited for a profound 
evaluation on clinical relevance[155] (Figure 1B).

Taken together, CSC/metastasizing tumor cells 
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display SC features, which becomes most prominent 
during EMT and the establishment of and crosstalk 
with CSC niches including the premetastatic niche, 
supposed to be promoted by TEX. Thus, the question 
arose on the specific equipment of CSC that provides 
the base of these activities. Besides their functional 
characterization, CSC are defined by protein marker 
panels, which are frequently used for CSC/CSC-TEX 
isolation[119-122]. Functional importance of these CSC 
markers only recently received attention. We hypo
thesize that CSC markers are the major players including 
the assembly of CSC-TEX.

PANCREATIC CANCER STEM CELLS 
MARKERS
Prominent Pa-CSC markers are CD44v6, c-Met, Tspan8, 
α6β4, CXCR4, EpCAM and prominin-1 (CD133)[35,156-162], 
most of which are also recovered in other gastro
intestinal CSC. Importantly, these markers were demon
strated to be of functional relevance and to cooperate.

CD44v6 and c-MET
CD44v6 is a CSC marker in PaCa and colorectal adenocar
cinoma (CoCa)[35,162-166]. Its functional engagement was 
repeatedly demonstrated by the impact of CD44v6 
overexpression and targeted deletion on metastasis 
formation[100,167-169].

CD44v6 is a splice variant of CD44, an abundantly 
expressed adhesion molecule and the prime receptor 
for hyaluronan (HA)[170], the globular N-terminal region 
also binds collagen, laminin, fibronectin (FN) and 
selectins[171-173]. CD44v6 contains additional binding 
sites for the chemokine osteopontin (OPN)[174,175], 
HGF and VEGF[176,177] (Figure 2A). Via chemokine 
binding , CD44v6 becomes engaged in motility. OPN 
is chemotactic and haptotactic and as such important 
for cell recruitment[178] and motility. Thus, p53koCD44ko 
mice develop primary tumors at a comparable 
rate to p53ko mice, but p53koCD44ko tumors do not 
metastasize[165,179]. CD44v6 has binding sites for 
cytokines. Via bound cytokines, CD44v6 takes over 
a coordinating role in RTK activation[180,181], which is 
detailed below for the cooperation with c-Met. The 
cytoplasmic tail of CD44 plays an important role in 
signal transduction. It contains binding sites for the 
cytoskeletal proteins ezrin, radixin, moesin (ERM) and 
ankyrin. Ankyrin mediates contact with spectrin and 
is involved in adhesion and motility[182]. ERM proteins 
are engaged in regulating migration, cell shape and 
protein resorting in the plasma membrane[183]. The 
N-terminus of activated ERM proteins binds to CD44 
and the C-terminus binds to F-actin, linking CD44 
to the actin cytoskeleton[184]. The binding of CD44 
to cytoskeletal linker proteins influences signaling 
pathways downstream of CD44, which expands the 
range of CD44-mediated functions. Finally, CD44 
can be cleaved by ADAMs and MMP-14[185]. After 

ectodomain cleavage, CD44 becomes accessible to 
the presenilin/γ-secretase complex, which triggers 
intramembrane CD44 cleavage, setting free the CD44 
intracellular domain (CD44-ICD). CD44-ICD acts as a 
co-transcription factor that potentiates beside others 
CD44, MMP9, MMP3 and HIF2α transcription[186-188]. The 
last point to mention is of central importance for the 
functional activity of CD44v6 as a CSC marker. CD44v6 
O-glycosylation, the transmembrane region and the 
cytoplasmic tail affect the membrane subdomain 
localization, where recruitment into GEM[189] promotes 
the interaction of CD44 with extracellular ligands 
and the association with other transmembrane and 
cytoplasmic molecules[190]. These associations are most 
crucial for the activity of CD44 in signal transduction, 
migration, apoptosis resistance, premetastatic 
niche preparation[191,192] and the cooperation with 
additional Pa-CSC markers[98], one example being the 
recruitment of CXCR4 into GEM upon ligand binding, 
where it associates with CD44[193,194].

Another CD44 feature of special importance for 
CSC migration is the cooperativity with proteases. 
CD44 concentrates MMPs at the cell surface and 
CD44 aggregation via HA binding further facilitates 
MMP binding[187]. By the interaction with HA the 
production of uPAR, MMP2 and MMP9 is stimulated[195]. 
Furthermore, the CD44-ICD binds to a MMP9 pro
moter response element actively supporting MMP9 
transcription[187]. ProMMP2 and proMMP9 become 
activated through CD44v-associated MMP14. Cell-
bound MMPs being protected from their inhibitors, this 
allows for ECM degradation forming space for invading 
tumor cells[196]. In addition, TGFβ activation through 
CD44-associated MMP9, promotes angiogenesis and 
invasion and several mechanisms of TGFβ-promoted 
apoptosis become silenced[197,198] (Figure 2B-G).

Finally, as recently reviewed, CD44/CD44v6 and 
CD44/CD44v regulates miRNA engaged in meta
stasis[180,199]. First to note, the CD44 3’-UTR binds 
several miRNA (miR-328, miR-491, miR-671, miR-
512-3p) such that collagen 1 and FN are released from 
repression[200]. Furthermore, upon activation Oct4-Sox2-
Nanog are recruited to CD44v3 and translocate into 
the nucleus, where they initiate miR-302 transcription, 
which suppresses epigenetic regulators and increases 
expression of cIAP-1, cIAP-2 and XIAP strengthening 
drug resistance[201]. We described abundant recovery 
of miR-494 and miR-542-3p in TEX from a CD44v6+ 
rat PaCa that promoted cadherin-17 downregulation 
accompanied by MMP release from repression[202]. These 
sporadic findings will become consolidated by deep 
sequencing. Nonetheless, they provide first support for 
the engagement of CD44/CD44v6 in CSC activities also 
via miRNA.

Another Pa-CSC marker is the RTK c-Met[156,203], 
which contribution relies at least in part on its 
cooperativity with CD44v6. c-Met becomes activated 
by binding its ligand HGF. As CD44v6 bind HGF, c-Met 
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comes into proximity of CD44v6, which contributes 
to c-Met activation. c-Met is a transmembrane 
heterodimer[204]. Upon ligand binding the intracellular 
tyrosine kinase domain becomes activated through 
tyrosine phosphorylation in the carboxyterminal end 
providing docking sites for adaptor and intracellular 
kinases[205]. The major adaptor protein is Grb2, 
prominent downstream signaling cascades are MAPK, 
PI3K/Akt and via these two pathways src, STAT3, 
nuclear factor κB (NFκB), FAK and β-catenin[206]. 
CD44v6-initiated c-Met phosphorylation requires 
the cytoplasmic tail of CD44 and the interaction 
with ERM proteins for activation of the Ras-MAPK 
pathway[204], the PI3K-Akt pathway and Wnt/β-catenin 
signaling[207,208]. In addition, CD44v6 regulates c-Met 
transcription[100,209]. Similar observations account for 
the cooperation of CD44v6 with insulin-like growth 
factor-1- and PDGFR[209,210]. Major cellular responses of 
c-Met activation include migration, invasion, stemness 
maintenance, apoptosis resistance and EMT. c-Met can 
directly interact with E-cadherin, which drives nuclear 
accumulation of β-catenin and leads to disruption of 
cell-cell adhesion[211,212].

