<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
</table>
| 5835 | EDITORIAL
Understanding the immunopathogenesis of COVID-19: Its implication for therapeutic strategy
Shimizu Y |
| 5844 | OPINION REVIEW
What is the gut feeling telling us about physical activity in colorectal carcinogenesis?
Cigrovski Berkovic M, Cigrovski V, Bilic-Curcic I, Mrzljak A |
| 5852 | REVIEW
Latest developments in chronic intestinal pseudo-obstruction
Zhu CZ, Zhao HW, Lin HW, Wang F, Li YX |
| 5866 | ORIGINAL ARTICLE
Case Control Study
Correlation between ductus venosus spectrum and right ventricular diastolic function in isolated single-umbilical-artery foetus and normal foetus in third trimester
Li TG, Nie F, Xu XY |
| 5876 | Retrospective Cohort Study
Clinical efficacy of integral theory-guided laparoscopic integral pelvic floor/ligament repair in the treatment of internal rectal prolapse in females
Yang Y, Cao YL, Zhang YY, Shi SS, Yang WW, Zhao N, Lyu BB, Zhang WL, Wei D |
| 5887 | Retrospective Study
Treatment of Kümmell’s disease with sequential infusion of bone cement: A retrospective study
Zhang X, Li YC, Liu HP, Zhou B, Yang HL |
| 5894 | Retrospective Study
Application value analysis of magnetic resonance imaging and computed tomography in the diagnosis of intracranial infection after craniocerebral surgery
Gu L, Yang XL, Yin HK, Lu ZH, Geng CJ |
| 5902 | Focal intrahepatic strictures: A proposal classification based on diagnosis-treatment experience and systemic review
Zhou D, Zhang B, Zhang XY, Guan WR, Wang JD, Ma F |
| 5918 | Preliminary analysis of the effect of vagus nerve stimulation in the treatment of children with intractable epilepsy
Fang T, Xie ZH, Liu TH, Deng J, Chen S, Chen F, Zheng LL |
Scoring system for poor limb perfusion after limb fracture in children
Zhu T, Shi Y, Yu Q, Zhao YJ, Dai W, Chen Y, Zhang SS

Overexpression of CD155 is associated with PD-1 and PD-L1 expression on immune cells, rather than tumor cells in the breast cancer microenvironment
Wang RB, Li YC, Zhou Q, Lv SZ, Yuan KY, Wu JP, Zhao YJ, Song QK, Zhu B

Application of computer tomography-based 3D reconstruction technique in hernia repair surgery
Wang F, Yang XF

Effect of methylprednisolone in severe and critical COVID-19: Analysis of 102 cases
Zhu HM, Li Y, Li BY, Yang S, Peng D, Yang X, Sun XL, Zhang M

Genetic diagnosis history and osteoarticular phenotype of a non-transfusion secondary hemochromatosis

Abdominal ventral rectopexy with colectomy for obstructed defecation syndrome: An alternative option for selected patients
Wang L, Li CX, Tian Y, Ye JW, Li F, Tong WD

Surgical treatment of multiple magnet ingestion in children: A single-center study
Cai DT, Shu Q, Zhang SH, Liu J, Gao ZG

Efficacy and economic benefits of a modified Valsalva maneuver in patients with paroxysmal supraventricular tachycardia
Wang W, Jiang TF, Han WZ, Jin L, Zhao XJ, Guo Y

Duodenal giant stromal tumor combined with ectopic varicose hemorrhage: A case report
Li DH, Liu XY, Xu LB

Healthy neonate born to a SARS-CoV-2 infected woman: A case report and review of literature

Pleomorphic adenoma of the trachea: A case report and review of the literature
Liao QN, Fang ZK, Chen SB, Fan HZ, Chen LC, Wu XP, He X, Yu HP

Neoadjuvant targeted therapy for apocrine carcinoma of the breast: A case report
Yang P, Peng SJ, Dong YM, Yang L, Yang ZY, Hu XE, Bao GQ

