
Supplementary material

1 The Description and code of deep learning-based super-resolution

reconstruction

In recent years, deep learning-based super-resolution (SR) reconstruction

technology has achieved significant development in enhancing the spatial

resolution of medical images. The Onekey platform (http://medai.icu)

offered a 3D SR reconstruction technology for medical imaging that utilizes a

Generative Adversarial Network (GAN) as its fundamental architecture.

GAN was composed of two parts: a generator network, which is responsible

for converting low-resolution images into high-resolution ones, and a

discriminator network, tasked with distinguishing between real and

generated images. These networks were trained through an adversarial

process, where the generator learns to produce increasingly realistic images to

deceive the discriminator, while the discriminator improves its ability to

identify real and fake images. The dataset used for training the 3D

super-resolution reconstruction technology was made up of a large collection

of medical images. Before training, these images were meticulously

preprocessed to remove noise and artifacts, and their intensity values were

normalized. Then, the images were paired to form low-resolution and

high-resolution image pairs, with the low-resolution images obtained by

down-sampling the high-resolution counterparts. These paired image

datasets were employed to train the GAN model. In the GAN model, the loss

function employed is composed of three parts: gradient loss, L1 loss, and

perceptual loss. The gradient loss ensures that the gradients of the generated

images are consistent with those of the high-resolution images. The L1 loss

measures the pixel-wise differences between the generated images and the

high-resolution images. The perceptual loss evaluates the discrepancies

between the feature representations of the generated images and those of the

high-resolution images obtained from a pre-trained deep learning model. The

combination of these three loss functions helps to ensure that the generated



images are visually highly similar to the high-resolution images. The 3D

super-resolution reconstruction technology provided by the Onekey platform

has shown remarkable effectiveness in enhancing the spatial resolution of

medical images. After being assessed across a variety of medical imaging

modalities, such as Computed Tomography, Magnetic Resonance Imaging,

and ultrasound imaging, it has demonstrated significant advantages in

improving both image quality and spatial resolution.

The relevant code for this paper has been made publicly available at

http://medai.icu. For access to the source code or for further technical details

of this study, please contact the corresponding author of this paper.

2 The Description of Automatic Tumor Segmentation.

Firstly, image preprocessing was carried out mainly including the following

aspects. (1) Resampling. Due to the possibility of varying spacing in images

from different patients, resampling was employed to ensure segmentation

accuracy by adjusting the varying spacing to a consistent spacing. (2) N4 Bias

Field Correction. MR images often suffer from non-uniform brightness,

known as bias field, which may arise from magnetic field inhomogeneities or

various factors during the scanning process. N4 Bias Field Correction could

assess and correct for this bias, thereby facilitating more accurate

identification of structures and performing quantitative analysis. (3) Intensity

range clipping. Due to the significant differences in image values across

various tissues and lesions, it is necessary to truncate the range of image

intensity to reduce the interference of external information on segmentation

results. (4) Normalization. The specific formula is as follows:
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x represents the gray value of each voxel in the current MRI image,
 represents the mean gray value of all voxel in the current image,

 represents the standard deviation of the gray values in the current image,

http://medai.icu


and 'x represents the result after the standardization.

Subsequently, data augmentation was performed. To mitigate the issue of

insufficient data, and to ensure that the model has robustness and better

generalization performance with limited data, the algorithm primarily

employed two major types of data augmentation methods: spatial

transformations and intensity transformations. Spatial transformations

included the following aspects: random rotation, scaling, translation, and

mirror flipping. Intensity transformations mainly included Gaussian noise

and contrast enhancement. Training of the automatic tumor segmentation

model was then initiated based on 3D U-Net. This network was composed of

an encoder, a decoder, dense skip pathways, and deep supervision. A sliding

window was used to slice the MRI data to preserve the spatial information

between different layers. The process of model training consisted of 500

epochs with a batch size of 1, and each epoch included 1000 batches. The

optimizer selected for model training was Stochastic Gradient Descent. The

initial learning rate is set to 1e-03 for tumor. The dataset was randomly

divided into a training set and a validation set in an 8:2 ratio for training. The

test set was a separate dataset sourced differently from the training and

validation sets. Testing on a dataset from a different source could more

realistically reflect the model's generalizability and robustness. Each epoch

included two processes: training and validation. At the end of each epoch, the

trained model is tested on the validation dataset to obtain the Dice metric for

that epoch's model on the validation set. If the model's metric on the

validation set is the best to date, the model is updated; otherwise, training

continues to the next epoch. Ultimately, the model that was trained based on

the training and validation sets was applied to our study to calculate the

model's Dice metric (95.12%). For access to the source code or for further

technical details of this study, please contact the corresponding author of this

paper.



