MINIREVIEWS

1 Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance
 Ren SY, Wang WB, Gao RD, Zhou AM

12 Hepatitis B virus reactivation in rheumatoid arthritis
 Wu YL, Ke J, Zhang BY, Zhao D

23 Paradoxical role of interleukin-33/suppressor of tumorigenicity 2 in colorectal carcinogenesis: Progress and therapeutic potential
 Huang F, Chen WY, Ma J, He XL, Wang JW

ORIGINAL ARTICLE

Case Control Study

35 Changes in rheumatoid arthritis under ultrasound before and after sinomenine injection
 Huang YM, Zhuang Y, Tan ZM

43 Benefits of multidisciplinary collaborative care team-based nursing services in treating pressure injury wounds in cerebral infarction patients
 Gu YH, Wang X, Sun SS

Retrospective Study

51 Outcomes and complications of open, laparoscopic, and hybrid giant ventral hernia repair
 Yang S, Wang MG, Nie YS, Zhao XF, Liu J

62 Surgical resection of intradural extramedullary tumors in the atlantoaxial spine via a posterior approach
 Meng DH, Wang JQ, Yang KX, Chen WY, Pan C, Jiang H

71 Vancomycin lavage for the incidence of acute surgical site infection following primary total hip arthroplasty and total knee arthroplasty
 Duan MY, Zhang HZ

79 Distribution of transient receptor potential vanilloid-1 channels in gastrointestinal tract of patients with morbid obesity
 Atas U, Erin N, Tazegul G, Elpek GO, Yildirim B

91 Value of neutrophil-lymphocyte ratio in evaluating response to percutaneous catheter drainage in patients with acute pancreatitis
Contents

World Journal of Clinical Cases
Weekly Volume 10 Number 1 January 7, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Influence of overweight and obesity on the mortality of hospitalized patients with community-acquired pneumonia</td>
<td>Wang N, Liu BW, Ma CM, Yan Y, Su QW, Yin FZ</td>
</tr>
<tr>
<td>117</td>
<td>Minimally invasive open reduction of greater tuberosity fractures by a modified suture bridge procedure</td>
<td>Kong LP, Yang JJ, Wang F, Liu FX, Yang YL</td>
</tr>
<tr>
<td>128</td>
<td>Increased levels of lactate dehydrogenase and hypertension are associated with severe illness of COVID-19</td>
<td>Jin ZM, Shi JC, Zheng M, Chen QL, Zhou YY, Cheng F, Cai J, Jiang XG</td>
</tr>
<tr>
<td>136</td>
<td>Age, alcohol, sex, and metabolic factors as risk factors for colonic diverticulosis</td>
<td>Yan Y, Wu JS, Pan S</td>
</tr>
<tr>
<td>155</td>
<td>Characterization of focal hypermetabolic thyroid incidentaloma: An analysis with F-18 fluorodeoxyglucose positron emission tomography/computed tomography parameters</td>
<td>Lee H, Chung YS, Lee JH, Lee KY, Hwang KH</td>
</tr>
</tbody>
</table>

Clinical Trials Study

| 166 | Low-dose intralesional injection of 5-fluorouracil and triamcinolone reduces tissue resident memory T cells in chronic eczema | Wu Y, Wang GJ, He HQ, Qin HH, Shen WT, Yu Y, Zhang X, Zhou ML, Fei JB |

Observational Study

| 189 | Predicting adolescent perfectionism: The role of socio-demographic traits, personal relationships, and media | Livazović G, Kuzmanović K |
| 205 | Novel m.4268T>C mutation in the mitochondrial tRNA\(^{Ile}\) gene is associated with hearing loss in two Chinese families | Zhao LJ, Zhang ZL, Fu Y |

Randomized Controlled Trial

| 227 | Zinc carnosine-based modified bismuth quadruple therapy vs standard triple therapy for *Helicobacter pylori* eradication: A randomized controlled study | Ibrahim N, El Said H, Choukair A |
CASE REPORT

