Contents

REVIEW

5070 Strategies and challenges in the treatment of chronic venous leg ulcers

5086 Peripheral nerve tumors of the hand: Clinical features, diagnosis, and treatment
 Zhou HY, Jiang S, Ma FX, Lu H

MINIREVIEWS

5099 Treatment strategies for gastric cancer during the COVID-19 pandemic
 Kang WZ, Zhong YX, Ma FH, Liu H, Ma S, Li Y, Hu HT, Li WK, Tian YT

ORIGINAL ARTICLE

Retrospective Cohort Study

5104 Oncological impact of different distal ureter managements during radical nephroureterectomy for primary upper urinary tract urothelial carcinoma

5116 Clinical characteristics and survival of patients with normal-sized ovarian carcinoma syndrome: Retrospective analysis of a single institution 10-year experiment
 Yu N, Li X, Yang B, Chen J, Wu MF, Wei JC, Li KZ

Retrospective Study

5128 Assessment of load-sharing thoracolumbar injury: A modified scoring system
 Su QH, Li YC, Zhang Y, Tan J, Cheng B

5139 Accuracy of endoscopic ultrasound-guided needle aspiration specimens for molecular diagnosis of non-small-cell lung carcinoma
 Su W, Tian XD, Liu P, Zhou DJ, Cao FL

5149 Application of hybrid operating rooms for clipping large or giant intracranial carotid-ophthalmic aneurysms
 Zhang N, Xin WQ

5159 Magnetic resonance imaging findings of carcinoma arising from anal fistula: A retrospective study in a single institution
 Zhu X, Zhu TS, Ye DD, Liu SW

5172 Efficacy and safety of S-1 maintenance therapy in advanced non-small-cell lung cancer patients
 Cheng XW, Leng WH, Ma CL
Contents

Semimonthly Volume 8 Number 21 November 6, 2020

5180 Analysis of 234 cases of colorectal polyps treated by endoscopic mucosal resection
 Yu L, Li N, Zhang XM, Wang T, Chen W

5188 Epidemiological and clinical characteristics of fifty-six cases of COVID-19 in Liaoning Province, China

5203 Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans

5213 Influence of transitional nursing on the compliance behavior and disease knowledge of children with purpura nephritis
 Li L, Huang L, Zhang N, Guo CM, Hu YQ

Randomized Controlled Trial

5221 Wavelet and pain rating index for inhalation anesthesia: A randomized controlled trial
 Zhang JW, Lv ZG, Kong Y, Han CF, Wang BG

SYSTEMATIC REVIEWS

5235 Essential phospholipids for nonalcoholic fatty liver disease associated with metabolic syndrome: A systematic review and network meta-analysis
 Dajani AI, Popovic B

5250 Cardiovascular impact of COVID-19 with a focus on children: A systematic review
 Rodriguez-Gonzalez M, Castellano-Martinez A, Cascales-Poyatos HM, Perez-Reviriego AA

5284 Anterior bone loss after cervical disc replacement: A systematic review
 Wang XF, Meng Y, Liu H, Hong Y, Wang BY

CASE REPORT

5296 Submicroscopic 11p13 deletion including the elongator acetyltransferase complex subunit 4 gene in a girl with language failure, intellectual disability and congenital malformations: A case report
 Toral-Lopez J, Gonzalez Huerta LM, Messina-Baas O, Cuevas-Covarrubias SA

5304 Pancreatic panniculitis and elevated serum lipase in metastasized acinar cell carcinoma of the pancreas: A case report and review of literature
 Miksch RC, Schiergens TS, Weniger M, Ilmer M, Kazmierczak PM, Gaba MO, Angele MK, Werner J, D’Haese JG

5313 Diffusion-weighted imaging might be useful for reactive lymphoid hyperplasia diagnosis of the liver: A case report
 Tanaka T, Saito K, Yunayama D, Matsubayashi J, Nagakawa Y, Tanigawa M, Nagao T