Tspan8 and α6β4
Tetraspanins are a family of small proteins passing 
the membrane 4 times[213]. Two family members, 
CD151 and Tspan8 are associated with tumor progres
sion[107,214,215]. For Tspan8 this accounts particularly 
for gastrointestinal cancer[216-226], where we provided 
evidence that Tspan8 is enriched in Pa-CSC[35,130,162]. 
What qualifies Tspan8 as a functionally relevant CSC 
marker?

Tetraspanin cross the membrane 4 times with 
the short N- and C-terminal tails being located in the 
cytoplasm. Tetraspanins have a small extracellular 
loop between transmembrane region 1 and 2 and 
a large extracellular loop between transmembrane 
regions 3 and 4. The large extracellular loop contains 
highly conserved cyteines that provide the essential 
signature of tetraspanins differentiating them from 
other 4-span molecules. The large extracellular loop 
accounts for dimerization and for interactions with 
non-tetraspanin partner molecules. Polar residues 
in the transmembrane regions stabilize the tertiary 
structures[227-230]. Palmitoylation is required for initiating 
tetraspanin-tetraspanin web formation, protects 
from degradation and provides a link to cholesterol 
and gangliosides, which supports the formation of 
GEM[231-236]. Some tetraspanins avail on a tyrosine-
based sorting motif that promotes internalization. 
Yet, internalization can also proceed via associated 
molecules with a sorting motif[237-239] (Figure 3A).

With few exceptions, tetraspanins have no 
direct ligands. Instead, they form complexes by 
interacting between themselves and a large variety of 
transmembrane and cytosolic proteins[240]. The most 
prominent tetraspanin partners are integrins[241,242], 

for Tspan8 particularly α3β1, α6β1 and α6β4[243-245], 
but α4β1 and α5β1 also associate with Tspan8[246,247]. 
Proteases are an additional class of functionally 
important tetraspanin partners[248], Tspan8 associating 
with the dipeptidase CD26, MMP14, TACE (ADAM17), 
MMP2 and 9[130,226,245,246,249]. Tetraspanins associate 
with growth factor receptors[250,251], G protein coupled 
receptors (GPCR) and their intracellular associated 
heterotrimeric G-proteins[252] as demonstrated for 
the relaxin receptor in prostate cancer[253] Prominent 
cytosolic signal transduction molecules co-immuno
precipitating with tetraspanins are protein kinase 
C (PKC), a type Ⅱ phosphatidylinositol 4 kinase 
(PI4KII) and phospholipase Cγ (PLCγ)[254-256], these 
associations being also relevant for Tspan8[243,257]. 
Most important for the activity of Tspan8 as Pa-CSC 
marker are the associations with α6β4, CD44v6 and 
EpCAM[243-245,258,259].

Besides providing a signaling platform, tetraspanin 
complex location in GEM facilitate vesicular fusion and/
or fission[107,260-262], which is supported by a tyrosine-
based sorting motif of tetraspanins or associated 
proteins[263].

Taking into account the reversibility of palmi
toylation and the instability of membrane microdo
mains, it can be expected that tetraspanin activities 
vary considerably depending on the activation state 
of the cell. The fact that tetraspanins act via laterally 
associated molecules and only exceptionally via ligand 
binding, promotes their large array of functions. 
Nonetheless, there is a common theme. Tetraspanins 
promote adhesion, spreading, motility, cable formation, 
invasion, membrane microdomain internalization and 
vesicle formation. These activities rely on integrin 
compartmentalization, internalization, modulation of 
integrin signaling and integrin biosynthesis[241,242,264]. 
Invasiveness depends on the association with pro
teases or could proceed through modulating MMP 
transcription and secretion[245,248]. The involvement of 
tetraspanins in fusion events has been convincingly 
demonstrated by the failure of egg-sperm fusion in 
CD9 and CD81 knockout mice[265], the involvement in 
cell-virus and cell-parasite interactions[266,267] and their 
morphogenic features[268,269].

Tspan8 shares most of these activities with other 
tetraspanins[107]. In gastric cancer Tspan8 promotes 
metastasis via activation of the MAPK pathway[223]. 
It contributes in particular via its strong association 
with α6β4, which is only seen upon α6β4 activation by 
ligand binding. The Tspan8-α6β4 association strikingly 
increases tumor cell motility and is accompanied by 
ezrin, paxillin, src, FAK, and rac/ras activation[245]. 
Dysregulated adhesion and motility also account 
for colorectal cancer metastasis[216]. Invasion is 
supported by the association with TACE, MMP2 and 
MMP9 and a weak association with MMP14, which 
could be indirect via the association with CD44v6[245]. 
In esophageal cancer, too, cooperativity between 
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Tspan8 and ADAM12m promotes metastases[226]. We 
consider the engagement in EMT gene transcription 
via its association with β-catenin[130] and Notch[270], also 
described for CD44[271] and EpCAM/cld7-associated 
EpCAM[272,273] and the cooperativity with CD44v6, α6β4 
and the EpCAM-cld7 complex[98,266] as most important 
for the contribution of Tspan8 to the CSC phenotype 
of PaCa (Figure 3B). The contribution of Tspan8 to 
exosome generation (Figure 3C) and, as outlined 
below to targeting[107], adds to the central importance 
of Tspan8 in Pa-CSC.

As mentioned, one of the Tspan8 partners is the 
α6β4 integrin, the linkage between α6β4 and the 
tetraspanins CD151 and Tspan8 being repeatedly 
reported[264,274,275] and ample evidence is provided for the 
engagement of α6β4 in PaCa progression[130,243,276-280].

The α6β4 integrin is unique in structure and 
subcellular localization. Distinct to other β chains, the 
cytoplasmic domain of β4 is over 1000 amino acids 
long. Towards the C terminus it contains two pairs 
of type Ⅲ fibronectin-like modules, which contain 
tyrosine phosphorylation and proteolytic cleavage sites. 
Furthermore in the resting state α6β4 is located in 
hemidesmosomes anchoring epithelial cells via laminin 
binding to the basement membrane, indicating its 
interaction with keratin filaments opposing the actin 
filament association of other integrin β chains[281]. 
However, upon stimulation, e.g., by wounding, stress 
and in tumor cells, hemidesmosomes become disa
ssembled and α6β4 is driven into GEM, preferentially 
in F-actin protrusions[207,264,282-284]. Palmitoylation of 
the β4 chain support the GEM localization and β4 
initiated signal transduction[285,286]. Upon disassembly 
of hemidesmosomes, the β4 cytoplasmic domain 
becomes phosphorylated preferentially via PKCα[287,288]. 
Phosphorylated α6β4 binding to laminin activates both 
PI3K and ras homolog family member A (RhoA) small 
GTPases[280,289,290]. Alternatively to laminin binding, 
α6β4 activation can be initiated by cooperation with 
growth factor receptors including ErbB-1,2,3 and 
c-Met[207,290-296], which promotes activation of PI3K, Akt, 
MAPK, and Rho small GTPases pathways[207,289,297-299].

a6β4 affects cell survival and angiogenesis[244,289,297,300,301] 
and was reported to alter expression of > 500 
genes[302]. Its dominating activity relies in promoting 
tumor cell invasiveness[130,274,278,279,290], which fits well to 
its association with tetraspanins in GEM. Notably, there 
is evidence for engagement in stemness[35,130,162,303-306]. 
In PaCa it is predominantly associated with Tspan8 and 
expression is upregulated in Pa-CSC[35,162]. The impact 
of this association may gain further weight by the joint 
recovery in PaCa TEX[130,204].

