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Abstract
Tumor heterogeneity is one of the central challenges in oncology, contributing to 
treatment resistance and disease recurrence. Bulk RNA sequencing has advanced 
understanding of tumor biology, yet its averaging effect conceals cell type-specific 
alterations. Single-cell RNA sequencing overcomes this limitation by capturing 
gene expression and cellular phenotypes with high-resolution, thereby illu-
minating tumor composition and the surrounding microenvironment. Within this 
framework, differential abundance (DA) detection has emerged as a powerful 
strategy to quantify shifts in cell population proportions across conditions. Unlike 
differential gene expression, DA highlights compositional changes in cellular 
ecosystems, offering a structural perspective on tumor dynamics. This review 
introduces the main categories of DA methods in single-cell RNA sequencing 
analysis, outlining their modeling strategies, assumptions, and representative 
applications in oncology. We also discuss key challenges, including reliance on 
clustering quality and batch correction. By linking methodological principles with 
biological insight, this review clarifies the role of DA detection in single-cell 
oncology and provides a conceptual framework for integrating compositional 
analysis into efforts to understand tumor evolution, treatment response, and 
disease stratification.
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Core Tip: This review highlights differential abundance (DA) detection as a transformative framework in single-cell 
oncology, enabling high-resolution deconstruction of tumor heterogeneity. It surveys widely adopted DA methods and 
demonstrates how capturing dynamic shifts in cellular ecosystems yields critical mechanistic insights, supports clinical 
decision-making, and informs precision therapeutic strategies. The ongoing methodological refinements and multi-omics 
convergence will further elevate DA detection to a cornerstone technology in precision oncology.
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INTRODUCTION
Tumor heterogeneity remains one of the most formidable barriers in oncology, continuing to drive variability in disease 
progression, therapeutic response, and clinical outcomes despite major therapeutic advances[1,2]. To address this 
challenge, a deeper understanding of the hierarchical organization of tumors is essential - not only helps clarify the 
fundamental principles of tumor evolution but also provides a theoretical foundation for identifying new therapeutic 
targets and refining intervention strategies, ultimately aiming to improve treatment efficacy and patient survival[3,4]. 
Early studies on tumor heterogeneity largely relied on bulk RNA sequencing. Although this approach captures extensive 
transcriptomic information, it measures only average signals across cell populations. As a result, it lacks the resolution to 
detect transcriptional heterogeneity at the single-cell level, limiting its ability to dissect the complex cellular composition 
and dynamic reorganization within tumor tissues[5].

The advent of single-cell RNA sequencing (scRNA-seq) has propelled cancer research from tissue-level profiling to a 
high-resolution, single-cell paradigm[5,6]. Compared to conventional approaches, scRNA-seq has deepened our 
understanding of tumor lineage diversity and the intricacies of the immune microenvironment[7,8]. It has also reshaped 
prevailing concepts of tumor initiation and progression, laying a robust foundation for precision oncology[9]. Most 
applications, however, have focused on differentially expressed genes (DEGs) to uncover regulatory mechanisms and 
therapeutic targets[10,11]. Yet many clinically relevant features are not solely reflected in transcriptional shifts but also in 
cellular composition changes within the tumor environment[12-14]. During tumor progression, therapy, or immune 
responses, alterations in the abundance or proportion of specific subpopulations often provide more immediate 
functional and prognostic signals[15,16]. In this context, single-cell differential abundance (DA) detection, provides 
exactly such a solution by statistically detecting changes in cell-type or state frequencies across conditions, thereby 
offering a compositional perspective distinct from gene-centric DEG analysis[17,18].

Initially applied in microbiome studies[19,20], DA concepts were later adapted to single-cell omics data. Some studies 
reported differences in cell-type composition across conditions, but often without measures of statistical uncertainty[21,
22]. These pioneering studies laid the foundation for subsequent single-cell-specific DA methods. Early implementations 
of DA detection typically relied on conventional statistical tests, such as Student’s t-test or Wilcoxon test, to compare 
changes in cell type abundance[23]. Since 2018, an increasing number of DA methods specifically tailored for single-cell 
data have been developed. Many of these methods incorporate covariate adjustment strategies. This enhances statistical 
power and improves sensitivity in detecting shifts in rare or functionally critical cell populations[17,24,25]. Together, DA 
detection represents a paradigm shift from a gene-centric to a cell-composition-centric view of tumor heterogeneity. It 
bridges molecular mechanisms with microecological dynamics and links molecular-level insights to clinically relevant 
phenotypes.