5320 Nafamostat mesylate-induced hyperkalemia in critically ill patients with COVID-19: Four case reports
 Okajima M, Takahashi Y, Kaji T, Ogawa N, Mouri H
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5326</td>
<td>Arthroscopic treatment of iliopsoas tendinitis after total hip arthroplasty with acetabular cup malposition: Two case reports</td>
<td>Won H, Kim KH, Jung JW, Kim SY, Baek SH</td>
</tr>
<tr>
<td>5341</td>
<td>Donepezil-related inadequate neuromuscular blockade during laparoscopic surgery: A case report</td>
<td>Jang EA, Kim TY, Jung EG, Jeong S, Bae HB, Lee S</td>
</tr>
<tr>
<td>5347</td>
<td>Successful treatment of relapsed acute promyelocytic leukemia with arsenic trioxide in a hemodialysis-dependent patient: A case report</td>
<td>Lee HJ, Park SG</td>
</tr>
<tr>
<td>5353</td>
<td>Treatment of afferent loop syndrome using fluoroscopic-guided nasointestinal tube placement: Two case reports</td>
<td>Hu HT, Ma FH, Wu ZM, Qi XH, Zhong YX, Xie YB, Tian YT</td>
</tr>
<tr>
<td>5361</td>
<td>Emergency surgical workflow and experience of suspected cases of COVID-19: A case report</td>
<td>Wu D, Xie TY, Sun XH, Wang XX</td>
</tr>
<tr>
<td>5371</td>
<td>Seven-year follow-up of the nonsurgical expansion of maxillary and mandibular arches in a young adult: A case report</td>
<td>Yu TT, Li J, Liu DW</td>
</tr>
<tr>
<td>5389</td>
<td>Early ultrasound diagnosis of conjoined twins at eight weeks of pregnancy: A case report</td>
<td>Liang XW, Cai YY, Yang YZ, Chen ZY</td>
</tr>
<tr>
<td>5394</td>
<td>Supermicroscopy and arterio-venolization for digit replantation in young children after traumatic amputation: Two case reports</td>
<td>Chen Y, Wang ZM, Yao JH</td>
</tr>
<tr>
<td>5401</td>
<td>Candidal periprosthetic joint infection after primary total knee arthroplasty combined with ipsilateral intertrochanteric fracture: A case report</td>
<td>Xin J, Guo QS, Zhang HY, Zhang ZY, Talmy T, Han YZ, Xie Y, Zhong Q, Zhou SR, Li Y</td>
</tr>
<tr>
<td>5415</td>
<td>Large and unusual presentation of gallbladder adenoma: A case report</td>
<td>Cao LL, Shan H</td>
</tr>
<tr>
<td>5420</td>
<td>Rare narrow QRS tachycardia with atrioventricular dissociation: A case report</td>
<td>Zhu C, Chen MX, Zhou GJ</td>
</tr>
</tbody>
</table>
Contents

Semimonthly Volume 8 Number 21 November 6, 2020

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5426</td>
<td>Synchronous parathyroid adenoma, papillary thyroid carcinoma and thyroid adenoma in pregnancy: A case report</td>
<td>Li Q, Xu XZ, Shi JH</td>
</tr>
<tr>
<td>5432</td>
<td>Pseudohyperkalemia caused by essential thrombocythemia in a patient with chronic renal failure: A case report</td>
<td>Guo Y, Li HC</td>
</tr>
<tr>
<td>5439</td>
<td>Acute leukemic phase of anaplastic lymphoma kinase-anaplastic large cell lymphoma: A case report and review of the literature</td>
<td>Zhang HF, Guo Y</td>
</tr>
<tr>
<td>5446</td>
<td>Chinese patient with cerebrotendinous xanthomatosis confirmed by genetic testing: A case report and literature review</td>
<td>Cao LX, Yang M, Liu Y, Long WY, Zhao GH</td>
</tr>
<tr>
<td>5467</td>
<td>Fanconi-Bickel syndrome in an infant with cytomegalovirus infection: A case report and review of the literature</td>
<td>Xiong LJ, Jiang ML, Du LN, Yuan L, Xie XL</td>
</tr>
<tr>
<td>5474</td>
<td>Benign symmetric lipomatosis (Madelung’s disease) with concomitant incarcerated femoral hernia: A case report</td>
<td>Li B, Rang ZX, Weng JC, Xiong GZ, Dai XP</td>
</tr>
<tr>
<td>5480</td>
<td>Potential protection of indocyanine green on parathyroid gland function during near-infrared laparoscopic-assisted thyroidectomy: A case report and literature review</td>
<td>Peng SJ, Yang P, Dong YM, Yang L, Yang ZY, Hu XE, Rao GQ</td>
</tr>
</tbody>
</table>