Huge encrusted ureteral stent forgotten for over 25 years: A case report
Kim DS, Lee SH
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>6048</td>
<td>Roxadustat for treatment of erythropoietin-hyporesponsive anemia in a hemodialysis patient: A case report</td>
<td>Yu WH, Li XJ, Yuan F</td>
</tr>
<tr>
<td>6056</td>
<td>Suspected SARS-CoV-2 infection with fever and coronary heart disease: A case report</td>
<td>Gong JR, Yang JS, He YW, Yu KH, Liu J, Sun RL</td>
</tr>
<tr>
<td>6080</td>
<td>Forty-nine years old woman co-infected with SARS-CoV-2 and Mycoplasma: A case report</td>
<td>Gao ZA, Gao LB, Chen XJ, Xu Y</td>
</tr>
<tr>
<td>6095</td>
<td>Small-cell neuroendocrine carcinoma of the rectum — a rare tumor type with poor prognosis: A case report and review of literature</td>
<td>Chen ZZ, Huang W, Wei ZQ</td>
</tr>
<tr>
<td>6103</td>
<td>Laparoscopic left lateral sectionectomy in pediatric living donor liver transplantation by single-port approach: A case report</td>
<td>Li H, Wei L, Zeng Z, Qu W, Zhu ZJ</td>
</tr>
<tr>
<td>6110</td>
<td>Malignant meningioma with jugular vein invasion and carotid artery extension: A case report and review of the literature</td>
<td>Chen HY, Zhao F, Qin JY, Lin HM, Su JP</td>
</tr>
<tr>
<td>6130</td>
<td>Hemophagocytic lymphohistiocytosis caused by STAT1 gain-of-function mutation is not driven by interferon-γ: A case report</td>
<td>Liu N, Zhao FY, Xu XJ</td>
</tr>
<tr>
<td>6136</td>
<td>Single door laminoplasty plus posterior fusion for posterior atlantoaxial dislocation with congenital malformation: A case report and review of literature</td>
<td>Zhu Y, Wu XX, Jiang AQ, Li XF, Yang HL, Jiang WM</td>
</tr>
<tr>
<td>6144</td>
<td>Occipital nodular fasciitis easily misdiagnosed as neoplastic lesions: A rare case report</td>
<td>Wang T, Tang GC, Yang H, Fan JK</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6150</td>
<td>Postoperative secondary aggravation of obstructive sleep apnea-hypopnea syndrome and hypoxemia with bilateral carotid body tumor: A case report</td>
<td>Yang X, He XG, Jiang DH, Feng C, Nie R</td>
</tr>
<tr>
<td>6158</td>
<td>Uncontrolled central hyperthermia by standard dose of bromocriptine: A case report</td>
<td>Ge X, Luan X</td>
</tr>
<tr>
<td>6164</td>
<td>Acute celiac artery occlusion secondary to blunt trauma: Two case reports</td>
<td>Li H, Zhao Y, Xu YA, Li T, Yang J, Hu P, Ai T</td>
</tr>
<tr>
<td>6172</td>
<td>Multiple ectopic goiter in the retroperitoneum, abdominal wall, liver, and diaphragm: A case report and review of literature</td>
<td>Qin LH, He FY, Liao JY</td>
</tr>
<tr>
<td>6181</td>
<td>Symptomatic and optimal supportive care of critical COVID-19: A case report and literature review</td>
<td>Pang QL, He WC, Li JX, Huang L</td>
</tr>
<tr>
<td>6190</td>
<td>Primary breast cancer patient with poliomyelitis: A case report</td>
<td>Wang XM, Cong YZ, Qiao GD, Zhang S, Wang LJ</td>
</tr>
<tr>
<td>6206</td>
<td>Novel triple therapy for hemorrhagic ascites caused by endometriosis: A case report</td>
<td>Han X, Zhang ST</td>
</tr>
</tbody>
</table>
ABOUT COVER