CXCR4
CXCR4 is a G protein-coupled chemokine receptor[307], 
upregulated in CSC, particularly migrating CSC[308] 
including metastatic PaCa and lung cancer cells with 
CSC-like properties, which show upregulated CXCR4 
and CD133 expression[309,310]. CXCR4 is suggested to 

contribute to tumor growth, angiogenesis, therapy 
resistance[90,311-313] and to have a strong impact on 
metastasis including the recruitment to specific sites 
such as the bone marrow[314]. In 85% of PaCa CXCR4 
expression is increased and was identified as an 
independent factor for poor prognosis[162,315,316].

After stromal-derived factor (SDF)1 binding 
CXCR4 and possibly extracellular HSP90 colocalize 
to lipid rafts, which facilitate together with HSP90 
signal transduction[317]. Activated CXCR4 increases 
intracellular calcium levels and induces a phosphory
lation cascade, which is terminated by CXCR4 
internalization[318]. After chemokine binding the 
heterotrimeric G protein is activated and dissociates in 
GTP-bound α and βγ subunits. Cell motility is regulated 
by several phosphorylation cascades, which include 
src and Akt as the central node. Akt phosphorylates 
several downstream targets that reorganize actin 
fibers. The βγ subunit activates PLCβ and PI3K. PLCβ 
cleaves PIP2 in IP3 and DAG, where IP3 induces the 
release of Ca from intracellular stores. DAG together 
with Ca activates PKC and MAPK. PI3K activation 
leads to activation of focal adhesion components and 
cytoskeletal proteins contributing to reorganization 
of the actin cytoskeleton. Actin polymerization is 
stabilized by HSP90, which promotes the formation 
of filipodia and directed cell migration[319]. Activated 
PI3K additionally activates via Akt the mitochondrial 
antiapoptotic signaling pathway[320]. Activated Akt 
also contributes to β-catenin stabilization and gene 
transcription[321]. Signaling through Gαi is linked 
to transcription through PI3K/Akt, NFκB, mitogen-
activated protein kinase kinase 1/2 and leads to 
activation of the Ras and Rac/Rho pathways[322]. 
Ligand binding induced dimerization results in 
G-protein-independent signaling with activation of the 
JAK/Stat pathway[323], which might be accompanied 
by polarization[324]. Finally, CD44 binding to human 
epidermal growth factor receptor 2 (HER2) supports 
CXCR4 expression in gastric cancer by suppressing 
transcription of miR-139, which targets CXCR4[325].

There are several reports on the association of 
CXCR4 with tetraspanins in hematological malig
nancies[326,327], where the GEM located complex cointer
nalizes and is recovered in TEX[328]. We recovered 
CXCR4 and Tspan8 in PaCa TEX[35,130] and CXCR4 
expressing TEX from a metastatic CoCa line promote 
metastasis formation of poorly metastatic lines. 
The authors speculate that this is due to recruiting 
CXCR4+ stroma cells to create a metastasis-permissive 
environment[329].

In brief, CXCR4 increases the motility of meta
stasizing CSC. Recruitment into GEM facilitates coope
rativity with addition GEM-located CSC markers as well 
as internalization and recovery in TEX (Figure 4).

EpCAM and claudin 7
EpCAM (EpC) is a prominent CSC-marker in colorectal, 
pancreatic, liver and breast cancer[330-332], but infor
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mation is limited, whether EpC fulfills CSC-related 
tasks[333-336]. In gastrointestinal cancer evidence was 
provided that CSC activity of EpCAM requires support 
by claudin 7 (cld7)[259,273,337-341].

EpC is a tetramer forming transmembrane molecules, 
which mediates homophilic cell-cell adhesion[342]. This 
weak homophilic binding is only seen in E-Cadherin 
cells due to EpC interfering with E-cadherin via 
disrupting the link between β-catenin and F-actin[343]. 
Due to a response element to the Wnt downstream 
effector Tcf4 it fosters Wnt signaling responses[52,344]. 
However, EpC can also act as a Wnt derepressor 
via sustaining Lrp6 (LDL receptor related protein 
6) retention[345]. EpC also can control motility via 
down-regulation of PKC[346] and by regulating MMP7 
expression[347,348]. These activities are promoted by 
the cytoplasmic tail of EpCAM (EpICD), which forms 
a complex with β-catenin, FHL2 (four-and-half-LIM-
only) and Lef-1. The complex relocates to the nucleus, 
initiating, c-myc, cyclinA and E transcription[349]. The 
finding that EpC cross-linking triggers TACE (TNFα 
converting enzyme), which cuts the extracellular 
domain such that the membrane-anchored intracellular 
domain becomes accessible to PSN2 (presenilin 2 
N-terminal fragment), which cleaves the intracellular 
peptide, EpICD, opened a new window towards 
the activity of EpC as a CSC marker[11]. EpICD also 
initiates transcription of additional reprogramming 
genes like Oct4 and Nanog, which is accompanied by 
EMT with upregulation of vimentin, Snail, Slug and 
downregulation of E-cadherin in a murine colon cancer 
and a human hepatoma line[350]. This study did not 

take into account the expression of cld7. However, 
hepatocyte progenitors express, besides EpC, cld7[351] 
and in CoCa and PaCa, EpC associates with cld7[235]. 
Under physiological conditions, too, the EpC-cld7 
association is vital, an EpCko mouse dying within one 
week after birth due to intestine destruction, which 
relies on the missing association of EpC with cld7[352]. 
These findings pointed towards a concerted activity 
of EpC and cld7 in tumor progression, which was 
confirmed by a cld7kd and an EpCkd in a metastasizing 
line. Both knockdowns sufficed to wave metastatic 
growth[341].

Claudins, four-pass transmembrane proteins, were 
first described as TJ components that are engaged in 
sealing, formation of ion channels and organization 
of paracellular small organic solute flux[353-355]. The 
importance of clds, including cld7, was repeatedly 
demonstrated by targeted deletion. A cld7ko is lethal 
within 10 d after birth due to intestine destruction[356]. 
The authors speculate that gut destruction is pro
moted by a missing association with integrins and 
upregulation of MMPs. An intestine-specific conditional 
cld7ko mouse revealed a specific enhancement of 
paracellular small organic solute flux across the TJ 
including a major bacterial product that initiates colonic 
inflammation[357].

However, claudins are also found outside of 
TJ[358-362]. Claudins are PKA, PKC and myosin light chain 
kinase targets[363-367]. Importantly, cld phosphorylation 
can prohibit integration into tight junctions with the 
consequence of loss of epithelial cell polarization[368-370]. 
Cld7 also has palmitoylation sites[36,356,371] and palmi
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toylated cld7 is excluded from TJ[371], but partitioned 
into GEM, where it is associated with monomeric 
EpCAM[273,341,372]. As already mentioned, GEM 
harbor palmitoylated proteins and act as a scaffold 
for signal transduction and reorganization of the 
cytoskeleton[373-376]. GEM-located, palmitoylated cld7 
promotes tumor progression by supporting motility 
and invasion. This was confirmed in PaCa and CoCa 
for the EpC-cld7 complex, which promotes motility 
and invasion[259,341,372] as well as drug resistance that 
is initiated by downregulation of Pten[341]. There is 
additional evidence for a shift towards EMT gene 
expression[273], palmitoylated cld7 contributing to the 
generation of EpICD[371], facilitated by the GEM location 
of TACE and PSN2. Further supporting the cld7-EpC 
complex functioning as a CSC marker, triple negative 
breast cancer cells are cld7-, but cld7-associated 
rab25 is expressed in breast-CSC[377-379]. Finally, 
outlined above, GEM are prone for internalization 
and recruitment into exosomes, which facilitate the 
metastatic process[380], where we experienced that 
cld7 actively contributes to the vesicle transport 
via associating with vesicle transporters. In CoCA 
and Pa-CSC the EpC-cld7 complex is recovered in 
TEX[273,361].