CORRECTION

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
ABOUT COVER

Peer-reviewer for *World Journal of Clinical Cases*, Dr. Karayiannakis is Professor of Surgery at the Medical School of Democritus University of Thrace. He received his MD from the Medical Academy, Sofia, Bulgaria (1985), an MSc in Surgical Science from University of London (1996), and a PhD from National and Kapodistrian University of Athens (NKUA) (1993). After completing training at the NKUA Medical School in 1993, Dr. Karayiannakis undertook postgraduate training at St George’s and Hammersmith Hospitals (London), the Institute for Digestive Diseases (Serbia), the University of Verona (Italy), and the Technical University of Munich (Germany). His clinical practice interests and research emphasis are in the field of hepato-pancreato-biliary diseases and gastrointestinal tract surgery, surgical oncology and laparoscopic surgery. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of *World Journal of Clinical Cases* (*WJCC, World J Clin Cases*) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The *WJCC* is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for *WJCC* as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing; Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL

World Journal of Clinical Cases

ISSN

ISSN 2307-8960 (online)

LAUNCH DATE

April 16, 2013

FREQUENCY

Semimonthly

EDITORS-IN-CHIEF

Dennis A Bloomfield, Sandro Vento, Bao-Gan Peng

EDITORIAL BOARD MEMBERS

https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE

November 6, 2020

COPYRIGHT

© 2020 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Retrospective Study

Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans

E-Nuo Cui, Tao Yu, Sheng-Jie Shang, Xiao-Yu Wang, Yi-Lin Jin, Yue Dong, Hai Zhao, Ya-Hong Luo, Xi-Ran Jiang

ORCID number: E-Nuo Cui 0000-0002-2600-2472; Tao Yu 0000-0003-3498-248X; Sheng-Jie Shang 0000-0001-5683-7553; Xiao-Yu Wang 0000-0002-2669-0682; Yi-Lin Jin 0000-0003-1708-3191; Yue Dong 0000-0001-5795-716X; Hai Zhao 0000-0001-9796-054X; Ya-Hong Luo 0000-0002-0241-3007; Xi-Ran Jiang 0000-0002-9640-6368.

Author contributions: Cui EN and Jiang XR conceived and designed the study; Yu T, Zhao H, and Luo YH supported the study; Cui EN, and Wang XY provided the materials or patients; Yu T and Dong Y contributed to the collection and assembly of data; Shang SJ, Jin YL, and Jiang XR contributed to the data analysis and interpretation; and all authors contributed to the manuscript writing and final approval of the manuscript.

Supported by Youth Science and Technology Innovation Leader Support Project, No. RC170497; Shenyang Municipal Science and Technology Project, No. F16-206-9-23; Natural Science Foundation of Liaoning Province of China, No. 201602450; National Key R&D Program of Ministry of Science and Technology of China, No. 2016YFC1303002; National Natural

E-Nuo Cui, Hai Zhao, School of Computer Science and Engineering, Northeastern University, Shenyang 110619, Liaoning Province, China

E-Nuo Cui, School of Computer Science and Engineering, Shenyang University, Shenyang 110044, Liaoning Province, China

Tao Yu, Xiao-Yu Wang, Yue Dong, Ya-Hong Luo, Medical Imaging Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, Liaoning Province, China

Sheng-Jie Shang, Yi-Lin Jin, Xi-Ran Jiang, Department of Biomedical Engineering, China Medical University, Shenyang 110122, Liaoning Province, China

Corresponding author: Xi-Ran Jiang, PhD, Associate Professor, Department of Biomedical Engineering, China Medical University, No. 77 Puhe Road, Shenyang 110122, Liaoning Province, China. xrijang@cmu.edu.cn

Abstract

BACKGROUND
Pulmonary tuberculosis (TB) and lung cancer (LC) are common diseases with a high incidence and similar symptoms, which may be misdiagnosed by radiologists, thus delaying the best treatment opportunity for patients.

AIM
To develop and validate radiomics methods for distinguishing pulmonary TB from LC based on computed tomography (CT) images.

METHODS
We enrolled 478 patients (January 2012 to October 2018), who underwent preoperative CT screening. Radiomics features were extracted and selected from the CT data to establish a logistic regression model. A radiomics nomogram model was constructed, with the receiver operating characteristic, decision and calibration curves plotted to evaluate the discriminative performance.

