REVIEW

4567 Current understanding of the metabolism of micronutrients in chronic alcoholic liver disease

 Wu J, Meng QH

MINIREVIEWS

4579 COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract

ORIGINAL ARTICLE

Basic Study

4589 Feasibility and efficacy evaluation of metallic biliary stents eluting gemcitabine and cisplatin for extrahepatic cholangiocarcinoma

 Xiao JB, Weng JY, Hu YY, Deng GL, Wan XJ

Case Control Study

4607 Establishment of a pattern recognition metabolomics model for the diagnosis of hepatocellular carcinoma

 Zhou PC, Sun LQ, Shao L, Yi LZ, Li N, Fan XG

Retrospective Cohort Study

4624 Impact of interval between neoadjuvant chemoradiotherapy and surgery in rectal cancer patients

Retrospective Study

4639 Monocyte-to-lymphocyte ratio as a prognostic factor in peripheral whole blood samples of colorectal cancer patients

 Jakubowska K, Koda M, Grudzińska M, Kańczuga-Koda L, Famiński W

4656 Clinical and prognostic significance of CC chemokine receptor type 8 protein expression in gastrointestinal stromal tumors

4669 Initial experience of single-incision plus one port left-side approach totally laparoscopic distal gastrectomy with uncut Roux-en-Y reconstruction

4680 Prognostic value of pretreatment contrast-enhanced computed tomography in esophageal neuroendocrine carcinoma: A multi-center follow-up study

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4703</td>
<td>Mucosal-associated invariant T cells in hepatitis B virus-related liver failure</td>
<td>Xue H, Li H, Ju LL, Han XD, Cheng TC, Luo X, Chen L, Shao JG, She YJ, Bian ZL</td>
</tr>
<tr>
<td>4718</td>
<td>Risk of malignancy in Caroli disease and syndrome: A systematic review</td>
<td>Fahrner R, Dennler SG, Inderbitzin D</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial board member of *World Journal of Gastroenterology*, Dr. Tatsuo Kanda received an MD from the Niigata University School of Medicine (Japan) in 1991 and a PhD from the Graduate School of Medicine at Chiba University (Japan) in 1999. He then undertook post-doctoral training in the Departments of Pathology and Internal Medicine at Saint Louis University School of Medicine (United States) under the mentorship of Prof. Ratna B. Ray and Prof. Ranjit Ray, respectively. He returned to Japan and became an Associate Professor in the Department of Gastroenterology and Nephrology at Chiba University, Graduate School of Medicine in 2008. In his current roles as Associate Professor and Clinical Professor in the Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine at Itabashi-ku, Tokyo, Japan, he performs clinical and basic research on hepatic and pancreatic diseases. (L-Editor: Filipodia)

AIMS AND SCOPE
The primary aim of *World Journal of Gastroenterology* (*WJG*, *World J Gastroenterol*) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. *WJG* mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The *WJG* is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2020 edition of Journal Citation Report® cites the 2019 impact factor (IF) for *WJG* as 3.665; IF without journal self cites: 3.534; 5-year IF: 4.048; Ranking: 35 among 88 journals in gastroenterology and hepatology; and Quartile category: Q2.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yu-Jie Ma; Production Department Director: Xiang Li; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
August 21, 2020

COPYRIGHT
© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract

Michail Galanopoulos, Filippos Gkeros, Aris Doukatas, Grigorios Karianakis, Christos Pontas, Nikolaos Tsoukalas, Nikos Viazis, Christos Liatsos, Gerassimos J Mantzaris

