OPINION REVIEW
577
Pancreatic transplant surgery and stem cell therapy: Finding the balance between therapeutic advances and ethical principles
Padovano M, Scopetti M, Manetti F, Morena D, Radaelli D, D’Errico S, Di Fazio N, Frati P, Fineschi V

MINIREVIEWS
587
Metabolic determinants of stemness in medulloblastoma
Martín-Rubio P, Espíau-Romera P, Royo-García A, Caja L, Sancho P

ORIGINAL ARTICLE

Basic Study
599
Sinomenine promotes differentiation of induced pluripotent stem cells into immature dendritic cells with high induction of immune tolerance
Huang XY, Jin ZK, Dou M, Zheng BX, Zhao XR, Feng Q, Feng YM, Duan XL, Tian PX, Xu CX

616
Changes of cell membrane fluidity for mesenchymal stem cell spheroids on biomaterial surfaces
Wong CW, Han HW, Hsu SH

633
Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model
Qazi REM, Khan I, Haneef K, Malick TS, Naeem N, Ahmad W, Salim A, Mohsin S

SYSTEMATIC REVIEWS
658
How mesenchymal stem cell cotransplantation with hematopoietic stem cells can improve engraftment in animal models
Garrigós MM, de Oliveira FA, Nucci MP, Nucci LP, Alves ADH, Dias OFM, Gamarra LF

LETTER TO THE EDITOR
680
Bone marrow mesenchymal stem cell treatment improves post-stroke cerebral function recovery by regulating gut microbiota in rats
Sheykhasan M, Poondla N
ABOUT COVER
Editorial Board Member of World Journal of Stem Cells, Konstantinos I Papadopoulos, MD, PhD, Chairman, Chief Doctor, Director, Department of Research and Development, THAI StemLife, Bangkok 10310, Thailand.
kostas@thaistemlife.co.th

AIMS AND SCOPE
The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is to provide scholars and readers from various fields of stem cells with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJSC publishes articles reporting research results obtained in the field of stem cell biology and regenerative medicine, related to the wide range of stem cells including embryonic stem cells, germline stem cells, tissue-specific stem cells, adult stem cells, mesenchymal stromal cells, induced pluripotent stem cells, embryonal carcinoma stem cells, hemangioblasts, lymphoid progenitor cells, etc.

INDEXING/ABSTRACTING
The WJSC is now abstracted and indexed in Science Citation Index Expanded (SCIE, also known as SciSearch®), Journal Citation Reports/Science Edition, PubMed, PubMed Central, Scopus, Biological Abstracts, BIOSIS Previews, Reference Citation Analysis, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Superstar Journals Database. The 2022 Edition of Journal Citation Reports cites the 2021 impact factor (IF) for WJSC as 5.247; IF without journal self cites: 5.028; 5-year IF: 4.964; Journal Citation Indicator: 0.56; Ranking: 12 among 29 journals in cell and tissue engineering; Quartile category: Q2; Ranking: 86 among 194 journals in cell biology; and Quartile category: Q2. The WJSC’s CiteScore for 2021 is 5.1 and Scopus CiteScore rank 2021: Histology is 17/61; Genetics is 145/335; Genetics (clinical) is 42/86; Molecular Biology is 221/386; Cell Biology is 164/274.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Yan-Liang Zhang; Production Department Director: Xu Guo; Editorial Office Director: Jia-Ru Fan.

NAME OF JOURNAL
World Journal of Stem Cells

ISSN
ISSN 1948-0210 (online)

LAUNCH DATE
December 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Shengwen Calvin Li, Carlo Ventura

EDITORIAL BOARD MEMBERS

PUBLICATION DATE
August 26, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

© 2022 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA
E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

https://www.wjgnet.com
Bone marrow mesenchymal stem cell treatment improves post-stroke cerebral function recovery by regulating gut microbiota in rats

Mohsen Sheykhhasan, Naresh Poondla

Abstract

Early intervention with bone marrow mesenchymal stem cells to change the form and function of the gut microbiota may help rats regain neurological function after a stroke.

Key Words: Ischemic stroke; Bone marrow mesenchymal stem cells; Neurological function; Gut microbiota

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Using bone marrow mesenchymal stem cells (BMSCs) as a therapy method may be a successful technique to combat neurological conditions like ischemic stroke. The dysbiosis of the gut microbiota can impact stroke prognosis, according to the gut-brain axis. Zhao et al.'s study examined the interaction between BMSCs and the gut flora. Zhao et al.'s research showed that the ischemic stroke treatment provided by BMSCs may have an impact on the structure and function of the microbiome.
TO THE EDITOR

We recently read the work by Zhao et al[1] in the World Journal of Stem Cells with interest. They presented three groups, including a sham surgical control group, a group with temporary middle cerebral artery occlusion (MCAO), and a group with MCAO treated with bone marrow mesenchymal stem cells (BMSCs).

In this study using rats, Zhao et al[1] investigated the therapeutic effects of BMSC transplantation in the treatment of ischemic stroke as well as the relationship between BMSC transplantation and gut microbiota outcomes in terms of enhancing the recovery of neurological function after stroke. Overall, the authors’ excellent unique contribution to the current investigation of bone marrow mesenchymal stem cell therapy in ischemic stroke, together with a concise explanation of its therapeutic potential, were both greatly appreciated.

A more thorough explanation of Zhao et al[1] research is required, in order for the readers to understand clearly what is happening in the background. In addition, more proof is required to support the writers’ claims. Possible changes in infarction volume following BMSC treatment is one area that has to be looked into in order to verify the authors assertions in this article. Immunomodulation, the release of trophic factors to promote therapeutic effects, inducing angiogenesis, promoting neurogenesis, reducing infarct volume, replacing damaged cells, and secreting extracellular vehicles are just a few of the therapeutic mechanisms used by MSCs and the primary proteins in the treatment of stroke[2-4].