Peer-reviewer of World Journal of Clinical Cases, Dr. Mohamad Adam Bujang is a Research Officer at the Institute for Clinical Research, Ministry of Health, Malaysia. After receiving his Bachelor’s degree in Statistics from MARA University of Technology in 2004, Dr. Adam undertook his postgraduate study at the same university, receiving his Master’s degree (MBA) in 2008 and his PhD in Information Technology and Quantitative Sciences in 2017. Currently, he works as a biostatistician and researcher in the Clinical Research Centre, Sarawak General Hospital. His ongoing research interests involve such research methodologies as sampling techniques, sample size planning, and statistical analyses. Since 2016, he has served as an active member of the Malaysia Institute of Statistics and the Association of Clinical Registries Malaysia. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING

The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, and PubMed Central. The 2020 Edition of Journal Citation Reports® cites the 2019 impact factor (IF) for WJCC as 1.013; IF without journal self cites: 0.991; Ranking: 120 among 165 journals in medicine, general and internal; and Quartile category: Q3.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yan-Xia Xing Production Department Director: Yan-Xiaojian Wu; Editorial Office Director: Jin-Lei Wang.
Retrospective Study

Overexpression of CD155 is associated with PD-1 and PD-L1 expression on immune cells, rather than tumor cells in the breast cancer microenvironment

Rui-Bin Wang, Yu-Chen Li, Quan Zhou, Shu-Zhen Lv, Ke-Yu Yuan, Jiang-Ping Wu, Yan-Jie Zhao, Qing-Kun Song, Bin Zhu

ORCID numbers: Rui-Bin Wang 0000-0001-9592-1539; Yu-Chen Li 0000-0001-7091-3073; Quan Zhou 0000-0002-8856-5836; Shu-Zhen Lv 0000-0002-2341-966X; Ke-Yu Yuan 0000-0001-6769-4084; Jiang-Ping Wu 0000-0002-5105-8902; Yan-Jie Zhao 0000-0003-0831-6395; Qing-Kun Song 0000-0002-1159-257X; Bin Zhu 0000-0002-1024-3407.

Author contributions: Wang RB, Li YC and Zhou Q performed the majority of experiments and wrote the manuscript; Lv SZ, Yuan KY, Zhao YJ, and Song QK designed the study and corrected the manuscript; Wu JP and Wang RB contributed to data analysis; Song QK and Zhu B were responsible for designing and performing the study, manuscript reviewing and approval of the final version; Song QK and Zhu B contributed equally to this manuscript; all authors have read and approved the final manuscript.

Supported by: Beijing Municipal Committee of Science and Technology, No. Z18110000178090 and Z19110000619041; Beijing Municipal Administration of Hospitals, No. PX2018029; Beijing

Rui-Bin Wang, Department of Emergency, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Yu-Chen Li, Department of Cancer Research, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Quan Zhou, Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Shu-Zhen Lv, Ke-Yu Yuan, Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Jiang-Ping Wu, Yan-Jie Zhao, Department of Medical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Qing-Kun Song, Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Shijitan Hospital, Beijing 100038, China

Bin Zhu, Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China

Corresponding author: Bin Zhu, MD, Professor, Department of Surgical Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Haidian District, Beijing 100038, China. binzhu99@sohu.com

Abstract

BACKGROUND

CD155 is an immune checkpoint protein in cancers and interacts with ligands to regulate the immune microenvironment. The expression of CD155 is correlated with the prognosis and pathological features of breast cancer.

AIM

To investigate the expression status of CD155 and the association with exhausted CD4+ helper and CD8+ cytotoxic tumor infiltrating lymphocytes (TILs) and PD-L1 in the breast cancer microenvironment.
Wang RB et al. Overexpression of CD155 in breast cancer

INTRODUCTION

Breast cancer (BC) is the most common malignant tumor among Chinese women, and new cases of breast cancer accounted for 15% of all female cancer patients in 2015[1]. The clinicopathological characteristics of Chinese women with BC are different to those of western women, with a lower expression rate of hormone receptors and higher expression rate of human epidermal growth factor receptor 2[2]. CD155 is one ligand of the T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motifs (ITIM) domain (TIGIT) expressed in various cell types, including antigen-presenting cells and tumor cells[3] and the interaction limits cell function through feedback inhibition[4]. Normal tissues have no or low expression of CD155 but malignancies have upregulated expression compared to normal tissues and tumor cells in the microenvironment.