Abstract
The pandemic of coronavirus disease 2019 (COVID-19), caused by a newly identified β-coronavirus (SARS-CoV-2) has emerged as a dire health problem, causing a massive crisis for global health. Primary method of transmission was firstly thought to be animal to human transmission. However, it has been observed that the virus is transmitted from human to human via respiratory droplets. Interestingly, SARS-CoV-2 ribonucleic acid (RNA) has been isolated from patient stools, suggesting a possible gastrointestinal (GI) involvement. Most commonly reported clinical manifestations are fever, fatigue and dry cough. Interestingly, a small percentage of patients experience GI symptoms with the most common being anorexia, diarrhea, nausea and vomiting. The presence of viral RNA in stools is also common and fecal tests can be positive even after negative respiratory samples. The exact incidence of digestive symptoms is a matter of debate. The distribution of Angiotensin converting enzyme type 2 receptors in multiple organs in the body provides a possible explanation for the digestive symptoms’ mechanism. Cases with solely GI symptoms have been reported in both adults and children. Viral RNA has also been detected in stool and blood samples, indicating the possibility of liver damage, which has been reported in COVID-19 patients. The presence of chronic liver disease appears to be a risk factor for severe complications and a poorer prognosis, however data...
INTRODUCTION

Novel viral diseases, such as the severe acute respiratory syndrome coronavirus (SARS-CoV) from 2002 to 2003, H1N1-influenza in 2009, and most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) posed serious threats to Health care systems[1]. In December 2019, a cluster of patients presenting with atypical pneumonia was reported by hospitals in Wuhan, China[2]. This was attributed to a newly identified β-coronavirus, which initially named 2019 novel coronavirus by WHO. The virus was afterwards renamed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the disease it caused named coronavirus disease 2019 (COVID-19)[3]. On January 30, 2020 WHO declared COVID-19 outbreak as a Public Health Emergency of International Concern[4]. Later, on March 11, 2020 the WHO declared this outbreak as a Pandemic. Indeed, as of May 3, 2020, a total of 3349786 cases of COVID-19 have been confirmed globally causing 238628 deaths due to acute respiratory failure or other complications[4]. In contrast to SARS-CoV and MERS-CoV, the new virus is highly transmissible between individuals even during the pre-clinical phase of COVID-19.

Although the COVID-19 is typically an airborne infection, the massive expression of its receptor, Angiotensin converting enzyme type 2 (ACE2) throughout the gastrointestinal (GI) tract, the identification of virus in the surface epithelial cells of the stomach, small intestine and the colon, atypical presenting clinical symptoms from the GI tract, and prolonged shedding of virus or viral fragments in the stools of infected individuals have raised concerns whether the virus can be transmitted via an oral-fecal route as well as whether the GI tract serves as a repository for future re-infections[5-11].

Taking all the above into consideration, the aim of this review is to update what is known on the origin and transmission of SARS-CoV-2, but mainly to focus on the manifestations of the GI tract and their pathophysiological background, so that physicians on the one hand, not to underestimate or disregard digestive symptoms due to the small number of patients exhibiting exclusively this symptomatology and on the other, to have SARS-CoV-2 on their mind when the “gastroenteritis” type symptoms predominate.
ORIGIN OF SARS-COV-2

SARS-CoV-2 is a β-coronavirus, which is spherical positive-single stranded Ribonucleic acid (RNA) virus. Coronaviruses were identified in the 1960s and belong under the family of Coronaviridae (Figure 1). Members of this large family of viruses are able of causing enteric, neurological, hepatic and respiratory manifestations in various animal species, such as cattle, cats, camel and bats[1-3]. So far, seven Coronaviruses (HCoVs) capable of infecting humans and causing respiratory diseases have been identified including HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. The first two HCoVs, HCoV-OC43 and HCoV-229E are known since the 1960s[4,5]. The other two known betaCoVs, SARS-CoV and MERS-CoV are responsible for severe and potentially fatal respiratory tract infections, with the fatality rates being up to 10% and 35%, respectively (Table 1)[6-9].

The genetic sequence analysis has shown that SARS-CoV-2 shares genetic identity of 79.0% and 51.8% to SARS-CoV and MERS-CoV, respectively, explaining the nomenclature of SARS-CoV-2. SARS-CoV-2 is also 96% identical to the entire genome of bat coronavirus. Based on the evolutionary analysis and virus genome sequencing, bat has been proposed as natural host of the virus[9,10].