In this review, we provide a comprehensive overview of the theoretical foundations and representative methodologies 
of DA detection, outline a standardized analytical workflow, and highlight its critical applications in the study of tumor 
heterogeneity. Furthermore, we discuss the current technical challenges and propose future directions for methodological 
development.

THE PROCESSES OF DA DETECTION
As a powerful complement to traditional analysis of DEGs, DA detection offers a novel framework for interrogating the 
dynamic reorganization of cellular architecture, thereby enhancing our understanding of tumor heterogeneity. While 
DEGs analysis has long been a mainstay in transcriptomics studies, it cannot account for shifts in cell-type proportions 
that may carry important biological meaning - especially in heterogeneous environments like tumors. As a result, there is 
growing interest in establishing clear, standardized pipelines for DA detection to ensure results are both reproducible and 
biologically interpretable. A complete DA detection typically follows four main steps: Data preprocessing, selection of 
analytical strategies, cell-type annotation, and statistical testing (Figure 1A). These steps are briefly outlined below.
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Figure 1 Overview of single-cell differential abundance detection. A: The general workflow of single-cell differential abundance (DA) analysis. Data 
obtained from single-cell sequencing are preprocessed and then subjected to DA detection. The results of DA detection are often validated experimentally or 
integrated with multi-omics data to facilitate deeper insights into the dataset; B: Single-cell DA methods can be broadly categorized based on whether they rely on 
clustering strategies; C: Common statistical models and typical output metrics used in single-cell DA detection. DA: Differential abundance; GLM: Generalized linear 
models; logFC: Log2 fold change; FDR: False discovery rate.

Data preprocessing
Before DA detection, scRNA-seq data must undergo rigorous quality control and normalization, following standard 
protocols in single-cell transcriptomics. Common preprocessing steps include filtering out low-quality cells (e.g., those 
with excessive mitochondrial gene content), removing genes that are rarely expressed, and performing data normal-
ization. These steps reduce biases and ensure that the abundance estimates in later stages reflect true biological variation 
rather than technical artifacts.

Choice of analytical strategy
Approaches to DA detection can be categorized into two main classes: Clustering-based and clustering-free ones 
(Figure 1B). More detailed descriptions of these methods regarding their principles, algorithms, code availability, etc. 
have been placed in Zenodo (https://zenodo.org/records/17113256). Clustering-based methods rely on cell groups 
identified through unsupervised clustering (such as Leiden or Louvain algorithms). Once clusters are defined, the relative 
abundance of each cluster can be compared across diverse conditions[26,27]. Clustering-based approaches work well 
when cell types are clearly separated and can be reliably annotated. Bioinformatics methods in this category include 
scCODA[28], propeller[29], and sccomp[26], which have been applied in various biological contexts. Clustering-free 
methods take a different route. Instead of relying on predefined clusters, they examine the local neighborhood structure 
of cells within a reduced dimensionality space[24,25,30]. These methods are especially useful when cell states transition 
gradually or when cell boundaries are hard to define. By focusing on spatial or topological relationships among cells, 
clustering-free tools like Milo and DA-seq can detect more subtle changes in cell populations that might be missed by 
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clustering-based techniques[24,25].

Cell annotation
Accurate annotation of cell types or states is essential for interpreting the DA results. In clustering-based workflows, cell 
annotations serve as the basis for abundance comparison. Even in clustering-free approaches, marker gene-based 
interpretation is typically required after regions of DA are identified. Poor or overly coarse annotations can obscure subtle 
but functionally relevant shifts in cellular composition, and therefore integrating high-quality reference markers or 
leveraging supervised annotation tools is strongly recommended.

Statistical modeling and significance evaluation
The final step involves selecting appropriate statistical models to test for differences in cell-type abundance. The choice of 
model should consider sample size, data complexity, and the presence of covariates (Figure 1C). For clinical datasets with 
complex covariates, such as sex, treatment regimen, or age, models based on generalized linear mixed models or Bayesian 
regression frameworks (e.g., scCODA, scDC, Milo) are recommended[24,28,31]. These approaches allow for the flexible 
incorporation of covariates, enabling researchers to control for potential confounding factors and improve the robustness 
of statistical inference. In small-sample contexts, resampling-based strategies such as that used by propeller help stabilize 
estimates and improve robustness by averaging over multiple permutations or subsamples[29]. As shown in Figure 1C, 
key outputs from DA analyses typically include log2 fold change, adjusted P value, and false discovery rate. Importantly, 
statistical significance alone does not guarantee biological relevance. Researchers are encouraged to validate DA findings 
through complementary approaches, such as flow cytometry or spatial transcriptomics, to confirm changes in cell 
abundance.