Taken together, cld7 and palmitoylated cld7 appa
rently account for distinct, non-overlapping activities 
such that dependent on the cellular context, the 
functional engagement in TJ or in GEM is dominating. 
Only GEM-located, palmitoylated cld7 displays CSC 
activity, where EpC contributes due to its association 
with GEM-located cld7. The main activity of this CSC 
marker complex builds on apoptosis resistance and 
EMT gene expression (Figure 5). A contribution of cld7 
to TEX biogenesis might further strengthen the impact 
on CSC activity.

Prominin-1
Prominin-1 (CD133) is a CSC marker in several cancer 
entities[381-384], including PaCa[156,308,385-390]. CD133 is a 
pentaspan protein[391,392]. It is suggested to be associated 
with the Notch pathway, which is accompanied by slow 
cell cycling and increased drug resistance[393,394] as well 
as Hedgehog signaling with an increased capacity of 
anchorage independent growth[395]. CD133 is also 
engaged in Akt, JNK, mTOR, MAPK and IL-8/CXCL1 
signaling cascades[396]. These findings are well in line 
with CD133 supporting maintenance of stemness and 
point towards a possible engagement in EMT gene 
transcription. Furthermore, it is well documented that 
CD133 interacts with cholesterol and is concentrated in 
different types of membrane protrusions with different 
types of cytoskeletal bases, i.e., actin for microvilli 
and tubulin for cilia. These different membrane 
protrusions also appear to be released in at least two 
types of vesicles[396,397]. The smaller vesicles resembles 
exosomes containing all the constitutive exosomal 
proteins and the exosomal lipid profile. These 

exosomes, which also contain prometastatic proteins 
like CD44 and ADAMs, are taken up by tumor cells 
and bone marrow derived stroma cells, the transfer of 
CD133 being accompanied by increased invasiveness 
and metastatic potential[154]. Whether the second type 
of exosomes proceeds via the PLP pathway[110], which 
could be suggested by the interaction of CD133 with 
cholesterol, remains to be elaborated. Irrespective of 
their origin, CD133+ TEX are recovered in CoCa and 
PaCa[35,159,361].

Taken together, CD133 is engaged in multiple 
signaling pathways linked to metastasis and EMT. 
CD133 also is another Pa-CSC marker that is con
stitutively located in internalization-prone membrane 
domains and is recovered in TEX.

In brief, the dominating features of the Pa-CSC 
markers are their connectivity, their engagement in 
multiple signaling pathways and their location in inter
nalization prone membrane domains, which accounts 
for the enriched recovery in TEX. By these charac
teristics, Pa-CSC markers are prone to contribute to 
motility, invasiveness and EMT. Via their enrichment in 
TEX they appear destinated for the crosstalk with the 
host and non-CSC.

Pancreatic cancer stem cell 
markers and the epithelial 
mesenchymal transition
There are different modes, whereby Pa-CSC markers 
can contribute to EMT, markers can be engaged in 
the regulation of EMT gene transcription factors, EMT 
gene related miRNA processing or can be targets of 
miRNA. Last, not least, they can be engaged in the 
transfer of EMT transcription factors or miRNA into 
TEX, where TEX could become the actual transporter 
of EMT. So far information on these topics are rather 
limited. One hindrance being the transient nature of 
EMT, which becomes aggravated by the definition of 
CSC as a population of cells, enriched but not purified 
by a variety of distinct procedures. An additional 
hindrance relies on the evaluation of overall expression 
of CSC markers, which does not take into account that 
CSC markers are mostly recruited into GEM, where 
they can fulfill distinct or opposing functions compared 
to activities outside of GEM, like anchoring epithelial 
cells to the lamina basalis (α6β4) or contributing to 
epithelial cell sealing (cld7). Nonetheless, there are 
reports describing regulation of CSC markers by EMT 
genes and vice versa.

Pancreatic cancer stem cell markers and EMT gene 
regulation
There are several reports on the engagement of 
CD44 in EMT gene regulation. In PaCa Snail-1 is a 
downstream target of CD44. Snail regulates MMP14 
expression, which supports invasion[398]. Another 
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cyclinD1 transcription[403] and in hepatocellular CA, a 
CD44/TM4SF5 (tetraspanin L six family member 5) 
association leads to activation of src, STAT3, Twist1 
and Bmi1, supporting establishing the CSC phenotype 
and EMT[404]. In CoCa the CD44-HA ligation initiates 
src activation, which supports Snail activation that 
represses the stemness inhibitor miR-203[405]. Finally, 
GEM-located CD44 becomes internalized and migrates 
together with acetylated STAT3 to the nucleus. Nuclear 
CD44 binds to the promoters of several genes including 
c-myc and Twist1, promoting the EMT shift[406].

The tetraspanin TM4SF5 also is involved in 
EMT induction. TGFβ1-mediated Smad activation 
causes TM4SF5 expression, EMT and EGFR pathway 
activation. The finding that inhibition of EGFR activity 
abolished EMT suggests a link between Smad and 
the EGFR in TM4SF5 expression. In fact, inhibition 
of Smad or the epidermal growth factor receptor 
(EGFR) blocked TM4SF5 expression and EMT[407]. In 
human hepatocellular carcinoma cell lines TM4SF5 
expression correlates with enhanced p27Kip1 (cyclin-
dependent kinase inhibitor 1B) expression and 
cytosolic stabilization. Cells acquire an elongated 
phenotype, which relates to RhoA inactivation and loss 
of E-cadherin expression is accompanied by EMT[408]. 
In glioma, KITENIN (VANGL planar cell polarity 
protein 1), a tetraspanin partner, induces expression 
of the EMT markers N-cadherin, Zeb1, Zeb2, Snail 
and Slug and expression of the CSC markers CD133, 
aldehyde dehydrogenase 1 and ephrin receptor 
B1[409]. Signaling through TIMP-1 (metallopeptidase 
inhibitor 1) induces in breast cancer in dependence 
of CD63 Twist1 expression, where a knockdown of 
Twist1 rescues E-cadherin expression[410]. In PaCa, 
upregulation of Notch-1 depends on Tspan8, similar 
effects being not induced by CD151[130]. Instead, in 
mammary progenitor cells CD151 accounts for nuclear 
distribution of Slug and represses mammary branching 
morphogenesis[306], whereas in ovarian cancer the 
CD151-α3β1 complex represses Slug-mediated EMT 
and Wnt signaling[411]. Similar, highest level of CD63 in 
melanoma revealed a significant resistance to undergo 
an EMT program[412].

The CSC marker CXCR4, too, was described 
to contribute to EMT. Constitutively active CXCR4, 
but not wild type CXCR4 induces EMT in mammary 
carcinoma cells, characterized by upregulation of 
Zeb1, upregulation of cadherin 11, p120 isoform 
switching, activation of ERK1/2 and MMP2, but loss 
of E-cadherin. In 3-dimensional cultures, wt CXCR4 
also suffices promoting EMT, which is accompanied by 
CXCR2, CXCR7, CXCL1, CXCL8, CCL2, IL6 and GMCSF 
expression. Inhibition of CXCR4 together with MAPK1 
or PI3K reversed the EMT phenotype[413]. UHRF1 
(ubiquitin-like, with PHD and RING finger domains 1) 
plays a crucial role in DNA CpG methylation, chromatin 
remodeling and gene expression. Downregulation 
of UHRF1 induces Zeb1 and Snail expression accom

panied by decreased E-cadherin and increased 
N-cadherin and vimentin expression. The authors 
speculate that activation of the CXCR4 signaling 
pathway is of central importance[414]. 