TRANSMISSION

It has been proposed that COVID-19 originated in the Open Seafood market of Wuhan with bat being the presumed potential reservoir of SARS-CoV-2 and animal-to-human the primary mode of transmission (Figure 2). The virus was transmitted by intimate contact, primarily between patients or asymptomatic carriers with family members and friends[11,12]. Among patients who were not residents of Wuhan, 72.3% had a previous contact with people from Wuhan and 31.3% reported recent travel to Wuhan[13]. Of note, the incubation period of COVID-19 is usually 3-7 d, but it may extend up to 12.5 d, which renders tracing the asymptomatic carriers extremely difficult[14]. As a result, mathematical models have estimated that every seven days, this novel epidemic doubled in contrast with the basic reproduction number (R0-R naught), which is 2.2[14].

COVID-19 is predominantly an airborne infection; transmission occurs via respiratory droplets and potentially via aerosolised material[15]. Although an oral-fecal transmission has been proposed, the origin of the virus in the GI tract (swallowed saliva and/or rhino-pharyngeal exudate?) and the clinical significance of viral RNA shedding in the stools cannot per se confirm this mode of transmission because Reverse transcription-polymerase chain reaction (RT-PCR) may detect viral fragments and not the whole virus whereas stool cultures for the SARS-CoV-2 are still lacking or have low specificity[16]. Thus, more studies are needed to understand the mechanisms of transmission and incubation times, along with the duration of infectivity and clinical course.

MAIN CLINICAL AND LABORATORY MANIFESTATIONS OF COVID-19

COVID-19 presents predominantly as a respiratory infection, with the most common symptoms being fever, fatigue and dry cough (Table 2)[17,18]. The median age of patients hospitalized for confirmed cases of COVID-19 is 56 years, with a slight male preponderance (54%)[19].

In the early stages of the disease, lymphopenia appears to be the commonest laboratory finding (up to 80%), while the total white blood cell number varies[20,21]. This finding might suggest that SARS-CoV-2 acts on lymphocytes by inducing a cytokine storm in the body. Other studies support that SARS-CoV-2 consumes many immune cells and inhibits the body’s normal function[9]. Persistent severe lymphopenia is associated with a grave outcome. Chest pain in association with a rise in troponin etc. indicates involvement of myocardium. As ACE2 is widely distributed in the human tissues, liver enzymes may also show abnormalities[10,16]. The most common laboratory findings are summarized in Table 3.

Chest CT should be preferred over plain chest X-rays because it may reveal bilateral ground glass or patchy shadowing, especially in the lower lung lobes in the great majority of patients. In patients presenting solely with GI symptoms and underwent abdominal CT scans, the radiologist should examine the lower respiratory tract to identify signs of pneumonia. However, there are patients without or minimal imaging
Table 1 Direct comparison between severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus 2, based on receptor usage, primary and intermediate host, incubation period, number of cases and deaths, and basic reproduction number (R0)

<table>
<thead>
<tr>
<th>Virus</th>
<th>Receptor</th>
<th>Primary host</th>
<th>Intermediate host</th>
<th>Incubation period</th>
<th>Number of cases (Globally)</th>
<th>Number of deaths (Globally)</th>
<th>Fatality</th>
<th>R0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-CoV</td>
<td>ACE2</td>
<td>Bats</td>
<td>Raccoon dogs and civets</td>
<td>Approximately between 2 d and 10 d, and up to 14 d</td>
<td>8000</td>
<td>800</td>
<td>10%</td>
<td>2-5</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>DPP4 (CD26)</td>
<td>Bats</td>
<td>Camels</td>
<td>Typically, between 2 d and 14 d</td>
<td>2500</td>
<td>800</td>
<td>35%</td>
<td>2-5</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Most likely ACE2</td>
<td>Bats</td>
<td>Pangolin (Manis pentadactyla)</td>
<td>Current estimates between 3d to 7 d, and up to 14 d</td>
<td>Over 3349786 as of 03 May, 2020</td>
<td>Over 238628 as of 03 May, 2020</td>
<td>3.4% as of 3 March, 2020(^{[37]})</td>
<td>2-3.5</td>
</tr>
</tbody>
</table>

SARS-CoV: Severe acute respiratory syndrome coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ACE2: Angiotensin converting enzyme type 2.