CONCLUSION

CD155 was related to an inhibitory immune breast cancer microenvironment. CD155 was associated with a high proportion of exhausted CD8+ T cells and unexhausted CD8+ TILs and high PD-L1 expression in immune cells. CD155 was correlated with a high expression rate of human epidermal growth factor receptor 2 and PD-L1 expression in patients with positive and negative CD155 expression, respectively (P < 0.05). CD155 expression was related to the inhibitory immune microenvironment and may be an immunotherapeutic target in breast cancer.

METHODS

One hundred and twenty-six breast cancer patients with invasive ductal breast cancer were consecutively recruited into this study. Immunohistochemistry was used to detect the expression CD155, PD-L1 and PD-1 on tumor-infiltrating immune cells and tumor cells in the microenvironment.

RESULTS

The proportion of patients with CD155 expression was higher in triple negative breast cancer (72.7%) than in Luminal A patients (22.2%, P < 0.05). Patients with positive CD155 expression had a higher percentage of CD4+/PD-1+ helper TILs (30%) than patients with negative CD155 expression (21%, P < 0.05). Patients with positive CD155 expression also had higher cell counts of exhausted CD4+ TILs [47 vs 20/high-power fields (HPF)] and unexhausted CD8+ TILs (30 vs 17/HPF) than patients with negative expression (P < 0.05). CD155 expression was correlated with increased PD-L1 expression in immune cells, 0.8% and 0.02% immune cells expressed PD-L1 in patients with positive and negative CD155 expression, respectively (P < 0.05).

Key Words: Breast cancer; CD155; PD-1; PD-L1; Tumor-infiltrating lymphocytes; Immune cells

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this study, we showed that overexpression of CD155 in the breast cancer microenvironment had a significant association with a high level of programmed cell death ligand 1 expression, exhausted CD8+ helper T cells and unexhausted CD8+ cytotoxic T cells. CD155 expression was related to the inhibitory immune microenvironment and may be an immunotherapeutic target in breast cancer.

DOI: https://dx.doi.org/10.12998/wjcc.v8.i23.5935

CONFLICT OF INTEREST STATEMENT: The authors have no conflict of interest related to the manuscript.

DATA SHARING STATEMENT: The original anonymous dataset is available on request from the corresponding author at songqingkun@aliyun.com.
Wang RB et al. Overexpression of CD155 in breast cancer

Therefore, this study was performed to investigate the distribution of CD155 expression and its relationship with PD-L1 and phenotypes of exhausted CD4+ and CD8+ effector TILs to illustrate the effect of CD155 expression on the immune microenvironment of BC in Chinese patients.

MATERIALS AND METHODS

Ethical approval and informed consent

All procedures performed in this study involving human participants were approved by the ethical committee of Beijing Shijitan Hospital, Capital Medical University, in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments. This was a retrospective study and formal consent was waived.

Patients

A total of 126 patients with invasive ductal BC were consecutively recruited into this cohort study from January 1, 2012 to December 31, 2013. Patients were diagnosed with operable BC and received surgical treatment at the Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University. All patients were diagnosed with primary invasive BC following pathology testing.

Tissue preparation

The surgical specimens from all patients were fixed using 4% neutral formaldehyde, embedded in paraffin (FFPE), and stained with hematoxylin and eosin. A series of 4-μm thick sections from each specimen were used to determine the histopathological features. The Nottingham modification of the Bloom–Richardson system was used to classify histological grading of BC.