RESULTS
Radiomics features extracted from lesions with 4 mm radial dilation distances outside the lesion showed the best discriminative performance. The radiomics

doi:10.12998/wjcc.v8.i21.5203 ISSN 2307-8960 (online)
INTRODUCTION

Pulmonary tuberculosis (TB) is a global public health threat, which represent > 80% of clinical TB cases. Its effects on the lungs involve chronic inflammation that is reported to cause carcinogenesis of lung tissue[11]. Lung cancer (LC) has a poor prognosis, and is one of the most common cause of death due to cancer worldwide[12]. These two diseases are both common, with high prevalence and similar symptoms and clinical presentation. Hence, patients with LC are often misdiagnosed with pulmonary TB, which may delay timely treatment, and even expose patients to inappropriate medication.

Previous studies have examined the association between and diagnosis of pulmonary TB and LC through clinical symptoms and signs, and blood transcriptional profiles[13]. Such methods mainly relied on the subjective experiences of clinicians and were therefore unreliable. Imaging examinations, such as computed tomography (CT), are useful tools. However, in clinical practice, due to the radiological similarities between TB and LC, even highly trained radiologists relying on CT data are often prone to misdiagnosis or missed diagnosis. Therefore, the determination of TB or LC is based on histopathological analysis, such as invasive biopsy, with the associated inherent risk of these invasive procedures[14,15]. Thus, noninvasive and computer-aided alternatives are required to improve the discrimination of TB and LC.

In recent years, radiomics has attracted increasing attention due to its high-throughput extraction and selection of discriminative features from medical imaging data, and to construct machine learning classifiers and a radiomics nomogram model to assist in disease diagnosis, prediction of disease status, and response to treatment[16-18]. This has been shown to improve the detection and discrimination performance of medical images compared with those made by radiologists[19-21]. The radiomics approach has been used to predict tumor subtype[22] and metastasis[23] in patients with lung disease. However, to the best of our knowledge, there is still no instance of the application of radiomics in differentiating TB and LC. Thus, the present nomogram model exhibited good discrimination, with an area under the curve of 0.914 (sensitivity = 0.890, specificity = 0.796) in the training cohort, and 0.900 (sensitivity = 0.788, specificity = 0.907) in the validation cohort. The decision curve analysis revealed that the constructed nomogram had clinical usefulness.

CONCLUSION

These proposed radiomic methods can be used as a noninvasive tool for differentiation of TB and LC based on preoperative CT data.

Key Words: Pulmonary tuberculosis; Lung cancer; Radiomics; Computed tomography; Computer-aided diagnosis; Nomogram

URL: https://www.wjgnet.com/2307-8960/full/v8/i21/5203.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i21.5203
study aims to establish and validate radiomic methods to distinguish TB from LC, based on pretreatment CT data.

MATERIALS AND METHODS

Patients

The retrospective analysis conducted on lung CT data was approved by the Institutional Research Ethics Board of our institute. A total of 478 patients were enrolled between January 2012 and October 2018 in the Liaoning Cancer Hospital and Institute. The number of patients with pulmonary TB and LC was 244 and 234, respectively. All patients were pathologically confirmed with pulmonary TB or LC, which is the gold standard. Inclusion criteria were as follows: (1) Patients aged ≥18 years; (2) Patients who underwent CT thorax screening before surgery; and (3) Patients who underwent surgical resection with pathological confirmation. Exclusion criteria were as follows: (1) Patients exhibiting other tumors; (2) Patients with a history of lung surgery, or radiotherapy or chemotherapy; and (3) Patients with artifacts in CT images. All patients were randomly divided into the training and validation cohorts at a ratio of 2:1.

CT image acquisition

All patients were scanned with a 64-slice spiral CT (Syngo 2009A; Siemens, Germany): voltage 120 kV, current 200-350 mAs, slice thickness 5.0 mm, and array 512 × 512. The obtained CT thoracic images with a resolution of 2457 × 1996 were interpreted on a Hologic breast computer-aided diagnosis workstation (SecureView Dx; Hologic) equipped with two 5-megapixel monitors, and stored in the Picture Archiving and Communication System of the hospital in Digital Imaging and Communications in Medicine format.