Table 2 Pulmonary findings in patients with coronavirus disease 2019

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Number of patients</th>
<th>Cough (n, %)</th>
<th>Dyspnea (n, %)</th>
<th>Sputum production (n, %)</th>
<th>Chest pain/Tightness (n, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al(^{[21]})</td>
<td>138</td>
<td>82 (59.4%)</td>
<td>43 (31.2%)</td>
<td>37 (26.8)</td>
<td>NA</td>
</tr>
<tr>
<td>Guan et al(^{[19]})</td>
<td>1099</td>
<td>745 (67.8%)</td>
<td>205 (18.7%)</td>
<td>370 (33.7%)</td>
<td>NA</td>
</tr>
<tr>
<td>Chen et al(^{[38]})</td>
<td>99</td>
<td>81 (82%)</td>
<td>31 (31%)</td>
<td>NA</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Zhang et al(^{[39]})</td>
<td>140</td>
<td>90/120 (75%)</td>
<td>NA</td>
<td>NA</td>
<td>44/120 (36.7%)</td>
</tr>
<tr>
<td>Xu et al(^{[7]})</td>
<td>10</td>
<td>5 (50%)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Jin et al(^{[40]})</td>
<td>651</td>
<td>53/74 (71.62%) in patients with GI symptoms 382/577 (66.2%) in patients without GI symptoms</td>
<td>NA</td>
<td>29/74 (39.19%) in patients with GI symptoms 198/577 (34.32%) in patients without GI symptoms</td>
<td>NA</td>
</tr>
<tr>
<td>Cheung et al(^{[38]})</td>
<td>59</td>
<td>22 (37.3%)</td>
<td>4 (6.8%)</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

GI: Gastrointestinal; NA: Not applicable.

COVID-19 is generally a mild disease and patients, especially children and young adults, do not develop serious respiratory symptoms. However, a proportion of patients are hospitalized with hypoxia and/or radiographic evidence of pneumonia. The course of severe disease is bi-phasic, an early phase presenting with typical respiratory viral infection symptoms followed by a sudden deterioration and complications [acute respiratory distress syndrome (61.1%), arrhythmia (44.4%) and shock (30.6%)] leading to multi-organ failure and death due to massive cytokine release syndrome\(^{[10,19,21,22]}\). The median hospital stay is 10 d and mortality was originally reported to be approximately 3%. However, this review has found case fatality to be approximately 1.4%\(^{[1,10,21,22]}\). Even though the number of deaths from SARS-CoV-2 is considered an intimidating phenomenon, according to previously published studies the Middle Eastern Respiratory Syndrome virus or SARS-CoV exhibited a higher case fatality rate\(^{[9]}\).
Table 3 Presentation of laboratory findings in coronavirus disease 2019 patients

<table>
<thead>
<tr>
<th>Author</th>
<th>Number of patients</th>
<th>Most common findings</th>
<th>Notes/comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al[21]</td>
<td>138</td>
<td>↓Lymphocytes; ↑PT; ↑LDH</td>
<td>Differences between ICU and non-ICU patients</td>
</tr>
<tr>
<td>Guan et al[22]</td>
<td>1099</td>
<td>↓Lymphocytes; ↑CRP; ↑D-dimers</td>
<td>Lymphopenia is common, severe in some cases</td>
</tr>
<tr>
<td>Zhang et al[23]</td>
<td>140</td>
<td>↓Lymphocytes; ↓Eosinophils; ↑CRP; ↑D-dimers</td>
<td>Correlation between blood eosinophil and lymphocyte count</td>
</tr>
<tr>
<td>Chen et al[24]</td>
<td>99</td>
<td>↓Hb; ↓Alb; ↑D-dimers; ↑LDH</td>
<td>Damage in lymphocytes, changes in immune cells</td>
</tr>
<tr>
<td>Chen et al[25]</td>
<td>113</td>
<td>↓Lymphocytes; ↑WBC; ↑D-dimers</td>
<td>Substantial differences between deceased and recovered patients</td>
</tr>
</tbody>
</table>

WBC: White blood cells; PT: Prothrombin time; LDH: Lactate dehydrogenase; ICU: Intensive care unit; CRP: C-reactive protein; Alb: Albumin; Hb: Hemoglobin.