Immunohistochemistry

The expression of CD155, PD-L1 and PD-1 was detected by immunohistochemistry (IHC) on 4-μm thick FFPE sections. Monoclonal antibody against CD155 (rabbit anti-human, # 81254) was purchased from Cell Signaling Technology. Monoclonal antibody against PD-L1 (rabbit anti-human, # SP142) was from Roche. Monoclonal antibody against PD-1 (mouse anti-human, # UAB199) CD4 (rabbit anti-human, # EP204) and CD8 (# SP16) were purchased from Beijing Zhong Shan Golden Bridge Biotechnology Co., Ltd. Sections were dehydrated in an oven at 60°C for 60 min, dewaxed for 20 min and washed in 100%, 100%, 95% and 75% alcohol for 2 min, respectively. The sections were then washed in phosphate buffered saline (PBS) 5 times for 2 min each time. EnVision TM FLEX Target Retrieval Solutions were used for antigen retrieval for 2 min 30 s. The sections were left at room temperature for 20 min, and washed in PBS 5 times for 2 min each time. The sections were incubated in 3% H2O2 at room temperature for 15 min; washed in PBS 5 times for 2 min each time and then sealed with 5% serum at 37°C for 15 min. The supernatant was discarded and the primary antibody was added at 4°C and left overnight. The samples were washed with PBS 5 times for 2 min each time, DAB was added and reacted for 5-10 min. PD-L1, PD-1 and CD155 were visualized with DAB, whereas CD4 and CD8 were visualized with AP-red. The slides were counterstained with hematoxylin.

IHC scoring

TILs located within the borders of the invasive tumor, excluding tumor zones with crush artifacts, necrosis, regressive hyalinization and biopsy sites were evaluated by two pathologists to estimate the average level. All mononuclear cells (including lymphocytes and plasma cells) were scored, and polymorphonuclear leukocytes were excluded. The average number of TILs was counted in 10 high-power fields (HPF, × 400) in randomly selected IHC sections.

Positive CD155 expression was recorded as brown membrane in tumor cells. Negative CD155 tumor cells were defined as having complete weak or incomplete strong staining on the cell membrane. Positive PD-L1 expression was recorded as brown cytoplasm and/or cytomembrane in immune and tumor cells. Positive PD-1 expression was recorded as brown cytoplasm in lymphocytes. CD4 and CD8 were expressed on the cytomembrane of lymphocytes and were red in color. Double staining of CD4/PD-1 and CD8/PD-1 showed red cytomembrane and brown cytoplasm in lymphocytes. PD-1, CD4 or CD8 positive cells in 100 TILs were counted.
and the expression rate was calculated.

Statistical analysis

All analyses were conducted with SPSS software (version 17.0). The correlation of age and CD155 expression was analyzed by the Wilcoxon rank sum test. Histological grade and tumor node metastasis (TNM) stage were analyzed with CD155 expression by the Spearman correlation test. The relationship between CD155 expression and molecular subtype was estimated using the Chi-square test. Percentage and cell counts of phenotypic CD4+ and CD8+ effector TILs with CD155 expression were analyzed by the Wilcoxon rank sum test. The percentage of tumor and immune cells expressing PD-L1 with CD155 expression were analyzed by the Wilcoxon rank sum test. All analyses were two sided and the significance level was 0.05.

RESULTS

Patient age was not related to CD155 expression (Table 1). BC patients classified by histological grades and TNM stages had comparable expression of CD155 \((P > 0.05,\) Table 1). Molecular subtypes were correlated with CD155 expression, as 22% of Luminal A BC patients were found to have positive CD155 expression, compared with 73% of triple-negative breast cancer (TNBC) patients \((P < 0.05,\) Table 1).

CD155 expression was not associated with percentage of CD4+ helper TILs (Table 2). However, patients with positive CD155 expression had a higher level of CD4+/PD-1+ TILs and a lower level of CD4+/PD-1- TILs \((P < 0.05,\) Table 2). CD155 expression was not related to the percentage of phenotypic CD8+ TILs (Table 2).