EpC is well accepted as a CSC marker, but reports 
on its contribution to EMT are opposing. One study with 
breast cancer cells reports on the contribution of EpC 
in TGFβ1-induced EMT. TGFβ1 treatment induced EpC 
expression, which promoted EMT and cell migration. 
EpC overexpression further enhanced TGFβ1-induced 
EMT. TGFβ1 treatment induces JNK phosphorylation 
that promoted increased Jun and Fos expression 
suggesting an important role of EpC in the induction 
of EMT via JNK signaling[415]. Opposing findings were 
reported for prostate cancer, where EpC was repressed 
upon induction of EMT. miR-200c and miR-205 are two 
inducers of MET (mesenchymal-epithelial transition). Re-
induction of the epithelial phenotype through miR-200c 
and miR-205 was accompanied by EpC reexpression[416]. 
Instead, we reported on unaltered EpC and increased 
cld7 expression in PaCa and CoCa spheres/holoclones 
and migrating tumor cells[341]. Recruitment of monomeric 
EpC into GEM via palmitoylated cld7 and EpC cleavage 
could well account for EpC initiating pronounced EMT 
induction[273,371]. Furthermore, we and other groups 
reported on upregulation of GEM-located palmitoylated 
cld7 in CSC and a pronounced release of the EpC-cld7 
complex into TEX[273,361], which promote Snail, Slug and 
Twist expression[273]. Opposing findings have also been 
reported, where a knockdown of cld7 induced EMT. A 
cld7 signature gene profile revealed highly upregulated 
Rab25, a CoCa suppressor and regulator of polarized 
cell trafficking in cld7 overexpressing cells. Rab25 
silencing counteracted the effects of cld7 expression and 
increased p-src and Erk1/2 expression[417]. The study 
did not take into account the engagement of rab25 in 
vesicle traffic. Further elaborating the recruitment of the 
EpC-cld7 complex into GEM and exosomes may clarify 
these seemingly opposing findings.

Finally, CD133 overexpression induces “stemness” 
properties in PaCa cells and EMT. EMT induction 
and increased invasiveness are mediated by NFκB 
activation[418].

Thus, CD44v6, c-Met, Tspan8, α6β4, CXCR4 and 
CD133 are engaged in promoting EMT. We and others 
provided evidence for a contribution of an EpC-cld7 
complex in EMT. However, this topic is still controversial.

Pancreatic cancer stem cell markers, EMT and miRNA
There is abundant information on altered miRNA 
profiles in cancer, including CSC and tumor cells 
in EMT. For more detailed information on miRNA 
in PaCa excellent reviews are available, besides 
others in[137,419-422]. Thus, we will mention only a few 
publications referring explicitly to the mutual impact of 
CSC markers on miRNA and vice versa.

HA-activated CD44 binds Twist, which supports 
transcription of miR-10b, which blocks the tumor 
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suppressor HOXD10 allowing for RhoA and ROK 
activation with consequences on organization of the 
cytoskeleton/tumor cell motility as well as apoptosis 
resistance via activation of the PI3K/Akt pathway. 
Activated CD44 also binds to Nanog, which together 
with Stat3 translocates to the nucleus and initiates 
miR-21 transcription, which downregulates the 
tumor suppressor PDCD4 and promotes expression 
of survival proteins[423]. HA-activated CD44v3 
interacts with Oct4, Sox2 and Nanog, stimulating 
miR-302 expression, which leads to downregulation 
of epigenetic regulators and activation of survival 
proteins[424]. CD44-bound HER2 induces histone 
deacetylation accounting for transcriptional repression 
of miR-139, which targets CXCR4, the finding providing 
a link between upregulated expression of CD44 and 
CXCR4 in gastrointestinal CSC[325]. Notch-1-induced 
increased miR-21 and decreased miR-200b, miR-200c, 
let-7a, let-7b and let-7c expression is accompanied by 
upregulation of the CSC surface markers CD44 and 
EpC[402]. Up-regulated miR-155 significantly increases 
the population of CSCs as well as EMT in liver cancer 
cells via silencing TP53INP1 (tumor protein p53 
inducible nuclear protein 1), changes being initiated 
by TGFβ1 that indirectly regulates TP53INP1 via 
induction of miR-155[425]. miR-34a induces MET via 
down-regulation of Snail by binding to the Snail 3’-UTR, 
which is accompanied by down-regulation of Bmi1, 
CD44, CD133, olfactomedin and c-myc. Conversely, 
Snail and Zeb1 bind to E-boxes in the miR-34a/b/c 
promoters, which represses miR-34a and miR-34b/c 
expression. Thus, inactivation of miR-34a/b/c, which 
is frequent in cancer, can shift the equilibrium of 
these reciprocal regulations towards EMT[78]. Sonic 
hedgehog signaling also becomes engaged in EMT 
by downregulation of miR-200b and let-7c with 
concomitant upregulation of CSC markers[426]. In 
CoCa, miR-142-3p targets CD133, Lgr5 (leucine-rich 
repeat containing G protein-coupled receptor 5) and 
ABCG2, where Oct4 suppresses miR-142-3, expression 
being particularly low in CSC-enriched spheres[427]. In 
PaCa miR-34 is lost in the population of CSC, which is 
accompanied by Notch and Bcl2 pathway activation, 
transcription of miR-34 being regulated by p53[428]. 
However, it should be mentioned that most of these 
studies were oriented towards therapy and evaluated 
in first instance the regulation of EMT transcription 
factors, their reduction expectedly correlating with CSC 
marker expression, which excludes in several instances 
a statement on a direct impact of these miRNA on 
CSC marker expression. A miRNA analysis of rat and 
human PaCa with downregulation of the CSC markers 
CD44v6, EpC, cld7 and Tspan8[35,202] confirmed low 
level miR-34a recovery in CD44v6-competent PaCa 
and upregulated expression in CD44v6kd PaCa, 
which is in line with miR-34a targeting CD44[429]. 
Furthermore, miR-103 transcription is more than 

two-fold increased in TEX from CD44v6-competent 
compared to CD44v6-deficient cells. As c-Met supports 
miR-103 transcription[430], the finding indicates that 
via CD44v6 c-Met also becomes engaged in miRNA 
transcription and/or posttranscriptional regulation. 
Finally, CD44v6-related changes are mostly reflected 
in the TEX miRNA profile such that miRNA reduced 
in CD44v6kd cells is also lower in TEX from CD44v6kd 
than CD44v6-competent cells[202]. Tspan8 and cld7 
exerted a pronounced effect mostly on miRNA known 
to be engaged in EMT gene expression. The functional 
relevance remains to be explored.