236 Acquired coagulation dysfunction resulting from vitamin K-dependent coagulation factor deficiency associated with rheumatoid arthritis: A case report
Huang YJ, Han L, Li J, Chen C

242 Intraoperative thromboelastography-guided transfusion in a patient with factor XI deficiency: A case report
Guo WJ, Chen WY, Yu XR, Shen L, Huang YG

249 Positron emission tomography and magnetic resonance imaging combined with computed tomography in tumor volume delineation: A case report
Zhou QP, Zhao YH, Gao L

254 Successful response to camrelizumab in metastatic bladder cancer: A case report
Xie C, Yuan X, Chen SH, Liu ZY, Lu DL, Xu F, Chen ZQ, Zhong XM

260 HER2 changes to positive after neoadjuvant chemotherapy in breast cancer: A case report and literature review
Wang L, Jiang Q, He MY, Shen P

268 Hyper-accuracy three-dimensional reconstruction as a tool for better planning of retroperitoneal liposarcoma resection: A case report
Ye MS, Wu HK, Qin XZ, Luo F, Li Z

275 Recurrent postmenopausal bleeding - just endometrial disease or ovarian sex cord-stromal tumor? A case report
Wang J, Yang Q, Zhang NN, Wang DD

283 Complex proximal femoral fracture in a young patient followed up for 3 years: A case report
Li ZY, Cheng WD, Qi L, Yu SS, Jing JH

289 Bilateral Hypertrophic Olivary Degeneration after Pontine Hemorrhage: A Case Report
Zheng B, Wang J, Huang XQ, Chen Z, Gu GF, Luo XJ

296 Clinical characteristics and outcomes of primary intracranial alveolar soft-part sarcoma: A case report
Chen JY, Cen B, Hu F, Qiu Y, Xiao GM, Zhou JG, Zhang FC

304 Removal of laparoscopic cerclage stitches via laparotomy and rivanol-induced labour: A case report and literature review
Na XN, Cai BS

309 Cerebral venous sinus thrombosis in pregnancy: A case report
Zhou B, Huang SS, Huang C, Liu SY

316 Eustachian tube teratoma: A case report
Li JY, Sun LX, Hu N, Song GS, Dou WQ, Gong RZ, Li CT
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>Lunate dislocation with avulsed triquetral fracture: A case report</td>
<td>Li LY, Lin CJ, Ko CY</td>
</tr>
<tr>
<td>361</td>
<td>Diagnostic and surgical challenges of progressive neck and upper back painless masses in Madelung’s disease: A case report and review of literature</td>
<td>Yan YJ, Zhou SQ, Li CQ, Ruan Y</td>
</tr>
<tr>
<td>371</td>
<td>Suspected cerebrovascular air embolism during endoscopic esophageal varices ligation under sedation with fatal outcome: A case report</td>
<td>Zhang CMJ, Wang X</td>
</tr>
<tr>
<td>381</td>
<td>An atypical primary malignant melanoma arising from the cervical nerve root: A case report and review of literature</td>
<td>Shi YF, Chen YQ, Chen HF, Hu X</td>
</tr>
<tr>
<td>388</td>
<td>Epidural blood patch for spontaneous intracranial hypotension with subdural hematoma: A case report and review of literature</td>
<td>Choi SH, Lee YY, Kim WJ</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Ravi Kant, MD, Associate Professor, Division of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/Anmed Campus, Anderson, SC 29621, United States. rkant82@hotmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC's CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Lin-YuTong Wang; Production Department Director: Xiang Li; Editorial Office Director: Jin-Lei Wang.
Cerebral venous sinus thrombosis in pregnancy: A case report

Biao Zhou, Shan-Shan Huang, Can Huang, Shu-Yun Liu

ORCID number: Biao Zhou 0000-0003-4785-1593; Shan-Shan Huang 0000-0001-6711-1862; Can Huang 0000-0003-4984-0425; Shu-Yun Liu 0000-0002-6787-3506.

Author contributions: Zhou B and Liu SY drafted the manuscript; Zhou B and Huang C contributed to the diagnosis and treatment of the patient; Huang SS and Liu SY revised the manuscript; all authors have read and approved the manuscript and contributed to the design of the study and interpretation of data.