Supplementary Table 1 Scanning parameters of each magnetic resonance imaging

Manufacturer Model
Field

Strength
Sequence

TR

(ms)

TE

(ms)

Filp angle

(°)

Slice

thickness

(mm)

Acquisition

Type
Matrix

Pixel

Spacing

(mm)

Philips Multiva 1.5T

T2WI 1600 70 90 6 2D 268×53 0.73

DWI 5200 66 90 5 2D 128×125 1.7

DCE

T1WI
5.9 0 15 5 3D 190×190 0.84

United

Imaging
uMR560 1.5T

T2WI 4000 80 150 7 2D 320×167 0.67

DWI 3800 76 90 7 2D 112×70 1.68

DCE

T1WI
3.2 1.5 10 2.5 3D 256×133 0.84

United

Imaging
uMR570 1.5T

T2WI 4000 80 150 7 2D 320×142 0.75

DWI 3000 100 90 7 2D 176×83 2.71

DCE

T1WI
3.2 1.5 10 2.5 3D 256×114 0.94



United

Imaging
uMR770 3.0T

T2WI 2400 80 165 7 2D 288×154 0.97

DWI 2500 77 90 7 2D 128×98 1.64

DCE

T1WI
2.8 1.2 10 2.5 3D 256×144 1.09

GE MR750 3.0T

T2WI 6000 88 110 5 2D 320×320 0.82

DWI 5000 55 90 5 2D 128×160 1.64

DCE

T1WI
3.3 1.4 12 4 3D 256×192 0.82

SIEMENS Skyra 3.0T

T2WI 5200 75 72 5 2D 320×320 1.19

DWI 5600 60 90 5 2D 128×104 1.48

DCE

T1WI
4.1 1.3 12 3.5 3D 320×192 1.19

Supplementary Table 2 Delong Test and NRI for Pairwise Comparison Among Different Models

Original NR SR MRI Cohort Delong NRI



MRI test*

T2WI vs. T2WI Training 0.171 0.081

Validatio

n

0.778 0.039

Test 0.451 0.081

DWI vs. DWI Training 0.424 0.02

Validatio

n

0.753 -0.01

6

Test 0.993 0.022

PVP vs. PVP Training 0.397 0.14

Validatio

n

0.615 0.024

Test 0.41 0.122

All-sequenc

e

vs. All-sequence Training 0.701 0.018

Validatio

n

0.473 0.053



Test 0.695 0.021

NR: Normal-resolution; SR: Super-resolution; MRI: Magnetic resonance imaging; *: p-value; IDI: Integrated discrimination index;

NRI: Net reclassification index; T2WI: T2-weighted imaging; DWI: Diffusion-weighted imaging; PVP: Contrast-enhanced T1WI

(portal venous phase); All-sequence: Including three sequences (T2WI, DWI, PVP).
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Supplementary Figure 1 The weights of radiomics features selected from

different radiomics models. A: Details of radiomic features extracted from

T2WI based on NR MRI; B: Details of radiomic features extracted from DWI

based on NR MRI; C: Details of radiomic features extracted from PVP based

on NR MRI; D: Details of radiomic features extracted from All-sequence based

on NR MRI; E: Details of radiomic features extracted from T2WI based on SR

MRI; F: Details of radiomic features extracted from DWI based on SR MRI;G:



Details of radiomic features extracted from PVP based on SR MRI; H: Details

of radiomic features extracted from All-sequence based on SR MRI.

Supplementary Figure 2 ROC curves. A and B: Various radiomics models

based on NR (A) and SR (B) MRI in training, validation, and test cohorts,

respectively.



Supplementary Figure 3 The receiver operating characteristic curves,

calibration curves, and decision curve analysis based on Catboost. A:

Training cohort; B: Validation cohort; C: Test cohort.



Supplementary Figure 4 The predictive efficacy of subgroup analyses based

on United imaging 560 and 570. A: Training cohort; B: Test cohort.