In brief, there is evidence for an impact of CSC 
markers on miRNA expression/repression. miRNA also 
affects CSC marker expression directly or via EMT 
genes and involved signaling pathways. Still, we are 
far from having a precise overview of these interlinked 
networks.

contribution of Pancreatic 
cancer stem cell markers to TEX
Pancreatic cancer stem cell markers and recruitment of 
proteins and miRNA into TEX
We already outlined the engagement of Pa-CSC 
markers in TEX biogenesis, where GEM located 
Tspan8 plays a decisive role in early endosome 
formation[124,129]. CD44v6, α6β4, the EpC-cld7 complex 
and partly CD133 are co-recruited due to enrichment 
in these tetraspanin-dominated microdomains. 
According to unpublished findings, palmitoylated cld7 
is actively engaged in early endosome traffic towards 
MVB and the release of ILV as exosomes. Fittingly, 
Tspan8, α6β4, CD44v6, cld7 and CD133 are enriched 
in TEX compared to Pa-CSC[162]. Comparative analyses 
of miRNA in TEX derived from Pa-CSC marker-
expressing vs -depleted cells confirmed enriched 
recovery of EMT-related miRNA in Pa-CSC TEX and 
indicated an additional loss, respectively, enrichment of 
several miRNA related to the metastatic process, which 
still requires elaboration of the routing into TEX[202]. 
Similar findings were reported at the proteome level 
by the group of Rak. TEX from A431 cells that were 
driven into EMT exhibit profound qualitative differences 
in their proteome compared to TEX from the parental 
cells, but also differed from the A431-EMT cells with 
30 proteins related to growth, signaling and motility 
being uniquely recruited into A431-EMT-derived TEX. 
The authors propose that changes in the cellular 
differentiation status translate into unique qualitative 
rearrangements in the cargo of TEX[431]. Along this line, 
the oncoprotein latent membrane protein 1 (LMP1) 
recruits HIF1α into TEX of nasopharyngeal carcinoma. 
TEX HIF1α remains function-competent in recipient 
cells, LMP1+ and HIF1a+ TEX initiating EMT with 
reverting the expression of E- and N-cadherins in TEX 
target cells[432]. 
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Contribution of pancreatic cancer stem cell markers to 
TEX binding and uptake
The power of exosomes relies on their ubiquitous 
presence, their particular protein, mRNA, ncRNA and 
DNA profile and their most efficient binding and/or 
transfer in target cells. Information on the latter 
aspect, though a prerequisite for clinical translation, is 
still limited. 

Binding of PaCa TEX to the extracellular matrix 
(ECM) varies with the adhesion molecule profile 
of the exosomes. Thus, high CD44 expression is 
accompanied by HA binding and high α6β4 expression 
by laminin (LN) 332 binding, the findings being 
confirmed by antibody blocking[433]. Myeloma cell 
line- and myeloma patient-derived TEX revealed 
fibronectin as key heparan sulfate-binding ligand 
and mediator of TEX-cell interactions, where removal 
of heparan sulfate from TEX dramatically inhibiting 
TEX-target cell interactions. The authors describe a 
dual role of heparan sulfate in TEX-cell interaction. 
TEX heparan sulfate captures FN. Concomitantly it 
acts as a FN receptor on target cells[434]. Live-cell 
imaging also revealed a critical role of FN and integrin 
cargo sorting into TEX, which promoted persisting 
cell motility[435]. In line with the latter report, there is 
abundant evidence for the engagement of integrins 
in exosome binding. During reticulocyte maturation, 
integrin α4β1 is recruited into exosomes, which bind 
to FN. The interaction depends on divalent cations and 
is inhibited by an α4-specific antibody, the authors 
speculating on functional activity of exosomal α4β1 by 
binding to endothelial cells through CD54[436]. B cell 
exosomes also interact with the ECM and fibroblasts 
via β1 and β2 integrins, antibody blocking studies 
confirming engagement in adhesion to collagen-I and 
FN and to activated fibroblasts via TNFα[437]. TEX of a 
PaCa transiently interfered with leukocyte migration. 
This is due to TEX occupying the migration-promoting 
receptors CD44, α4, CD62L and CD54[438]. T cells, 
too, recruit dendritic cell (DC) exosomes not via the 
T cell receptor complex, but via leukocyte function-
associated antigen-1 (LFA1)[439]. Most impressive 
has been the elucidation that TEX integrin profiles 
account for the organ preference of metastasis 
initiated by formation of a premetastatic niche. A 
proteome analysis revealed distinct integrin expression 
patterns in subpopulations of TEX. Notably, exosomal 
integrins α6β4 and α6β1 were associated with lung 
metastasis, whereas exosomal integrin αvβ5 was 
linked to liver metastasis. A blockade of α6β4 or αvβ5 
decreased TEX uptake, as well as lung, respectively, 
liver metastasis. Furthermore, TEX from mouse and 
human tumors are preferentially taken up by resident 
cells at their predicted metastatic destination, i.e., 
TEX of tumors metastaizing to the lung are taken up 
by lung fibroblasts and epithelial cells, TEX of tumors 
that metastasize to the liver are captured by Kupffer 
cells and TEX from tumors metastasizing to the brain 

are recovered in brain endothelial cells (EC). Finally, 
TEX integrins displayed functional activity, activating 
Src phosphorylation and pro-inflammatory S100 
gene expression after uptake by resident cells[440]. 
These studies confirmed and expanded our previous 
work that described distinct TEX integrins to target 
e.g., EC, fibroblasts or bone marrow cells, where 
the selectivity of TEX uptake is guided or, at least, 
facilitated by the engagement of protein complexes 
at the exosome and the target cell membranes[441]. In 
fact, only defined tetraspanin-integrin complexes are 
taken up by selected target cells. Importantly, TEX 
uptake proceeds via binding to internalization prone 
microdomains[129]. The constitutively high expression 
of GEM-located tetraspanins and the multitude 
of associated molecules, with a preference for 
integrins[107], favors our suggestion. Besides supporting 
the selectivity of binding and uptake, the engagement 
of complexes of TEX receptors and target cell ligands 
favors induction of signal transduction as e.g., known 
for T cell activation, which requires engagement of the 
T cell receptor and accessory molecules that interact 
with MHC and costimulatory molecules on DC[442]. 
So far we supported our hypothesis by elaborating 
that TEX expressing Tspan8 and α4β1 preferentially 
target EC and promote EC and EC progenitor acti
vation[247], where exosomes from Tspan8 and α4 
transfected fibroblasts exhibited a comparable target 
cell selectivity[129]. Instead, PaCa TEX expressing 
Tspan8 and α6β4 preferentially bind and are taken up 
by lymph node stroma cells and lung fibroblasts[130], 
lymph nodes and lung being the exclusive metastatic 
sites for this PaCa[443].

Taken together, for GEM-derived TEX there is strong 
evidence for preferential uptake by corresponding, 
internalization prone membrane microdomains. 
Furthermore, the work by the Lyden group depicting 
TEX integrins accounting for metastasis organ 
preference[440] and our work on the engagement of 
tetraspanin-integrin complexes facilitating selective 
targeting[129,130,247,443] provides a solid base for defining 
GEM-derived TEX target structures. Comparable studies 
for TEX uptake via phosphatidylserine receptors, 
by phagocytosis, macropinocytosis and membrane 
fusion[444-449] are still awaited (Figure 6A).

TEX, PANCREATIC CANCER STEM CELL 
MARKERS AND THE CROSSTALK WITH 
THE HOST
In advance of reviewing the impact of Pa-CSC markers 
on angiogenesis and the premetastatic niche, we want 
to refer to excellent reviews that elaborate the impact 
of TEX on tumorigenicity[98,450], tumor growth related 
thrombosis[451-453], hematopoiesis[199,454,455] and mature 
leukocytes, including all components of the immune 
system[456-463], where particularly the Pa-CSC TEX 
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markers CXCR4, CD44v6 and c-Met may play a role.