Informed consent statement: Informed written consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare that they have no conflict of interest.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Country/Territory of origin: China

Specialty type: Clinical neurology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Abstract

BACKGROUND
Cerebral venous thrombosis (CVT) is a rare but life-threatening disease in pregnant women. Anticoagulation is the first-line therapy for CVT management. However, some patients have poor outcomes despite anticoagulation. Currently, the endovascular treatment of CVT in pregnant women remains controversial. We report a rare case of CVT in a pregnant woman who was successfully treated with two stent retriever devices.

CASE SUMMARY
The patient was a 29-year-old pregnant woman. She was first diagnosed with hyperemesis gravidarum due to severe nausea and vomiting for one week. As the disease progressed, she developed acute left hemiplegia. Imaging confirmed the diagnosis of superior sagittal sinus, right transverse sinus and sinus sigmoideus thrombosis. As anticoagulant therapy was ineffective, she underwent thrombectomy. After the mechanical thrombectomy, her headache diminished. Three weeks later, the patient was completely independent. At a 3-mo follow-up, no relapse of symptoms was observed.

CONCLUSION
Mechanical thrombectomy may be an effective alternative therapy for CVT in pregnant women if anticoagulation therapy fails.

Key Words: Pregnancy; Cerebral venous thrombosis; Anticoagulation; Mechanical thrombectomy; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Core Tip: Pregnancy-related cerebral venous thrombosis (CVT) is an uncommon and severe disease. Endovascular treatment of CVT in pregnant women remains controversial. We report a rare case of CVT in a pregnant woman who was successfully treated with two stent retriever devices. Given its rare incidence and highly diverse clinical manifestations, the clinical diagnosis of CVT is challenging. In order to avoid misdiagnosis in these high-risk patients, prompt multidisciplinary diagnosis and treatment is essential.

INTRODUCTION

Cerebral venous thrombosis (CVT) is a rare and severe disease. A recent study found that approximately one-third of CVT patients did not return to paid work, and this was more common in women and patients with parenchymal lesions[1]. According to the 2017 European ESO/EAN Guidelines, anticoagulation is the main therapeutic regimen for CVT in clinical practice[2]. However, some patients have poor outcomes despite anticoagulation. Studies have demonstrated the benefits of endovascular therapy with respect to CVT recanalization[3]. However, due to the low-level of available evidence, the 2017 European guidelines do not make any recommendations, and specific analyses regarding pregnant populations are limited. Here, we report a rare case of CVT in a pregnant woman who underwent endovascular mechanical thrombectomy using two stent retriever devices.

CASE PRESENTATION

Chief complaints

A 29-year-old female in the 8th week of her first pregnancy presented to the Obstetrics Department of a referral hospital. The patient had nausea, vomiting and persistent headaches for one week prior to admission. Due to severe nausea and vomiting in pregnancy, she was first diagnosed with hyperemesis gravidarum.

History of present illness

A persistent headache with nausea and non-projectile vomiting occurred 1 wk previously. The headache was mainly characterized by mild-to-moderate, pulsatile headache on both sides of the temple, which was more obvious when shaking her head. The patient had no other discomfort such as fever, blurred vision, hemiplegia, consciousness disturbance, seizures, etc.

History of past illness

About 8 wk previously, the patient’s menstruation ceased. Two weeks ago, she was treated with oral progesterone to prevent miscarriage due to a small amount of intermittent vaginal discharge. She denied a history of hematologic disorders, autoimmune diseases, intracranial and extracranial tumors.

Personal and family history

The patient denied taking oral contraceptives and denied a family history of hereditary thrombophilia.

Physical examination

On admission, the patient’s main symptoms were a persistent headache, nausea and vomiting. Her vital signs and muscle strength were normal. Three days after admission, she developed a new left-sided motor weakness (4/5). Neurologic consultation was recommended. Neurological examination showed poor spirit, left
limb weakness (4/5), neck stiffness, positive Kernig’s sign and positive Babinski’s sign on the left. No other focal neurological deficits were found.