The expression of CD155 was related to higher cell counts of CD4+ helper TILs \((87 \text{ vs } 54/\text{HPF, Table 3}).\) The increase in cell counts of exhausted, but not unexhausted CD4+ helper TILs was related to CD155 expression \((47 \text{ vs } 20/\text{HPF, Table 3}).\) CD155 expression was associated with higher cell counts of CD8+ TILs and unexhausted CD8+ TILs were increased by 76% in patients with positive CD155 expression \((P < 0.05,\) Table 3).

CD155 expression was correlated with a higher proportion of immune cells expressing PD-L1 (Figure 1A). The rate of immune cells with PD-L1 expression was 0.02% and 0.8% in patients with negative and positive CD155 expression, respectively \((P < 0.05,\) Figure 1A and B). PD-L1 expression rates were 0.6% and 0.8% in tumor cells with negative and positive CD155 expression, and no significant relationship was observed.

DISCUSSION

CD155, originally identified as a poliovirus receptor, has similar characteristics of conserved amino acids and domain with the immunoglobulin superfamily. Due to the similar domain to nectin, CD155 is designated as the fifth member of the nectin-like molecular family, and is referred to as necl-5. Up-regulated expression of CD155 can promote cell migration and enhances growth factor-induced cell proliferation.

CD155 expression is increased in malignant tumor tissues. In this study, CD155 expression was correlated with molecular subtypes of BC, and the positive rate in TNBC was higher than that in Luminal A patients. Studies have shown that CD155 is less expressed in normal tissues, but is significantly increased in various malignant tumor tissues, and its overexpression was associated with tumor progression and poor prognosis. In addition, plasma soluble CD155 was significantly higher in cancer patients than that in healthy people, and the level in patients with advanced stage cancer was even higher than that in patients with early stage disease. These studies suggest that CD155 may serve as a biomarker for tumor progression and prognosis.

CD155 expression is reported to be regulated by the activation of signaling pathways such as Raf-MEK-ERK-AP1, Sonic hedgehog, and Toll-like receptor 4 (TLR4). Overexpression of CD155 inhibited tumor cell apoptosis through the AKT/bcl-2 signaling pathway in colon cancer. In addition, DNA damage is one of the important mechanisms in the induction of CD155 expression. Reactive oxygen species or reactive nitrogen species can induce the expression of CD155 in multiple myeloma cells. Therefore, CD155 expression in tumor tissues is increased under the influence of multiple factors.

T cell activation is initiated after T cell receptor (TCR) recognition of antigens, and
Table 1 Relationship between CD155 expression and pathological characteristics

<table>
<thead>
<tr>
<th>CD155 expression</th>
<th>Negative (n = 78)</th>
<th>Positive (n = 48)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD (yr)</td>
<td>58.2 ± 13.87</td>
<td>57.8 ± 13.26</td>
<td>0.914</td>
</tr>
<tr>
<td>Histological grade, n (%)</td>
<td></td>
<td></td>
<td>0.112</td>
</tr>
<tr>
<td>I</td>
<td>11 (15.3)</td>
<td>2 (4.3)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>47 (65.3)</td>
<td>32 (69.6)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>14 (19.4)</td>
<td>12 (26.1)</td>
<td></td>
</tr>
<tr>
<td>TNM stage, n (%)</td>
<td></td>
<td></td>
<td>0.662</td>
</tr>
<tr>
<td>I</td>
<td>20 (27.0)</td>
<td>10 (21.3)</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>39 (52.7)</td>
<td>28 (59.6)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>12 (16.2)</td>
<td>6 (12.8)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>3 (4.1)</td>
<td>3 (6.4)</td>
<td></td>
</tr>
<tr>
<td>Molecular subtype, n (%)</td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Luminal A</td>
<td>49 (77.8)</td>
<td>14 (22.2)</td>
<td></td>
</tr>
<tr>
<td>Luminal B</td>
<td>16 (51.6)</td>
<td>15 (48.4)</td>
<td></td>
</tr>
<tr>
<td>HER2 over-expression</td>
<td>5 (50.0)</td>
<td>5 (50.0)</td>
<td></td>
</tr>
<tr>
<td>Triple negative</td>
<td>3 (27.3)</td>
<td>8 (72.7)</td>
<td></td>
</tr>
</tbody>
</table>

1Wilcoxon rank sum test.
2Spearman correlation test.
3Chi-square test. TNM: Tumor node metastasis.