Contribution of pancreatic cancer stem cell TEX markers 
to angiogenesis
There is ample evidence on the engagement of TEX 
in angiogenesis. It was first described for TEX of a 
non-metastatic rat pancreatic cancer that induced 
overshooting angiogenesis resulting in a lethal 
consumption coagulopathy[464]. TEX were preferentially 
taken up by EC and EC progenitors, binding and 
uptake requiring a Tspan8-α4β1 complex. Notably, by 
exchange of α4β1 by α6β4, TEX did not bind to EC and 
overshooting angiogenesis was prevented[246]. Uptake 
of Tspan8-α4β1 TEX by EC resulted in upregulation 
of tissue factor, VEGFR1, CXCL5, CCR1 and HMOX1 
as well as of Tpan8 and CD31. Depending on the 
culture condition, progenitor cells could also be driven 
into smooth muscle cell differentiation[250]. We are 
not aware on further studies on Pa-CSC TEX markers 
in angiogenesis. Therefore, and as TEX-induced 
angiogenesis meanwhile is described in nearly all 
tumor entities, we refer to some reviews on TEX-
initiated signal transduction in EC as well as on the 
engagement of transferred miRNA[152,465-467]. However, 
we want to mention that to our knowledge, the first 
report on exosomes induced angiogenesis referred to 
platelet-derived exosomes[468], which we interpret as 
an additional evidence that CSC take over physiological 
programs including the use of exosomes.

Pancreatic cancer stem cell markers, TEX and the 
crosstalk with the host
Paving the way for metastasizing tumor cells: 
Exosomes are rich in function-competent proteases. 
Exosome proteases can modulate the exosome protein 
profile, the ECM and/or target cells. Besides others, 
MMP2, 7, 9, 14, ADAM10, 15, 17, ADAMTS1, 13 and 
several dipeptidases were recovered in TEX[469,470]. 
These TEX proteases can modulate the TEX protein 
profile, which includes the Pa-CSC markers CD44, 
shedded by ADAM10, MMP14 and MMP9[471-473], and 
EpC, shedded by ADAM14[474]. Besides this internal 
regulation of CD44v6 and EpC expression in TEX, 
frequently accompanied by release of the ICD, which 
in turn promotes transcription of genes promoting 
tumorigenicity and metastasis[187,349,350], the association 
of TEX CD44v6 and Tspan8 with proteases severely 
affects the host matrix. The modulated matrix, in turn, 
facilitates metastasizing tumor cell migration towards 
the metastatic organ.

HA is the most abundant ECM protein, with TEX 
binding via CD44[170,475]. Notably, TEX also contain HAS 
and Hyal and were described to be HA-coated. The 
authors speculate that TEX serve as special vehicle for 
HA, where exosomal HA itself or associated molecules 
could create an environment supporting cancer cell 
invasion and metastasis[476]. In concern about the 
contribution of CD44v6, we noted in some, but not all 

tested TEX of PaCa-CD44v6kd lines a reduction in HAS3 
and upregulated expression of Hyal1. In addition, 
CD44v6-competent, but not CD44v6-deficient TEX-
modulated HA promotes tumor cell migration[100].

CD44 regulates expression and cooperates with 
several proteases[195,196,477], where MMP2, MMP3, MMP7, 
MMP9, MMP14 as well as ADAM10 and ADAM17 are 
recovered in PaCa TEX and MMP9, MMP14 and ADAM17 
are strongly downregulated in TEX of CD44v6kd 
lines[433]. These proteases coimmunoprecipitate with 
CD44v6 in PaCa-TEX, indicating their recruitment into 
TEX via associated CD44v6[433]. CD44v6-competent 
PaCa TEX degrade coll Ⅰ, coll Ⅳ, FN, LN111 and, less 
pronounced LN332, matrix degradation by PaCa TEX 
being accompanied by pronounced tumor cell migration 
and invasion[433]. Similar findings were reported for 
MMP14, where the authors suggest that coll IV, which 
is not a MMP14 target, becomes degraded by MMP14-
activated proMMP-2[470]. Finally, host matrix degradation 
by CD44v6-competent TEX is accompanied by 
activation of proliferation and survival signals[433]. This 
is likely due to liberation of growth factors, chemokines 
and additional proteases from the degraded matrix as 
well as by cleavage of additional targets by the TEX 
proteases[207,478].

Tspan8 also associates with proteases, particularly 
MMP9 and TACE[245] and Tspan8-associated proteases 
are recovered in PaCa TEX, where they degrade the 
host matrix[130]. The efficacy of Tpan8-expressing 
TEX appears to exceed that of CD44v6+ TEX, which 
likely is due to the strong association of tetraspanins 
with integrins[241,242]. Thereby matrix protein binding 
becomes focalized, strengthening the efficacy of 
matrix degradation. This accounts in particular for 
LN332 degradation. Due to its association with TACE, 
Tspan8 also contributes to FN degradation[130]. Though 
we focused on the contribution of the Pa-CSC marker 
Tspan8 in matrix modulation, other TEX tetraspanin-
protease complexes also contribute to host matrix 
modulation[130,460,479-484].

In brief (Figure 6B), TEX proteases modulate 
the ECM thereby creating a path for migrating PaCa 
cells and a milieu favoring tumor cell migration, 
angiogenesis and premetastatic niche establishment. 
The Pa-CSC markers CD44v6 and Tspan8 essentially 
contribute to the process of matrix modulation by TEX 
due to their engagement in protease transcription 
(CD44v6), TEX biogenesis (Tspan8) and their asso
ciation with proteases in GEM (CD44v6 and Tspan8).

Preparing a niche: TEX uptake remodels recipient 
non-tumor cells towards driving tumor growth. After 
the first description of a premetastatic niche[96], the 
engagement of TEX soon became obvious, which we 
were the first to describe for a rat PaCa-CD44v6kd 
line that had lost the capacity of the parental line 
to metastasize, but regained metastatic capacity, 
when rats were pretreated with TEX of the parental 
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line[100]. Similarly, renal CSC expressing the SC marker 
CD105 release TEX that trigger angiogenesis and 
greatly enhanced lung metastases. The CD105+ TEX 
are characterized by sets of mRNAs and microRNAs 
supporting angiogenesis and tumor progression[95]. 
Also melanoma TEX home to sentinel lymph nodes 
imposing molecular signals that support melanoma 
cell recruitment, extracellular matrix deposition, and 
vascular proliferation, thereby facilitating lymphatic 
metastasis[485]. A proteome analysis of CoCa TEX 
uncovered enrichment particularly of metastasis-pro
moting factors (c-Met, S100A8, S100A9, tenascinC), of 
signal transduction molecules (ephrinB2, jagged1, src, 
TRAF2 and NCK interacting kinase <TNIK>), and lipid 
raft/lipid raft-associated components (caveolin, flotilin1 
and 2, CD133) in TEX derived from a metastatic 
line. An additional key finding was the recovery of 
EpC-cld7 and TNIK-rap2A complexes in TEX[132] (Figure 
6C). The mode of TEX-induced premetastatic niche 
formation was also elaborated using TEX from a 
metastatic and a non-metastatic melanoma line. TEX 
from highly metastatic melanoma line increased the 
metastatic behavior of primary tumors by affecting 
bone marrow progenitors through c-Met. Melanoma-
TEX reprogrammed bone marrow progenitors towards 
a provasculogenic phenotype defined by c-Kit, Tie2 
and c-Met expression. Reduced c-Met expression 
in TEX diminished the pro-metastatic behavior of 
bone marrow cells. c-Met+/c-Kit+/Tie2+ bone marrow 
progenitors were also recovered in patients with 
metastatic melanoma. Premetastatic niche promoting 
TEX were high in α4, HSP and c-Met. The authors 
conclude that metastasizing melanoma TEX “home” to 
the bone marrow, where they reprogram bone marrow 
cells to support tumor growth and metastasis[486]. 
The pathway of persisting reprogramming remains 
to be elaborated. However, it is conceivable that TEX 
contain transcription factors inducing a differentiation 
switch in this non-differentiated cells. In a mouse 
model of PaCa that metastasizes to the liver, TEX 
induce liver premetastatic niche formation and 
increase liver metastatic burden. TEX uptake by 
Kupffer cells promoted TGFβ and FN secretion. The 
fibrotic microenvironment enhanced recruitment of 
bone marrow-derived macrophages. The authors 
report on high macrophage migration inhibitory factor 
(MIF) expression in PaCa TEX, where a MIF blockade 
prevented liver pre-metastatic niche formation and 
metastasis. High MIF expression in TEX was also 
seen at an early stage of PaCa growth in patients 
that developed liver metastasis[101]. Evidence for 
the transfer of c-Met and for TEX stimulated c-Met-
signaling in target cells fits to the CD44v6-c-Met 
complex recovery in Pa-CSC TEX[202,433]. Activation of 
src also may well proceed via CD44v6-c-Met as well 
as via integrin tetraspanin complexes[130,207]. The high 
recovery of inflammatory HSP in TEX could be due to 
the association with Tspan8 and could strengthen the 