Laboratory examinations

Cerebrospinal fluid pressure was 220 mmH₂O, cerebrospinal fluid cell count and protein were nearly normal, and β-human chorionic gonadotropin was 150073 IU/L. Her D-dimer level was 12.5 mg/L. Other laboratory tests were normal, such as routine blood tests, coagulation function, routine urinalysis, liver function, kidney function, homocysteine, protein C, protein S and so on. Due to an acute onset of neurologic symptoms, and objective findings upon neurologic examination, the most probable diagnosis was CVT.

Imaging examinations

Ultrasound scan was performed, which showed a fetus at 8 wk of gestation (Figure 1A). Prethrombectomy brain magnetic resonance imaging (MRI) combined with magnetic resonance venography revealed superior sagittal sinus, right transverse sinus and sinus sigmoideus thrombosis with a right temporal lobe venous infarct (Figure 1B and C). Post-thrombectomy MRI revealed new lesions in the right frontal lobe and left parietal lobe (Figure 1D).

FINAL DIAGNOSIS

The patient was diagnosed with CVT.

TREATMENT

Anticoagulant treatment with subcutaneous low molecular weight heparin (LMWH) administered twice a day was initiated. However, 3 d after admission, her symptoms worsened. The patient developed a right-sided weakness (4/5), and a progressive left limb weakness (3/5). Subsequent MRI confirmed new lesions in the right frontal lobe and left parietal lobe. Selective catheterization of the right internal carotid artery confirmed occlusion of the superior sagittal sinus, as well as the right transverse sinus, and sinus sigmoideus (Figure 2A and B). Despite anticoagulation, the patient’s neurological condition declined; therefore, emergency mechanical thrombectomy was performed. She successfully attained occluded superior sagittal sinus recanalization, as well as right transverse sinus, and sinus sigmoideus recanalization (Figure 2C-G). Microscopic appearance of the cerebral embolus specimen was consistent with a mixed thrombus (Figure 2H). As there were some residual thromboses, she continued LMWH therapy on the first post-procedure day. Immediately after the procedure, her headache diminished.

OUTCOME AND FOLLOW-UP

Three weeks after the procedure, the patient was completely independent (modified Rankin Scale score = 0), and at a 3-mo follow-up, symptomatic relapse was not reported.

DISCUSSION

Primary headaches, such as tension headaches and migraines, frequently occur in pregnant women and are the most common causes of headaches[4]. However, if pregnant women experience new, deteriorating headaches or when the headaches change in character, secondary origins may exist[5]. Pregnancy is a risk factor for secondary headache disorders. Anesthesia for labor, hypercoagulability, as well as hormonal changes are factors for the high incidence of secondary headaches during pregnancy. The most frequent causes of secondary headaches include stroke, subarachnoid hemorrhage, pituitary tumors, CVT, and reversible cerebral vasoconstriction syndrome[4].
Pregnancy is an important risk factor for CVT. In pregnancy, CVT has a prevalence of 1.2 per 100000 deliveries[6]. An increase in prevalence within the 1st trimester is associated with women who have pre-existing thrombophilia who become pregnant. Given its rare incidence and highly diverse clinical manifestations, the clinical diagnosis of CVT is challenging. High incidences of headaches, motor weakness, seizures, and comatose/obtunded status have been reported, in tandem with clinical manifestations among non-pregnant/puerperal patients[7].

Due to its superior diagnostic accuracy, MRI is the most suitable option for diagnosing CVT in pregnant women, especially as it does not expose them to radiation, and it clearly differentiates soft tissues. Recent studies have shown that MRI performed with a 1.5-T magnet is safe for diagnosis in pregnant women at all trimesters[8].