Table 2 Association between CD155 expression and percentage of tumor infiltrating lymphocytes phenotypes

<table>
<thead>
<tr>
<th>TILs phenotypes</th>
<th>CD155 expression</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+ TILs, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (n = 78)</td>
<td>60% ± 22%</td>
<td>61% ± 22%</td>
</tr>
<tr>
<td>Positive (n = 48)</td>
<td>21% ± 20%</td>
<td>30% ± 19%</td>
</tr>
<tr>
<td>CD4+/PD-1+ TILs, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8+ TILs, mean ± SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8+/PD-1+ TILs, mean ± SD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Wilcoxon rank sum test. TILs: Tumor infiltrating lymphocytes.

the co-signaling molecules affect T cell activation, subsets differentiation and survival[29]. Co-stimulatory and co-inhibitory receptors determine the functional outcome of TCR signaling[30]. TIGIT, like PD-1 and CTLA-4, is a co-inhibitory receptor that can be expressed by CD4+ T cells, CD8+ T cells, natural killer (NK) cells and other immune cells[31]. CD155 can regulate the function of immune cells. In this study, patients with CD155 overexpression had a higher level of CD4+/PD-1+ TILs and higher cell counts of CD4+, CD8+ TILs. Lymphocytes, T-cells, B-cells, macrophages or NK cells, which moved from the vasculature and localized in tumor stroma are called TILs[22]. The immune system, especially TILs in the epithelium, plays a major role in controlling the growth of virtually all solid tumors[32]. TILs in the microenvironment reportedly affect cancer development, prognosis, and treatment efficacy. The existence of TILs has been determined to be a positive prognostic factor in a number of solid cancers including, but not limited to, colon cancer[33] and BC[34]. Although CD8+ or CD4+ T lymphocytes have been shown to recognize cancer antigens and inhibit the
Table 3 Association between CD155 expression and cell counts of tumor infiltrating lymphocytes phenotypes

<table>
<thead>
<tr>
<th>TILs phenotypes</th>
<th>CD155 expression</th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative (n = 78)</td>
<td>Positive (n = 48)</td>
<td></td>
</tr>
<tr>
<td>CD4⁺ TILs, mean ± SD</td>
<td>54 ± 46</td>
<td>87 ± 93</td>
<td>0.041</td>
</tr>
<tr>
<td>CD4⁺/PD-1⁺ TILs, mean ± SD</td>
<td>20 ± 24</td>
<td>47 ± 57</td>
<td>0.002</td>
</tr>
<tr>
<td>CD4⁺/PD-1⁻ TILs, mean ± SD</td>
<td>34 ± 30</td>
<td>41 ± 45</td>
<td>0.658</td>
</tr>
<tr>
<td>CD8⁺ TILs, mean ± SD</td>
<td>21 ± 20</td>
<td>37 ± 44</td>
<td>0.040</td>
</tr>
<tr>
<td>CD8⁺/PD-1⁺ TILs, mean ± SD</td>
<td>4 ± 5</td>
<td>7 ± 13</td>
<td>0.069</td>
</tr>
<tr>
<td>CD8⁺/PD-1⁻ TILs, mean ± SD</td>
<td>17 ± 17</td>
<td>30 ± 35</td>
<td>0.040</td>
</tr>
</tbody>
</table>

¹Wilcoxon rank sum test. TILs: Tumor infiltrating lymphocytes.