DA DETECTION IN INVESTIGATING TUMOR HETEROGENEITY
By quantitatively comparing changes in the abundance of cell populations across distinct physiological and pathological 
states, DA detection not only enhances sensitivity in detecting cellular structural remodeling but also serves as a critical 
bridge linking molecular mechanisms to clinical phenotypes. In doing so, DA detection is driving a conceptual shift in 
tumor heterogeneity research from a gene-centric, static perspective to a systems-level ecological framework that 
emphasizes the dynamic nature of cellular organization. To comprehensively assess the research potential and transla-
tional value of DA detection in oncology, this review focuses on three major dimensions: Mechanistic insight, clinical 
decision support, and precision therapy (Figure 2). To illustrate the practical use of DA detection in oncology, Table 1 
compiles representative tumor-specific applications. For each cancer type, we included 1-2 studies in which DA methods 
were explicitly applied, prioritizing examples that yielded biological or clinical insights. The purpose is to highlight the 
breadth of DA applications across diverse tumor contexts, rather than to provide an exhaustive or comparative eva-
luation of all available studies.

DA DETECTION ENABLES MECHANISTIC INSIGHTS INTO TUMOR HETEROGENEITY
The initiation, progression, and treatment response of tumors are accompanied by extensive remodeling of the immune 
landscape and broader cellular ecosystem. DA detection provides a robust framework for quantifying changes in the 
abundance of specific cell types or subpopulations, thereby uncovering biological mechanisms that are often inaccessible 
through gene expression analyses alone. By revealing how cellular ecosystems are reshaped over time or under 
perturbation, DA detection offers unique mechanistic insights into the dynamic nature of tumor heterogeneity 
(Figure 2A).

A compelling example of this is found in high-grade serous ovarian cancer, where Launonen et al[32] use DA detection 
to investigate how chemotherapy reshapes the immune landscapes. Their results revealed the novel macrophage subsets 
and altered states of cluster of differentiation (CD) 8+ and CD4+ T cells following treatment, suggesting a reconfiguration 
of immune functionality rather than a simple depletion of immune components. Notably, most differentially abundant 
epithelial cell states were detected in untreated tumors, suggesting that chemotherapy reduces not only tumor burden but 
also phenotypic diversity. Further spatial analysis indicated chemotherapy redirected CD8+ T cell interactions from 
tumor cells toward macrophages, hinting at an adaptive reorganization of cell-cell communication networks[32].

The utility of DA detection in revealing lineage bias was further demonstrated in a study by Garner et al[33] who 
examined hematopoietic dynamics in breast cancer. They found that tumor-bearing mice exhibited a skewing of 
hematopoiesis toward the myeloid lineage, with a marked reduction in erythroid and lymphoid progenitors. This 
observation supported the hypothesis that solid tumors can influence systemic immunity by reprogramming bone 
marrow output - a phenomenon with far-reaching implications for immunosuppression and metastasis[33].

In addition to treatment-related changes, DA detection is also well suited for tracking early events during tumor 
progression. For instance, Gan et al[34] used DA detection to trace immune remodeling across sequential pathological 
stages. As tissue progressed from the transition from non-atrophic gastritis to intestinal metaplasia and ultimately 
carcinoma, the proportion of immune cells steadily increased, while epithelial components declined. This compositional 
shift highlighted the intestinal metaplasia stage as a potential window of immune escape. Further analysis of changes in 
immune cell abundance identified the interleukin-17 signaling pathway as a key regulatory factor in this process, offering 
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Table 1 Some specific applications of differential abundance methods in the study of tumor heterogeneity

Tumor type Practical application DA method Ref.