Segmentation and mask dilation

The lesion regions of interests (ROIs) were drawn manually by two radiologists with 12 and 14 years of experience for each patient using the ITK-SNAP software (version 3.6.0, www.itk-snap.org). Other senior radiologists and clinicians were invited to join the decision-making process whenever a divergence occurred during the segmentation. None of the radiologists and clinicians had prior knowledge of the pathological results of these patients. The segmented ROIs were exported into MHA format, and used for image feature extraction. To evaluate the discriminative power of the peritumor tissues. Dilated masks were obtained by dilating the original ROI of each CT slice with 10 different radial distances. The dilated radial distance was up to 10 mm outside the lesion region. The dilated masks are shown in Figure 1. The original ROI segmented by radiologists is colored red. Rings with different colors indicate various radial dilation distances surrounding the lesion.

Feature extraction and selection

The imaging features included the following: First order statistics, shape-based, gray-level co-occurrence matrix (GLCM), gray-level size zone matrix, gray-level run length matrix (GLRLM) and neighborhood gray-tone difference matrix[9]. These were extracted from the lesions using Python (version 3.6.5). The least absolute shrinkage and selection operator (LASSO) logistic regression was used to exclude features that were redundant, while the predictive features in relation to pulmonary TB and LC remained[19]. The LASSO-selected features were further used to calculate a radiomics score for constructing the radiomics nomogram as a routine radiomics analysis process[20].

Construction of the radiomics nomogram model

The radiomics score was calculated by a linear combination of selected features weighted by the respective LASSO coefficients for each patient[14,21]. A radiomics nomogram model for differentiating LC from TB was constructed based on the multivariable logistic regression analysis using the “rms” package in the R language (v. 3.5.0; available from URL: https://www.r-project.org).

Validation strategy

The performance of binary classifications was evaluated using the receiver operating characteristic (ROC) curve analysis for both the nomogram model and machine
learning classifiers. The optimal cut-off values of the ROC curves were selected based on the maximum Youden index\(^{[22]}\). The area under the ROC curve (AUC) values were calculated to quantify the discrimination performance. Three comparison metrics, including accuracy, sensitivity and specificity, were also computed following the standard formulas described previously\(^{[23]}\). Calibration curves were plotted to evaluate the calibration of the constructed radiomics nomogram model. A decision curve analysis (DCA) was conducted to assess the clinical utility of the nomogram, by quantifying the net benefits for a range of threshold probabilities in the training and validation groups. All algorithms were run on a 64-bit hexa-core 3.7 GHz Intel i7-6700K CPU with 128 GB of 3000 MHz DDR4 RAM.

RESULTS

The best radial dilation distance
To evaluate the discriminative performance of peritumoral tissues, dilations of ten distances were performed from the original ROI. As shown in Table 1, the radiomics features were extracted from the ROI when the dilation was 0. The features were obtained from peritumor tissues when the dilations were from 1 to 10.

The model with lowest overfitting was obtained when the dilated radial distance equaled 4.0 mm. At this dilated distance, the highest AUCs of 0.914 and 0.900 on the training and validation cohorts, respectively, were also achieved.

Evaluation of the selected radiomics features
Eight radiomics features were selected by the LASSO process at the best dilation distance. Table 2 shows the selected features with the AUCs and \(P\) values in the training and validation cohorts. Figure 2 shows the boxplots of the eight selected radiomics features between the TB and LC groups.

Development of the radiomics nomogram model
The radiomics signature that consisted of eight features from the best radial dilation distance was obtained by logistic regression, and was as follows:
\[
\text{Ct Score} = 447.771 - 360.807 \times \text{lbp-2D_firstorder_Entropy} - 4.955 \times \text{lbp-3D_k_firstorder_10Percentile} + 27.755 \times \log\text{-sigma-3-0-mm-3D_glem_ldn} + 0.0000143 \times \log\text{-sigma-5-0-mm-3D_grlm_RunLengthNonUniformity} - 0.0000753 \times \text{squareroot_gldm_DependenceNonUniformity} + 33.277 \times \text{wavelet-HLH_glem_ldn} + 4.746 \times \text{wavelet-HLL_glem_ldn} - 195.455 \times \text{wavelet-LLL_glem_ldn}.
\]

A nomogram model was then constructed (Figure 3A), which includes the radiomics score for differentiating TB and LC in the second row. The favorable calibration of the present radiomics nomogram model was confirmed in the training and validation groups (Figure 3B and C). The calibration curves indicated good agreements between the nomogram-estimated probability and actual outcome. The X and Y axes represented the calculated and actual probabilities, respectively. The diagonal blue line represented the performance of an ideal diagnostic model. Furthermore, the red dotted line represented the performance of the constructed nomogram model. The closer the red dotted line was to the diagonal blue line, the...
better the discriminative performance achieved by the nomogram model. The nomogram model exhibited a marked discriminative efficacy, with an AUC of 0.914 in the training group and 0.900 in the validation group (Figure 3D and E). Hence, the constructed nomogram model has good discriminative power in differentiating TB from LC.