Anticoagulation constitutes the first-line therapeutic option for managing the acute stage of CVT. LMWH has been confirmed to be preferable to unfractionated heparin, as it results in reduced mortality as well as better functional outcomes, with equivalent rates of systemic bleeding[9]. Furthermore, in special populations, such as pregnant women, LMWH cannot traverse the placenta, and adverse reactions associated with teratogenicity or fatal bleeding have not been reported. Therefore, it is a reasonable choice of anticoagulation therapy for CVT patients during pregnancy[10].

In the International Study on Cerebral Vein and Dural Sinus Thrombosis, approximately 13% of cases had poor outcomes even after anticoagulation treatment[7]. The 2017 European ESO/EAN Guidelines recommend that patients with acute CVT who are at a low risk of adverse consequences before treatment should not undergo endovascular treatment.

Currently, although there are no randomized controlled trials regarding the effectiveness and safety of endovascular treatment for CVT, more and more evidence has shown that mechanical thrombectomy is a safe and effective treatment for CVT[3,11]. A 2017 review of 235 patients with CVT and a neurologic presentation described the

Figure 1 Ultrasound and magnetic resonance imaging. A: Ultrasound shows a fetus at 8 wk of gestation (orange arrow); B: Pre-thrombectomy-diffusion weighted imaging shows restriction in the right temporal lobe (orange circle); C: Pre-thrombectomy susceptibility-weighted imaging shows a large area of low signal region in the right temporal lobe; D: Post-thrombectomy magnetic resonance imaging reveals new lesions in the right frontal lobe and left parietal lobe (orange arrows).
effectiveness and safety of endovascular treatment for CVT. They found that although 40.2% of patients presented with poor baseline characteristics (encephalopathy or coma), 69.0% of patients achieved complete radiographic resolution of CVT after endovascular treatment, 76% of patients achieved a good clinical outcome (a modified Rankin Scale score of 0-2), and the rate of worsening or new intracranial hemorrhage was only 8.7%.

However, studies on the efficacy and safety of mechanical thrombectomy for CVT in pregnant women are mainly limited to case reports and small series. To date, there are only 12 case reports of mechanical thrombectomy for the treatment of CVT in pregnant women. Table 1 summarizes the reported cases of CVT in pregnant women treated with mechanical thrombectomy from the literature along with our patient[12-19]. In addition to pregnancy, most patients (7/12) have other risk factors, such as antithrombin III deficiency and so on. Because of consciousness disorder or rapid deterioration of neurological function, all the patients underwent thrombectomy with or without thrombolysis. In two patients, thrombectomy resulted in complete restoration of flow (2/8) and in the remaining 6 patients (6/8) partial restoration of flow was achieved. Following thrombectomy, two (2/12) patients experienced non-fatal intracranial hemorrhage, 9 (75%) patients had a good clinical outcome and one patient died.

With regard to the safety of radiation exposure on fetal growth during an endovascular procedure, due to the distance between the mother’s head and the uterus, the absorbed fetal radiation dose during endovascular treatment was only 2.8 mGy, which was much less than the risk threshold, and this had very little effect on the fetus[20]. The present review showed that the condition of the fetus was not mentioned in half of the 12 pregnant patients. One pregnancy ended in miscarriage, and five fetuses were normal at the time of discharge or follow-up. None of the infants was found to have either congenital anomalies or neonatal morbidity and mortality.

Therapeutic guidelines for CVT in pregnant women are difficult to establish, as the incidence of CVT in pregnancy is rare. If a patient presents with a new persistent headache and abnormalities on neurologic examination during pregnancy, obstetricians and neurologists should consider CVT, and MRI should be performed immediately. If the condition worsens during anticoagulant therapy, mechanical thrombectomy may be a good remedial treatment option.
Table 1 Summary of reported cases of cerebral venous thrombosis in pregnant women treated with mechanical thrombectomy