In animal models, MSC transplantation resulted in the production of inflammatory mediators and altered cytokine expression. The anti-inflammatory cytokines interleukin (IL)-4, IL-10 and tumor necrosis factor can be produced in greater quantities by MSCs. On the other hand, it has been demonstrated that pro-inflammatory cytokines including IL-1, interferon, and membrane cofactor protein-1 are inhibited from being expressed by MSCs. By altering these cytokines, MSCs reduced inflammation by affecting a variety of immune cell and immunological response pathways. The production of trophic factors used in the treatment of stroke was helped or created by MSCs. The trophic factors that were investigated included neurotrophic factors like brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), as well as trophic factors like nerve growth factor, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). MSC-secreted trophic factors decrease infarct size, limit neuron death, enhance neuron proliferation, and activate angiogenesis. Following transplantation, MSCs moved from the vascular network outside of the lesion to the infarct site and secreted BDNF to decrease the infarct volume. Both MSCs and MSCs carrying the BDNF gene decreased infarct volume and boosted neurogenesis; however, the latter effect was more pronounced because MSCs carrying the BDNF gene maintained high BDNF levels during the crucial post-stroke period. Additionally, transplanted GDNF-gene-positive MSCs decreased infarct volume similarly to BDNF-gene-positive MSCs. Furthermore, if the BDNF gene is overexpressed, MSCs might enter the brain development route. Moreover, MSCs can be guided toward brain growth by the overexpression of the BDNF gene. VEGF aids in angiogenesis as well. PDGF promoted angiogenesis, axon growth, cell migration, primary cortical neuron growth, and inhibited neuroinflammation. In addition to preventing neuroinflammation, PDGF promoted cell migration, primary cortical neuron proliferation, angiogenesis, and axon growth[4,5].

Is there a connection between BMSC therapy and better infarction volume and gut microbiota regulation? A magnetic resonance imaging (MRI) assessment of the ischemic lesion volume is necessary to provide an answer to this query[6]. Some researchers have used MRI measures for ischemic lesion volume in their research after BMSC injection in MCAO model rats, according to the literature[7,8]. Immunohistochemistry, enzyme-linked immunosorbent test, and numerous other behavioral function tests, in addition to MRI measures[6,9-12], are strongly advised in study of Zhao et al[1]. However, to determine whether there is a connection between stroke recovery and gut microbiota regulation following treatment with bone marrow-derived mesenchymal stem cells, the results of previous studies (such as assessment of neuronal nuclei (NeuN) and VEGF expression and measurement of rat endothelial cell antigen 1 and platelet-derived growth factor receptors (PDGF-R), treadmill stress test and MRI studies, and measurement of infarct volume) could be compared to the results of Zhao et al[1].

Cho et al[11], for instance, measured the proportion of NeuN- and VEGF-positive cells in the ischemia boundary zone using immunohistochemistry[6,9-12].

Furthermore, the treadmill stress test was utilized for behavioral function analysis in two research investigations conducted after BMSC injections to a rat MCAO model[6,10]. Other tests, such as 2,3,5-triphenyl tetrazolium chloride staining, contribute to the study’s results[13]. Previous study evaluations could help provide evidence for Zhao et al[1] investigation and reveal a possible link between stroke recovery and gut microbiota regulation after BMSC treatment.

A recent work by Xia et al[14] used fecal transplantation from stroke patients with high-stroke dysbiosis index (SDI-H) to mice to examine the possible microbiota dysbiotic influence on stroke injury in a mouse model. The spleen and small intestine of SDI-H recipient mice displayed an increased abundance of pro-inflammatory (IL-17+) γ T cells, although CD4+CD25+ helper T (T helper) cells and regulatory T cells (Treg) (CD4+ Foxp3+) cells were lacking in both the spleen and small intestine. The findings showed that following stroke, SDI-H recipient mice had an increased infarct volume and had worse neurological functional outcomes[14].
Another study used germ-free animals to colonize the gut microbiota in order to show the neuroprotective impact of this microbiome on ischemia injury[15]. Thus, in the ischemic brain of the post-stroke mice, there were more microglia/macrophages and a noticeably higher expression of proinflammatory cytokines[15]. After stroke, the number of T helper, Treg, and Th17 cells rose in Peyer’s patches and was even boosted in the spleens. A similar pattern was also seen in the ischemic brain, which resulted in a decreased lesion volume in mice’s brains[15].

Through the use of three groups (the Sham, MCAO, and BMSCs groups) of 30 samples, Zhao et al[1] were able to extract 1494295 quality-filtered 16s rRNA gene sequences, with an average of 498101281 reads per sample. When the microbial diversity of the Sham, MCAO, and BMSCs groups were evaluated, there was no statistically significant difference between the three groups according to the Shannon and Chao index values. Consequently, it appears that beta gut microbiota diversity may provide more information regarding the gut microbiota-stroke link in addition to alpha gut microbiota[16].

FOOTNOTES

Author contributions: Sheykhhasan M and Poondla N drafted this letter.

Conflict-of-interest statement: No conflict-of-interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Iran

ORCID number: Mohsen Sheykhhasan 0000-0002-2522-4292; Naresh Poondla 0000-0002-1268-2980.

S-Editor: Zhang H

L-Editor: A

P-Editor: Zhang H

REFERENCES

Sheykhhasan M et al. BMSC therapy for stroke treatment

Neurosurg 2017; 127: 917-926 [PMID: 28059661 DOI: 10.3171/2016.8.JNS16240]