GASTROINTESTINAL MANIFESTATIONS IN ADULT AND PEDIATRIC POPULATION

Various studies from several countries have reported a variety of GI symptoms, especially nausea, abdominal pain, and diarrhea, in patients with COVID-19 (Table 4)[10,24,25-43]. GI symptoms are of special significance in COVID-19 patients because, in contrast to other coronaviruses, they appear early and may worsen during the course of disease, whereas in some cases may be solitary[10,26-29]. In patients, presenting solely with GI symptoms there is usually a delay in disease diagnosis and time to first respiratory symptoms, which renders these patients as a source of viral dissemination[26,28]. Thus, GI symptoms seem to be of special significance in COVID-19.

A recent review estimated a 17.6% prevalence of GI symptoms in COVID-19...
Table 4 Gastrointestinal findings in patients with coronavirus disease 2019

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Number of patients</th>
<th>Anorexia / Loss of appetite (n, %)</th>
<th>Diarrhea (n, %)</th>
<th>Nausea (n, %)</th>
<th>Vomiting (n, %)</th>
<th>Abdominal pain/discomfort (n, %)</th>
<th>GI bleeding (n, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al[24]</td>
<td>138</td>
<td>55 (39.9%)</td>
<td>14 (10.1%)</td>
<td>17 (12.7%)</td>
<td>3 (2.2%)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Guan et al[6]</td>
<td>1099</td>
<td>NA</td>
<td>42 (3.8%)</td>
<td>55 (5%)</td>
<td>NA</td>
<td>4 (3.8%)</td>
<td>NA</td>
</tr>
<tr>
<td>Pan et al[28]</td>
<td>103</td>
<td>81 (78.6%)</td>
<td>35 (33.9%)</td>
<td>NA</td>
<td>2 (1.94%)</td>
<td>2 (1.94%)</td>
<td>NA</td>
</tr>
<tr>
<td>Zhang et al[30]</td>
<td>140</td>
<td>17/139 (12.2%)</td>
<td>18/139 (12.9%)</td>
<td>24/139 (17.3%)</td>
<td>7/139 (5%)</td>
<td>8/139 (5.8%)</td>
<td>NA</td>
</tr>
<tr>
<td>Fang et al[31]</td>
<td>305</td>
<td>101/201 (50.2%)</td>
<td>146/295 (49.5%)</td>
<td>59/201 (29.4%)</td>
<td>32/201 (15.9%)</td>
<td>12/201 (6%)</td>
<td>NA</td>
</tr>
<tr>
<td>Lin et al[32]</td>
<td>95 (58 with GI manifestations)</td>
<td>17 (17.9%)</td>
<td>23 (14.2%)</td>
<td>17 (17.9%)</td>
<td>4 (4.2%)</td>
<td>2 (2.1%)</td>
<td>2 (2.1%)</td>
</tr>
<tr>
<td>Cheung et al[33]</td>
<td>59 (15 with GI manifestations)</td>
<td>NA</td>
<td>13 (22%)</td>
<td>NA</td>
<td>1 (1.7%)</td>
<td>7 (11.9%)</td>
<td>NA</td>
</tr>
<tr>
<td>Xia et al[34]</td>
<td>20</td>
<td>NA</td>
<td>3 (15%)</td>
<td>NA</td>
<td>2 (10%)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Xiao et al[35]</td>
<td>73</td>
<td>NA</td>
<td>26 (35.6%)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10 (13.7%)</td>
</tr>
</tbody>
</table>

GI: Gastrointestinal.