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Age</th>
<th>Risk factors</th>
<th>Treatment</th>
<th>Results of post-intervention CTA/DSA</th>
<th>Maternal outcome</th>
<th>Fetal outcome</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kourtopeoulos et al [12], 1994</td>
<td>18</td>
<td>Pregnancy</td>
<td>Open thrombectomy, thrombolysis, heparin + actilyse</td>
<td>NA</td>
<td>mRS = 5</td>
<td>Healthy</td>
<td>Intracranial hemorrhage</td>
</tr>
<tr>
<td>Chow et al [15], 2000</td>
<td>21</td>
<td>Pregnancy, anti-phospholipid antibodies</td>
<td>Heparin, rheolytic thrombectomy, urokinase</td>
<td>Partial restoration of flow</td>
<td>mRS = 0</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Ou et al [14], 2003</td>
<td>29</td>
<td>Pregnancy, ovarian hyperstimulation syndrome</td>
<td>Local thrombolysis (urokinase), mechanical thrombectomy, LMWH</td>
<td>Partial restoration of flow</td>
<td>mRS = 2</td>
<td>Healthy</td>
<td>None</td>
</tr>
<tr>
<td>Falavigna et al [15], 2006</td>
<td>24</td>
<td>Pregnancy</td>
<td>Mechanical lysis + abciximab</td>
<td>Complete restoration of flow</td>
<td>mRS = 0</td>
<td>Healthy</td>
<td>Intracranial hemorrhage</td>
</tr>
<tr>
<td>Li et al [16], 2013</td>
<td>32</td>
<td>Pregnancy, mastoiditis</td>
<td>Mechanical thrombectomy combined with urokinase</td>
<td>NA</td>
<td>mRS = 2</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Li et al [16], 2013</td>
<td>32</td>
<td>Antithrombin III deficiency, pregnancy</td>
<td>Mechanical thrombectomy combined with urokinase</td>
<td>NA</td>
<td>death</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Li et al [16], 2013</td>
<td>26</td>
<td>Pregnancy</td>
<td>Mechanical thrombectomy combined with urokinase</td>
<td>NA</td>
<td>mRS = 0</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Mokin et al [17], 2015</td>
<td>33</td>
<td>Pregnancy</td>
<td>Heparin, penumbra aspiration catheter and separator</td>
<td>Complete restoration of flow</td>
<td>mRS = 2</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>Mokin et al [17], 2015</td>
<td>19</td>
<td>Pregnancy</td>
<td>Heparin, AngioJet</td>
<td>Partial restoration of flow</td>
<td>mRS = 5</td>
<td>NA</td>
<td>None</td>
</tr>
<tr>
<td>King et al [18], 2016</td>
<td>20</td>
<td>Pregnancy, antithrombin III deficiency</td>
<td>Heparin, mechanical thrombectomy (failed), catheter-directed tPA, heparin + argatroban</td>
<td>Partial restoration of flow</td>
<td>mRS = 2</td>
<td>Healthy</td>
<td>None</td>
</tr>
<tr>
<td>Serna Candel et al [19], 2019</td>
<td>34</td>
<td>Pregnancy, Heterozygous factor V Leiden mutation</td>
<td>LMWH, aspiration thrombectomy (failed), balloon angioplasty (failed), acetylsalicylic acid, epifibatide, ticagrelor</td>
<td>Partial restoration of flow</td>
<td>mRS = 2</td>
<td>Healthy</td>
<td>None</td>
</tr>
<tr>
<td>Our case</td>
<td>29</td>
<td>Pregnancy, antithrombin III deficiency</td>
<td>LMWH, mechanical thrombectomy</td>
<td>Partial restoration of flow</td>
<td>mRS = 1</td>
<td>Miscarriage</td>
<td>None</td>
</tr>
</tbody>
</table>

CVT: Cerebral venous thrombosis; CTA: Computed tomographic angiogram; DSA: Digital subtraction angiogram; NA: Not available; mRS: Modified Rankin Scale; LMWH: Low-molecular weight heparin; tPA: Tissue plasminogen activator.

CONCLUSION

Cerebral venous thrombosis is easily misdiagnosed or missed due to its rarity, diverse, and non-specific clinical manifestations during pregnancy. Prompt multidisciplinary diagnosis and treatment is essential. Our case and those reported in the literature show that mechanical thrombectomy may be an effective alternative therapy for CVT in pregnant women who do not respond to standard management.

REFERENCES