Head and neck squamous 
cell carcinoma

Milo identified FRC-like fibroblasts as significantly enriched in 
immune-hot HNSCC tumors, correlating with better immunotherapy 
response

Milo [44]

Gastric cancer The DA method revealed increasing immune cell abundance (T cell, B 
cell, NK cell) from non-atrophic gastritis to gastric cancer, with 
intestinal metaplasia as the key immune evasion turning point

Milo [34]

Colorectal cancer DA analysis showed BRAFi + EGFRi enriched EECs in BRAFV600E 
CRC, while LSD1 inhibition blocked this and enhanced efficacy

propeller [38]

High-grade serous ovarian 
cancer

DA analysis revealed myeloid-driven CD8+ T cell exhaustion in 
ovarian cancer post-chemotherapy, highlighting NECTIN2-TIGIT as 
an immunotherapy target

propeller [32]

Pancreatic cancer DA analysis revealed that neoadjuvant therapy reshapes the 
pancreatic cancer TME, causing significant shifts in specific immune 
and fibroblast subpopulations

scCODA [45]

Lung cancer Cydar revealed that lung cancers with different driver mutations 
exhibit significant shifts in T cell subsets, shaping distinct differen-
tiation patterns. Additionally, diffcyt linked specific CAF phenotypes 
(ifnCAFs, iCAFs) to good prognosis and others (tCAFs, hypoxic 
tCAFs) to poor prognosis

Cydar/diffcyt [46,47]

Clear cell renal cell 
carcinoma

DA analysis showed high-risk ccRCC patients had protumor immune 
phenotypes lacking specific immune checkpoints

propeller [48]

Melanoma The propeller showed immune “cold” uveal melanoma had depleted 
immune cell subsets, while “hot” cases were enriched with immune 
response-related cells. Additionally, Milo revealed significant 
enrichment of antitumor immune cells after personalized neoantigen 
vaccination in melanoma patients

propeller/Milo [49,50]

Multiple myeloma DA-seq showed that post-BCMA CAR-T therapy, responders 
enriched effector immune cells, while non-responders enriched 
immunosuppressive subsets. The propeller used DA to compare 
immune cells in long-term multiple myeloma survivors and controls, 
finding significant lasting changes decades after treatment

DA-seq/propeller [51,52]

B cell lymphoma scCODA showed responders to CAR-T therapy had significant 
enrichment of antitumor immune cell subsets. Cydar revealed 
regulatory CAR-T cells enriched in resistant patients after CD19-
CAR-T therapy, linked to treatment resistance

scCODA/Cydar [53,54]

Acute myeloid leukemia DA analysis revealed significant myeloid and immune cell changes in 
STAG2-mutant AML, linked to disease and gene abnormalities

Cydar [55]

Pediatric Hodgkin 
lymphoma

DA analysis showed multiple T cell subsets were reduced in pediatric 
Hodgkin lymphoma tumors, indicating widespread T cell 
suppression

DCATS [56]

FRC: Fibroblastic reticular cell; HNSCC: Head and neck squamous cell carcinoma; DA: Differential abundance; BRAFi: V-raf murine sarcoma viral 
oncogene homolog B inhibitor; EGFRi: Epidermal growth factor receptor inhibition; EECs: Enteroendocrine cells; BRAFV600E: V-raf murine sarcoma viral 
oncogene homolog B (V600E); CRC: Colorectal cancer; LSD1: Lysine-specific demethylase 1; CD: Cluster of differentiation; NECTIN2: Nectin cell adhesion 
molecule 2; TIGIT: T-cell immunoglobulin and ITIM domain; TME: Tumor microenvironment; CAF: Cancer-associated fibroblast; ifnCAF: Interferon-
responsive-cancer-associated fibroblast; iCAF: Inflammatory cancer-associated fibroblast; tCAF: Tumor-associated fibroblast; ccRCC: Clear cell renal cell 
carcinoma; BCMA: B-cell maturation antigen; CAR-T: Chimeric antigen receptor T-cell; AML: Acute myeloid leukemia.

a potential new target for early diagnosis and therapeutic intervention in gastric cancer[34].

DA DETECTION PROVIDES INSIGHTS FOR CLINICAL DECISION-MAKING
The mechanistic insights offered by DA detection naturally extend to the clinical realm, where tumor heterogeneity often 
manifests as variability in treatment response, disease progression, and therapeutic resistance. By quantitatively profiling 
changes in cell-type composition across patients or timepoints, DA detection offers complementary information that can 
help interpret clinically relevant outcomes and generate hypotheses for patient stratification (Figure 2B).