efficacy of the frequently described upregulation of 
chemokines and mostly immunosuppressive cytokines 
as well as of inflammatory complement components 
and S100 in Pa-CSC TEX[487-490]. However, for the latter 
set of molecules a link to Pa-CSC markers remains to 
be defined (Figure 6C and D).

The miRNA content of TEX from CD44v6kd, 
Tspan8kd and cld7kd cells differ from that of wt cell-
derived TEX. Exploring the impact of CD44v6-linked 
miRNA transferred into stroma cells revealed 18 mRNA 
downregulation. From the total TEX miRNA, 60% could 
potentially be engaged in targeting these 18 mRNA. 
We focused on abundant miR-494, potentially targeting 
MAL and cdh17, and miR-542-3p, targeting cdh17 and 
TNF receptor associated factor 4 (TRAF4). MAL can 
contribute to differentiation and apical sorting[491] and 
cdh17 to tumor growth/Wnt signaling[492]; TRAF4 exerts 
morphogenetic functions[493]. Lymph node stroma 
transfection with these miRNAs was accompanied by 
down-regulation of the predicted target(s). Significant 
up-regulation of mRNA in exosome-treated LnStr 
pointed toward mRNA up-regulation through miRNA 
silencing regulatory mRNA. Cdh17 represses MMP2 and 
MMP9 expression[494] and down-regulation of cdh17 
in miR-494 and miR-542-3p transfected stroma cells 
was accompanied by MMP2, MMP3 and MMP14 up-
regulation[202]. In another study with PaCa TEX, the 
authors found down-regulation of exosomal miR-155 
and miR-196a and upregulation of miR-17-5p, 
upregulation correlating with metastasis and advanced 
tumor stages[33]. Further controlling for the impact of 
miR-155 in PaCa TEX revealed normal fibroblasts to 
become converted into CAF after uptake of miR-155 
containing TEX. TP53INP1 is a target of miR-155 in 
fibroblasts and TP53INP1 protein downregulation can 
contribute to fibroblasts activation[495] (Figure 6E).

Without question TEX account for preparing a niche 
for migrating tumor cells. In PaCa TEX, there is strong 
evidence for a direct engagement of CD44v6, c-Met, 
integrins and Tspan8-associated integrins. An active 
contribution of cld7, the EpCAM-cld7 complex, CD133 
and CXCR4 remains to be explored. According to the 
current state of knowledge, binding-induced as well as 
uptake-initiated signal transduction and the transfer of 
miRNA cooperate in target cell modulation.

Exosomal pancreatic cancer stem cell markers and the 
crosstalk with non-cancer stem cells
CSC TEX also modulate other tumor cells via protein, 
mRNA and miRNA transfer[496,497].

One of the first and most impressive reports on 
TEX-uptake being critical in tumor growth stimulation 
describes the intercellular transfer of the oncogenic 
receptor EGFRvⅢ via TEX to glioma cells, lacking this 
receptor, which causes transformation of indolent 
glioma cells[133]. The oncogenes Ras, Myc, SV40T also 
induce signaling and gene expression[136,140,498]. Amphi
regulin is an EGFR ligand. Compared to recombinant 
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protein, TEX-associated amphiregulin increases tumor 
invasiveness 5-fold. The finding strongly suggests the 
transfer of additional messages via TEX[499]. In lung 
cancer TEX miR-21 and miR-29a act a TLR ligand and 
function as agonist. This leads to NFκB activation and 
IL6 and TNFα secretion promoting metastasis[500]. A 
set of miRNA, including miR-584, miR-517c, are not 
detected in the donor cell, but are highly enriched 
in hepatocellular carcinoma TEX. A potential target 
of these miRNA is TGFβ activated kinase 1, which 
activates JNK and MAPK pathways and NFκB. In 
cocultures, these TEX miRNA promote anchorage-
independent growth and apoptosis resistance[501]. 
Apoptosis resistance can also rely on the transfer of 
multidrug resistance (MDR)1[502], which is enriched in 
TEX[503].

Furthermore, after oncogenic H-Ras-induced EMT, 
the TEX profile significantly changes, including TGFβ, 
TNFα, IL6, TSG101, Akt, ILK1, β-catenin, hepatoma-
derived growth factor, casein kinase Ⅱ, annexinA2, 
α3 integrin, caveolin and MMPs, the authors pointing 
out that the protein content of EMT TEX likely can 
induce EMT in recipient cells[473]. TEX also contain 
EBV-derived LMP1, which modulates together with 
HIF1α EMT marker expression in recipient cells[504]. 
TEX from human CSC-enriched CoCa lines can induce 
EMT in the CSC-depleted population. There is a strong 
induction of Notch, N-cadherin becomes upregulated 
and E-cadherin downregulated[273]. In a rat PaCa, CSC 
TEX promote Notch and Snail transcription depending 
on the presence of Tspan8[130] (Figure 6F). Still being 
at the descriptive level, it is obvious that CSC TEX can 
confer CSC features towards non-CSC including EMT, 
where TEX components work in concert.

Thus, Pa-CSC TEX markers are essential com
ponents for TEX targeting and account for selective 
responses, e.g., via src activation. For other responses, 
including the impact of miRNA, a contribution of 
Pa-CSC markers to the recruitment into TEX was 
repeatedly demonstrated. Though information on the 
contribution of exosomal Pa-CSC markers on target 
cell activation/reprogramming is still limited, available 
data convincingly demonstrate the engagement 
of Pa-CSC markers in TEX assembly, binding and 
message transfer.

CONCLUSION
CSC markers have long been considered as a tool for 
CSC enrichment and diagnosis. We here demonstrate 
for the Pa-CSC markers CD44v6, c-Met, Tspan8, 
α6β4, EpCAM, cld7, CXCR4 and CD133 that these 
markers contribute in maintaining CSC features 
essential for tumor persistence and progression. These 
Pa-CSC markers are required to (1) maintain the CSC 
status by their engagement in signal transduction, 
transcription including miRNA and repression of 
tumor suppressor genes; (2) establish a stem cell 
niche including a premetastatic niche by affecting 

via ligand binding target cell activation and message 
transfer; (3) support EMT by gene transcription and/or 
silencing; and (4) tumor cell migration and invasion via 
associated integrins and proteases.

The power of these markers relies on their residence 
in GEM, which allows for concerted activity and the 
engagement in TEX biogenesis and delivery. The CSC 
marker panel being maintained in TEX guarantees CSC 
to prepare the host for their maintenance at distant 
sites.
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