The exact incidence of digestive symptoms is a matter of debate, with anorexia being reported as the most common symptom in one study (39.9%-50.2%), whereas diarrhea posing as most common in both adult and pediatric populations in other studies (2%-49.5%) [24.28.30]. Notably, Fang et al[31] corroborated the incidence of diarrhea and found that more than 50% of reported diarrhea occurred following admission and initiation of antiviral therapy, with approximately 22.2% complaining about loose stool before COVID-19 diagnosis. Excluding anorexia as non-specific, approximately 20% of patients develop GI symptoms. Gastrointestinal symptoms usually worsen with disease progression and signifies a more insidious onset of disease[23]. There are also reports in the literature of acute hemorrhagic colitis as well as GI bleeding[12,25,33].

Interestingly, as aforementioned, a small number of patients seem to exhibit solely GI symptoms like vomiting and diarrhea without concomitant respiratory manifestations. Worthy of note is the first confirmed case of SARS-CoV-2 infection in the United States, where the patient had been reportedly suffering from a 2 d history of vomiting and diarrhea before admission[24]. A portion of those patients only manifests fever a few days following admission[24]. The latter demands a high level of awareness among clinicians, because patients are still admitted in non-COVID-19 wards for GI symptoms and this could represent a potential infection hazard, as was described by Zhang et al[31] in the Lancet.

What is also worthy of mention here is that the presence of digestive symptoms and specifically diarrhea is associated with a higher incidence of stool positivity for viral RNA as well as a higher viral load for SARS-CoV-2 RNA. The presence of viral RNA in stool was detected in almost half (48.1%) of the patients[24], with a reported duration of 33-47 d after the first onset of disease and even after clearance of nasal-throat RT-PCR samples compared to approximately 9% of patients without GI symptoms[25,33].

SARS-CoV-2 may cause liver injury which is similar to respiratory coronaviruses, with which it shares genome[24], but its incidence is less common than that of SARS-CoV infection (5%-37% vs up to 60%) [24,28]. Mild to moderate elevation of aminotransferases is often reported, but signs of significant liver injury are rather rare. On the contrary, higher rates of GI symptoms and liver injury with greater elevations of aminotransferases, are associated with severe disease and are often seen in Intensive Care Unit patients[21,22]. To date, there has been one case report of SARS-CoV-2 infection manifesting as acute hepatitis, without the presence of any respiratory symptoms, in a patient under therapy for HIV infection[24].

Lastly, data regarding children with COVID-19 is scarce. Although clinical presentation is similar to that in adults, i.e. upper respiratory symptoms (dry cough, nasal congestion, pharyngalgia) and diarrhea, pediatric patients develop milder clinical manifestations and biochemical and radiological abnormalities are less
pronounced than in adults\(^7\). Specifically, high fever, lymphopenia, leukopenia or leukocytosis, and elevated transaminases are seldom seen in children\(^7\). Nevertheless, there are recent reports from United Kingdom and other Western countries of cases of critically ill children presenting with features of multisystem inflammatory state, similar to toxic shock syndrome and Kawasaki disease linked to COVID-19, but further research on this topic is expected\(^{34,35}\).

Finally, and in addition of the above, as these GI symptoms are not specific and may develop in patients without COVID-19, such as patients with peptic ulcer disease, inflammatory bowel disease, other gastrointestinal infections, intake of NSAIDs, antibiotics, PPIs, or traditional remedies etc., it is of utmost importance that physicians and radiologists are fully aware to suspect underlying COVID-19 even in patients with pre-existing GI conditions\(^{36}\).