A notable example comes from a study of locally advanced rectal cancer, in which patients received short-course 
radiotherapy combined with neoadjuvant immunochemotherapy. DA detection revealed a marked increase in 
monocytes, CD8+ T cells, and plasma cells post-treatment, alongside a decrease in B cells, macrophages, neutrophils, T 
helper 17, and regulatory T cells[35]. Crucially, integrated analysis identified a triggering receptor expressed on myeloid 
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Figure 2 Three representative applications of differential abundance detection in tumor heterogeneity research. A: Examples illustrating how 
differential abundance (DA) detection facilitates elucidation of mechanisms underlying tumor heterogeneity, ovarian cancer (a), mammary tumors (b), gastric cancer 
(c). By revealing changes in cellular composition, DA detection aids in the interpretation of tumor biology and resistance mechanisms; B: The role of DA detection in 
clinical decision-making. By comparing cell-type abundances before and after treatment, DA detection enables evaluation of therapeutic efficacy, helping clinicians to 
adjust treatment strategies promptly; C: The contribution of DA detection to advancing precision medicine. By performing individualized DA detection across patients 
with the same disease, DA detection supports personalized drug selection and continuously refines therapeutic outcomes, thereby promoting the development of 
precision therapy. IL: Interleukin; CD: Cluster of differentiation; DA: Differential abundance.

cells 1+ pro-inflammatory monocyte/macrophage subset whose expansion correlated with a favorable response. This 
suggests that DA-derived biomarkers can capture therapy-induced remodeling of the tumor immune microenvironment, 
a feature often missed by conventional molecular markers. When combined with existing modalities like magnetic 
resonance imaging-based magnetic resonance tumor regression grade, DA markers could significantly improve pre-
dictive accuracy, guiding more personalized treatment strategies[35].

Beyond response, DA detection identifies features associated with prognosis. In a comparison of primary gastric cancer 
and its peritoneal metastases, Li et al[36] uncovered a dramatic shift in cancer-associated fibroblast (CAF) populations. 
Metastatic lesions were depleted of inflammatory CAFs but enriched in matrix cancer-associated fibroblasts, a shift linked 
to immune suppression and therapeutic resistance. This DA-based stratification pinpoints high-risk patients who might 
benefit from aggressive or novel therapies targeting the metastatic CAF niche, complementing traditional markers that 
may be uninformative in this context[36].

Overall, these examples highlight that DA detection provides valuable, clinically relevant insights into therapy 
response and prognosis. While DA-derived biomarkers cannot replace established molecular markers, they offer comple-
mentary information that can refine patient stratification, support treatment decision-making, and enhance the predictive 
power of existing modalities when integrated into multi-dimensional clinical assessment.

DA DETECTION SUPPORTS THE DEVELOPMENT OF PRECISION TREATMENT
As cancer treatment continues to move toward personalized and mechanism-guided strategies, understanding how the 
tumor microenvironment adapts under therapeutic pressure has become increasingly important. DA detection offers a 
practical and scalable approach for identifying treatment-induced changes in cellular composition, revealing drug-
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resistant subpopulations, and evaluating the efficacy of combination therapies (Figure 2C).
In the context of immunotherapy, DA detection has been instrumental in elucidating immune cell dynamics under 

dual checkpoint blockade. In a study investigating combination immunotherapy in melanoma, Andrews et al[37] applied 
the Milo to perform DA detection on CD8+ T cells from a mouse model, and the results revealed that programmed death-
1 deficient and lymphocyte activation gene 3 deficient CD8+ T cells were transcriptionally distinct, characterized by 
broad T cell receptor clonality and enrichment of effector-like and interferon-responsive genes. These populations 
displayed enhanced effector function, including interferon-γ release, providing mechanistic support for the combined 
blockade of programmed death-1 and lymphocyte activation gene 3 as a therapeutic strategy.

DA detection has also played a crucial role in elucidating mechanisms of immune exhaustion under therapeutic 
pressure. Using DA detection, Launonen et al[32] found that chemotherapy induced spatially confined exhaustion of 
CD8+ T cells, mediated through the nectin cell adhesion molecule 2-T-cell immunoglobulin and ITIM domain axis. Based 
on these findings, they proposed a precision immunotherapy strategy tailored to immune checkpoint blockade. Fur-
thermore, Ladaika et al[38] combined single-cell data with DA detection to examine v-raf murine sarcoma viral oncogene 
homolog B and epidermal growth factor receptor inhibition in v-raf murine sarcoma viral oncogene homolog B (V600E) 
mutation-mutant colorectal cancer. They observed consistent enrichment of enteroendocrine cells across preclinical 
models and clinical specimens following treatment. This variation in epithelial lineage composition pointed to adaptive 
resistance via cell fate reprogramming and informed the proposal of a novel therapeutic combination designed to 
constrain lineage plasticity. Briefly, DA detection has become a crucial tool for deciphering treatment resistance and 
optimizing combination strategies. By uncovering the evolutionary dynamics of cell populations under drug pressure, it 
offers a new perspective for targeted therapies[39,40].