The decision curve analysis showed that our nomogram model for distinguishing TB and LC patients was advantageous, which indicates the good performance of the nomogram in terms of clinical application (Figure 4).

DISCUSSION

Prompt diagnosis, such as the discrimination of TB from other chronic lung disorders, including LC, is important in providing appropriate and timely treatment\(^\text{[24]}\). Reports have shown that the delay in the diagnosis and treatment of LC frequently leads to poor outcome and survival\(^\text{[25]}\). However, LC often exhibits similarities to TB, requiring invasive biopsy for distinguishing these two diseases\(^\text{[4,26]}\). In clinical practice, even radiologists with decades of experience may still misdiagnose TB and LC using CT imaging data, or even miss the diagnosis altogether. There is little understanding on the differentiation of the two diseases in CT images using computer-aided methods, with no reported attempts. Therefore, these radiomic methods were proven to improve the differentiation between TB and LC.

The selected radiomics features from CT images included two local binary patterns,
Table 2 The eight radiomics features selected from the lung computed tomography images

<table>
<thead>
<tr>
<th>Radiomics features</th>
<th>Cohorts</th>
<th>AUC</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbp-2D_firstorder_Entropy</td>
<td>Training cohort</td>
<td>0.627</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.618</td>
<td>0.033</td>
</tr>
<tr>
<td>Lbp-3D-k_firstorder_10Percentile</td>
<td>Training cohort</td>
<td>0.633</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.568</td>
<td>0.026</td>
</tr>
<tr>
<td>Log-sigma-3-0-mm-3D_glcm_Idn</td>
<td>Training cohort</td>
<td>0.557</td>
<td>0.359</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.527</td>
<td>0.344</td>
</tr>
<tr>
<td>Log-sigma-5-0-mm-3D_glrlm_RunLengthNonUniformity</td>
<td>Training cohort</td>
<td>0.559</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.576</td>
<td>0.329</td>
</tr>
<tr>
<td>Squareroot_gldm_DependenceNonUniformity</td>
<td>Training cohort</td>
<td>0.550</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.581</td>
<td>0.404</td>
</tr>
<tr>
<td>Wavelet-HLH_glcm_Idn</td>
<td>Training cohort</td>
<td>0.562</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.551</td>
<td>0.304</td>
</tr>
<tr>
<td>Wavelet-HLL_glcm_Idn</td>
<td>Training cohort</td>
<td>0.547</td>
<td>0.160</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.542</td>
<td>0.435</td>
</tr>
<tr>
<td>Wavelet-LLL_glcm_Idmn</td>
<td>Training cohort</td>
<td>0.658</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Validation cohort</td>
<td>0.663</td>
<td>0.008</td>
</tr>
</tbody>
</table>

AUC: Area under the curve.

Figure 2 Boxplots of the eight radiomics features correlated with pulmonary tuberculosis vs lung cancer. A: Lbp-2D_firstorder_Entropy; B: Lbp-3D-k_firstorder_10Percentile; C: Log-sigma-3-0-mm-3D_glcm_Idn; D: Log-sigma-5-0-mm-3D_glrlm_RunLengthNonUniformity; E: Squareroot_gldm_DependenceNonUniformity; F: Wavelet-HLH_glcm_Idn; G: Wavelet-HLL_glcm_Idn; H: Wavelet-LLL_glcm_Idmn. TB: Tuberculosis; LC: Lung cancer.