PATHOPHYSIOLOGY OF GASTROINTESTINAL AND LIVER MANIFESTATIONS

As discussed previously, SARS-CoV-2 enters and replicates into cells by binding to its ACE2 receptor\(^8\). ACE2 receptor is expressed in type 2 alveolar cells, but abundant expression of ACE2 has been found in epithelial cells throughout the GI tract and...
Distribution of ACE2 staining positivity is mainly in the cytoplasm of the epithelial cells of the stomach and intestine and the cilia of glandular epithelial cells. In COVID-19 patients, the presence of viral nucleocapsid protein has been verified in almost the entirety of the GI lumen, such as gastric, duodenal and rectal glandular epithelial cells, apart from the esophagus. From a histological point of view, the epithelium of the digestive tract shows plasmacytic and lymphocytic infiltration with interstitial edema, mainly in the stomach, duodenum and rectum and more patchy lymphocytic infiltration in the esophagus. Thus, SARS-CoV-2 may cause digestive symptoms either by direct viral invasion in target cells and/or immune-mediated tissue and end-organ injury. However, symptoms of COVID-19 might be indirectly caused by infection-induced respiratory complications, which lead to tissue hypoxia, loss of cell integrity, cell injury and finally cell death. In favor of this hypothesis is the common use of antibiotics, NSAIDs and corticosteroids for the treatment of tissue hypoxia in critically ill patients. However, as many patients developed diarrhea after hospitalization or after administration of medication, drug-induced GI manifestations, such as nausea, abdominal pain, and diarrhea, cannot be excluded.

Liver exposure to SARS-CoV-2 is unavoidable. The presence of ACE2 receptors in cholangiocytes supports a retrograde mode of liver damage following the entrance of the virus in bile tree cells. Liver biopsies confirm the presence of viral RNA in liver tissues. Furthermore, atypical signs of hepatocyte injury have been presented, such as cell apoptosis along with ballooning, acidophilic bodies and lobular inflammation, corroborating the mechanism of direct viral injury. Liver injury may also be induced by treatment, as drugs particularly associated with liver injury, such as antibiotics, antiretrovirals and NSAIDs, are regularly administered to COVID-19 patients. Last but not least, SARS-CoV-2 may trigger the massive release of pro-inflammatory cytokines leading to cardio-pulmonary manifestations, tissue hypoxia and thrombosis, which may cause or exacerbate underlying liver injury.

COVID-19 AND ITS IMPACT ON CHRONIC LIVER DISEASES

The impact of SARS-CoV-2 on chronic liver diseases remains largely unknown and under investigation. Guan et al. found that patients with pre-existing hepatitis B infection had a more severe course of COVID-19 indicating that SARS-CoV-2 replication and persistent liver injury need further investigation in patients with chronic HBV hepatitis/infection on long-term treatment. Furthermore, screening of liver donors for SARS-CoV-2 and/or active COVID-19 is essential before liver transplantation to avoid transmission of the virus to the graft recipient. Preliminary studies suggest that patients with cancer or liver cirrhosis are more susceptible to SARS-CoV-2 infection, probably because of their immunocompromised status. Data on other chronic liver conditions, such as non-alcoholic fatty liver disease, alcohol-related liver disease and autoimmune hepatitis are very limited and the impact of SARS-COV-2 liver injury should be further investigated. The severity and incidence of complications in these patients, including secondary infection, hepatic encephalopathy and liver failure should also be examined.

CONCLUSION

The respiratory system is the primary route for transmission of COVID-19. Several studies have proposed that the GI tract is affected by SARS-CoV-2, but an oral-fecal route of transmission has not yet been documented. Patients with COVID-19 may develop a variety of GI manifestations, which may pre-exist or not be accompanied by respiratory symptoms. Clinicians should be alerted and not underestimate or disregard these early or mild GI symptoms because patients may be infected and transmit the virus. Liver injury may also occur during COVID-19 but seems to be multifactorial. The time window between fecal and respiratory PCR tests show that viral RNA shedding persists for longer periods. Further research is needed to confirm whether RT-PCR testing in feces in combination with respiratory tract tests are helpful to assess the presence of infectious virus and the termination of quarantine.
Liang W, faecal transmission.
Tian Y, 10.1016/j.cgh.2020.03.020
COVID-19?
Ungaro RC
Hepatol
Zhang C, 32287140
China: A Descriptive, Cross-Sectional, Multicenter Study.
[PMID: 31978945]
DOI: 10.1056/NEJMoa2001017
DOI: 10.1007/s11606-020-05762-8