LIMITATIONS OF DA DETECTION IN ELUCIDATING TUMOR HETEROGENEITY
Despite its growing utility, DA detection faces several technical and conceptual challenges that may limit its inter-
pretability and clinical applicability. First of all, the limited interpretability remains a major bottleneck across current DA 
methods. Many DA methods rely on embeddings, gene-based structures, or Bayesian modeling frameworks to detect 
compositional changes[31,41]. While these techniques enhance sensitivity, they often generate abstract outputs - such as 
altered “cellular neighborhoods” or latent cell regions rather than clearly annotated cell types. This ambiguity 
complicates downstream biological interpretation, especially for users without computational experience[24,42]. 
Moreover, DA detection results are typically reported as statistical metrics (e.g., log2 fold change and adjusted P-value), 
lacking direct linkage to known functional pathways or phenotypic characteristics[42].

A second major issue concerns annotation dependency. Clustering-based methods generally require well-defined and 
high-resolution cell-type labels as the basis for abundance comparison. Even clustering-free methods often require post 
hoc interpretation using marker genes or reference atlases. Inaccurate or incomplete annotation can obscure biological 
meaningful shifts, particularly for rare, intermediate, or novel cell subpopulations. Thus, improving cell-type identi-
fication remains essential to enhance the robustness of DA findings.

Moreover, trade-offs between statistical power and computational burden present practical limitations[43]. In small-
sample or low-abundance scenarios, some methods often suffer from low sensitivity, while others attempt to compensate 
through resampling, subsampling or complex modeling strategies that may increase false negatives or reduce scalability
[29]. Tools incorporating multiple covariates or Bayesian inference (e.g., Milo and scCODA) often require considerable 
computational resources, making them difficult to apply to large-scale diverse clinical cohorts[24,28].

In summary, although DA detection provides a powerful tool for deciphering tumor heterogeneity dynamics, its 
widespread adoption still requires further methodological innovation to improve the interpretability, flexibility, and 
scalability - particularly in translational and clinical contexts. Addressing these challenges, emerging methodological 
advances offer promising avenues for improvement. For example, integration with spatial transcriptomics or multi-omics 
datasets can link cell composition changes to spatial context or complementary molecular layers, potentially enhancing 
interpretability, supporting more accurate annotation, and improving clinical relevance, thereby facilitating broader 
adoption of DA detection in translational oncology.

CONCLUSION
DA detection has emerged as a conceptual and methodological advance in single-cell data analysis, offering a powerful 
framework to propel a paradigm shift in tumor heterogeneity research - from a static, gene-centric view focused on differ-
ential gene expression toward the dynamics centered on the ecological structure of cell populations. By accurately 
identifying key cell types or subpopulations whose abundances change significantly across physiological or pathological 
states, DA detection not only deepens our understanding of the evolving tumor immune microenvironment but also 
demonstrates broad translational potential in early disease detection, therapeutic response assessment, and personalized 
intervention strategies.

Compared to traditional approaches, DA detection has several advantages. It is particularly effective at capturing 
dynamic microenvironmental remodeling, detecting lineage bias, and uncovering cellular correlates of treatment 
response. In addition, many DA tools incorporate covariate modeling, enabling adjustment for patient-specific factors 
such as age, treatment, or sampling batch - an important consideration for clinical translation. However, its adoption in 
translational oncology remains limited by methodological challenges, including dependency on accurate annotation, 
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limited interpretability of complex models, and the computational burden of scaling to large cohorts.
Looking forward, DA detection is expected to evolve across several critical dimensions. First, multi-modal integration 

represents a major breakthrough opportunity. The fusion of DA detection with spatial transcriptomics, single-cell assay 
for transposase-accessible chromatin using sequencing, and proteomics will enable high-resolution dissection of tumor 
cell heterogeneity and evolutionary trajectories. Second, emerging artificial intelligence algorithms, such as graph neural 
networks and deep generative models, are likely to be increasingly incorporated into DA frameworks, enhancing the 
modeling of cellular neighborhood relationships and improving both analytical sensitivity and generalizability. In 
parallel, the development of high-quality, well-annotated single-cell tumor atlases will be essential for establishing DA 
detection as a core tool within precision medicine, especially in constructing interpretable links between cellular com-
position, clinical phenotypes, and treatment outcomes.
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