two Laplacian of Gaussian, one square root and three wavelet-filtered features. The original images were first filtered with corresponding filters, then used to extract handcrafted features. The first-order features describe the distribution of voxel intensities in images. The GLCM features quantify the second-order joint probabilities of images. The GLDM and GLRLM features describe gray-level dependencies and gray-level runs in an image, respectively. Our findings might partially explain the fact
that radiologists find it hard to distinguish between TB and LC, since the discriminative CT markers all belonged to high-dimensional space that can hardly be understood by naked eye examination. However, the selected features were all closely related with gray intensities, which indicate that changes in gray levels in lung lesion CT images can potentially assist in the differential diagnosis of TB and LC. The discriminative power of peritumoral tissues was also evaluated. We extracted imaging features from several radial dilation distances (up to a radial distance of 10 mm outside the lung lesion) from the original ROI. Our results revealed that the peritumoral area exhibited more discriminative power than the intratumoral area. The radiomics model with lowest overfitting and best AUCs were obtained at 4 mm
outside the lesion for the training and validation cohorts. The results were consistent with previous studies and showed that CT-based peritumoral radiomics are important in the diagnosis of lung lesions\cite{27,28}.

To the best of our knowledge, there is no previous report on differentiating TB and LC using CT radiomics. Our findings indicated the diagnostic value of peritumoral regions that have a dilation distance of approximately 4 mm outside the lesions. From the peritumoral area, 1967 imaging features were extracted. A radiomics signature was obtained using the LASSO algorithm by reducing high-dimensional and overfitting data\cite{19}. The constructed nomogram model exhibited favorable discrimination of TB and LC, with AUCs of 0.914 and 0.900 in the training and validation groups, respectively. In addition, good sensitivity and specificity were also obtained, which revealed the low misdiagnosis rate and missed diagnosis rates of our model. The calibration of the present nomogram model was confirmed by calibration-curve-based analysis, which revealed excellent agreement with the actual outcome. To further evaluate whether our nomogram-assisted diagnosis method improved patient outcomes, the clinical usefulness of the model was assessed by DCA, which quantified net benefits for a range of threshold probabilities in the training and validation cohorts. If radiologists use the proposed radiomics nomogram model for differentiating TB and LC, they need first to manually segment the lesions in the CT thoracic images for each patient, and calculate the probabilities of TB or LC based on the nomogram model. Then, the radiologists could consider the clinical information, calculate the probabilities for these patients, and accordingly make a comprehensive decision on medical treatment.

There are a few limitations in the present study. First, all CT data were obtained from a single hospital, which may be inherently biased. Second, only CT images were used to perform the radiomics analyses. Clinical parameters should be incorporated in future studies\cite{29}. Third, the ROIs in each image were manually segmented, which is time-consuming. We found a recent study that developed a 3D U-net algorithm for lesion segmentation in CT thoracic images\cite{21}. This enlightened us to explore automatic segmentation and classification methods in future studies.

CONCLUSION

The radiomic methods for differentiating LC and TB using CT thoracic images are presented in this study. The established nomogram model exhibited favorable classification performance, indicating its potential as an assisting tool in future clinical applications.

ARTICLE HIGHLIGHTS

Research background

Pulmonary tuberculosis (TB) and lung cancer (LC) are common pulmonary diseases with high incidence and similar symptoms, which may be misdiagnosed by radiologists, thus delaying the best treatment opportunity for patients.

Research motivation

Due to the radiological similarities of TB and LC, even highly trained radiologists relying on computed tomography (CT) data are often prone to misdiagnosis, or missed diagnosis. Therefore, the determination of TB or LC is based on histopathological analysis, such as invasive biopsy, with the associated inherent risk of these invasive procedures. Thus, noninvasive and computer-aided alternatives are required to improve the discrimination of TB and LC.

Research objectives

This study aimed to develop and validate radiomic methods for distinguishing pulmonary TB from LC based on CT images.

Research methods

Radiomics features were extracted and selected from the CT images to establish a logistic regression model. A radiomics nomogram model was constructed, with the receiver operating characteristic, decision and calibration curves plotted to evaluate
the discriminative performance.

Research results
This study found that radiomics features extracted from the lesion with 4 mm radial dilation distances outside the lesion showed the best discriminative performance. The radiomics nomogram model exhibited good discrimination performance, and decision curve analysis revealed that the constructed nomogram had clinical usefulness.

Research conclusions
The proposed radiomic methods can be used as noninvasive tools for differentiating TB and LC based on preoperative CT data.

Research perspectives
This study confirms the predictive performance of our proposed radiomics model. In the future, multimodal data combined with deep learning characteristics are desirable.

REFERENCES

Radiomics can distinguish LC from TB