Figure 1 The relationship between PD-L1 expression in immune cells and CD155 expression in tumor cells. A: Low expression of PD-L1 among patients with negative CD155; B: High expression of PD-L1 among patients with positive CD155.

development of cancer, some cancer cells can thwart immune recognition and response[26]. CD155 can interact with its receptors on immune cells to regulate immune function. TIGIT, CD96 and CD226 are common receptors for CD155. When CD155 binds with the co-stimulatory molecule CD226 on the surface of T cells or NK cells, these immune cells are activated to secrete cytokines and kill tumor cells; however, when CD155 interacts with co-inhibitory molecule TIGIT or CD96, the function of immune cells is inhibited[27]. The interaction between CD155 and CD226 down-regulated the expression of CD226 in T cells and NK cells[28]. In contrast to CD226, TIGIT is significantly upregulated on TILs, and its expression parallels that of other co-inhibitory receptors, most notably PD-1[29]. It is now clear that co-signaling molecules have a crucial role in regulating T cell activation, subset differentiation, effector function and survival.

In this study, the proportion of immune cells with PD-L1 expression was correlated with CD155 expression in tumor cells. Studies have confirmed that during the activation process of T cells, interferon-γ (IFN-γ) molecules are secreted to up-regulate the expression of PD-L1 on DC cells, and its binding with PD-1 on T cells will generate inhibitory signals and inhibit the proliferation of T cells[30]. Moreover, in tumor tissues, IFN-γ secretion induced by activation of the TLR4 signaling pathway induced CD155 expression[16]. The common IFN-γ pathway shared by PD-L1 expression in immune cells and CD155 expression in tumor cells might explain this high co-expression.

In this study, although CD155 was observed to be correlated with the molecular phenotype of BC, and there was a significant correlation with TILs and PD-L1, the mechanism is still unclear. The unclear expression of TIGIT, CD96 and CD226 on TILs was the main limitation in this study. The relevant signaling pathways are not discussed in this paper.
CONCLUSION

CD155 was related to an inhibitory immune microenvironment in breast cancer patients. High CD155 expression was associated with a high level of exhausted CD4\(^+\) helper TILs and PD-L1 expression in immune cells. Further studies are warranted.

ARTICLE HIGHLIGHTS

Research background
CD155 is an immune checkpoint protein in cancers and interacts with ligands to regulate the immune microenvironment. The expression of CD155 is correlated with the prognosis and pathological features of breast cancer.

Research motivation
To define whether the expression of CD155 is correlated with the phenotype of tumor infiltrating lymphocytes (TILs) in the breast cancer microenvironment.

Research objectives
To investigate the expression status of CD155 and the association with exhausted CD4\(^+\) helper and CD8\(^+\) cytotoxic TILs and PD-L1 in the breast cancer microenvironment.

Research methods
This was a retrospective study of 126 breast cancer patients. Immunohistochemistry was used to detect the expression CD155, PD-L1 and PD-1 on TILs. Univariate and multivariable tests were performed for statistical analysis of the data.

Research results
The proportion of patients with CD155 expression was higher in triple negative breast cancer than in Luminal A patients. Patients with positive CD155 expression had a higher percentage of CD4\(^+\)/PD-1\(^+\) helper TILs. Patients with positive CD155 expression also had higher cell counts of exhausted CD4\(^+\) TILs and unexhausted CD8\(^+\) TILs. CD155 expression was correlated with increased PD-L1 expression in immune cells.

Research conclusions
CD155 was related to an inhibitory immune microenvironment in breast cancer patients. High CD155 expression was associated with a high level of exhausted CD4\(^+\) helper TILs and PD-L1 expression in immune cells.

Research perspectives
CD155 overexpression resulted in a worse overall survival and may be a potential immunotherapy target in breast cancer.

REFERENCES

6. Bevelacqua V, Bevelacqua Y, Candido S, Skarmoutsou E, Amoroso A, Guarneri C, Strazzanti A,
Wang RB et al. Overexpression of CD155 in breast cancer

Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor
microenvironment. *Nat Immunol* 2013; **14**: 1014-1022 [PMID: 24048123 DOI: 10.1038/ni.2703]

