Contents

Thrice Monthly Volume 10 Number 16 June 6, 2022

OPINION REVIEW

Malignant insulinoma: Can we predict the long-term outcomes?

Cigrovski Berkovic M, Ulamec M, Marinovic S, Balen I, Mrzljak A

MINIREVIEWS

Practical points that gastrointestinal fellows should know in management of COVID-19

Sahin T, Simsek C, Balaban HY

Nanotechnology in diagnosis and therapy of gastrointestinal cancer

Liang M, Li LD, Li L, Li S

Advances in the clinical application of oxycodone in the perioperative period

Chen HY, Wang ZN, Zhang WY, Zhu T

ORIGINAL ARTICLE

Clinical and Translational Research

Circulating miR-627-5p and miR-199a-5p are promising diagnostic biomarkers of colorectal neoplasia

Zhao DY, Zhou L, Yin TF, Zhou YC, Zhou GYJ, Wang QQ, Yao SK

Retrospective Cohort Study

Management and outcome of bronchial trauma due to blunt versus penetrating injuries

Gao JM, Li H, Du DY, Yang J, Kong LW, Wang JB, He P, Wei GB

Retrospective Study

Ovarian teratoma related anti-N-methyl-D-aspartate receptor encephalitis: A case series and review of the literature

Li SJ, Yu MH, Cheng J, Bai WX, Di W

Endoscopic surgery for intraventricular hemorrhage: A comparative study and single center surgical experience

Wang FB, Yuan XW, Li JX, Zhang M, Xiang ZH

Protective effects of female reproductive factors on gastric signet-ring cell carcinoma

Li Y, Zhong YX, Xu Q, Tian YT

Risk factors of mortality and severe disability in the patients with cerebrovascular diseases treated with perioperative mechanical ventilation

Zhang JZ, Chen H, Wang X, Xu K
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5266</td>
<td>Long-term outcomes of high-risk percutaneous coronary interventions under extracorporeal membrane oxygenation support: An observational study</td>
<td>Huang YX, Xu ZM, Zhao L, Cao Y, Chen Y, Qiu YG, Liu YM, Zhang PY, He JC, Li TC</td>
</tr>
<tr>
<td>5275</td>
<td>Health care worker occupational experiences during the COVID-19 outbreak: A cross-sectional study</td>
<td>Li XF, Zhou XL, Zhao SX, Li YM, Pan SQ</td>
</tr>
<tr>
<td>5287</td>
<td>Enhanced recovery after surgery strategy to shorten perioperative fasting in children undergoing non-gastrointestinal surgery: A prospective study</td>
<td>Ying Y, Xu HZ, Han ML</td>
</tr>
<tr>
<td>5297</td>
<td>Orthodontic treatment combined with 3D printing guide plate implant restoration for edentulism and its influence on mastication and phonic function</td>
<td>Yan LB, Zhou YC, Wang Y, Li LX</td>
</tr>
<tr>
<td>5306</td>
<td>Effectiveness of psychosocial intervention for internalizing behavior problems among children of parents with alcohol dependence: Randomized controlled trial</td>
<td>Omkarappa DB, Rentala S, Natalla P</td>
</tr>
<tr>
<td>5317</td>
<td>Crouzon syndrome in a fraternal twin: A case report and review of the literature</td>
<td>Li XJ, Su JM, Ye XW</td>
</tr>
<tr>
<td>5324</td>
<td>Laparoscopic duodenojejunostomy for malignant stenosis as a part of multimodal therapy: A case report</td>
<td>Murakami T, Matsui Y</td>
</tr>
<tr>
<td>5331</td>
<td>Chordoma of petrosal mastoid region: A case report</td>
<td>Hua JJ, Ying ML, Chen ZW, Huang C, Zheng CS, Wang YJ</td>
</tr>
<tr>
<td>5337</td>
<td>Pneumatosis intestinalis after systemic chemotherapy for colorectal cancer: A case report</td>
<td>Liu H, Hsieh CT, Sun JM</td>
</tr>
<tr>
<td>5343</td>
<td>Mammary-type myofibroblastoma with infarction and atypical mitosis-a potential diagnostic pitfall: A case report</td>
<td>Zeng YF, Dai YZ, Chen M</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5365</td>
<td>Neonatal hemorrhage stroke and severe coagulopathy in a late preterm infant after receiving umbilical cord milking: A case report</td>
<td>Lu Y, Zhang ZQ</td>
</tr>
<tr>
<td>5373</td>
<td>Heel pain caused by os subcalcis: A case report</td>
<td>Saijilafu, Li SY, Yu X, Li ZQ, Yang G, Lv JH, Chen GX, Xu RJ</td>
</tr>
<tr>
<td>5380</td>
<td>Pulmonary lymphomatoid granulomatosis in a 4-year-old girl: A case report</td>
<td>Yao JW, Qiu L, Liang P, Liu HM, Chen LN</td>
</tr>
<tr>
<td>5387</td>
<td>Idiopathic membranous nephropathy in children: A case report</td>
<td>Cui KH, Zhang H, Tao YH</td>
</tr>
<tr>
<td>5394</td>
<td>Successful treatment of aortic dissection with pulmonary embolism: A case report</td>
<td>Chen XG, Shi SY, Ye YY, Wang H, Yao WF, Hu L</td>
</tr>
<tr>
<td>5400</td>
<td>Renal papillary necrosis with urinary tract obstruction: A case report</td>
<td>Pan HH, Luo YJ, Zhu QG, Ye LF</td>
</tr>
<tr>
<td>5414</td>
<td>Successful living donor liver transplantation with a graft-to-recipient weight ratio of 0.41 without portal flow modulation: A case report</td>
<td>Kim SH</td>
</tr>
<tr>
<td>5420</td>
<td>Treatment of gastric hepatoid adenocarcinoma with pembrolizumab and bevacizumab combination chemotherapy: A case report</td>
<td>Liu M, Luo C, Xie ZZ, Li X</td>
</tr>
<tr>
<td>5428</td>
<td>Ipsilateral synchronous papillary and clear renal cell carcinoma: A case report and review of literature</td>
<td>Yin J, Zheng M</td>
</tr>
<tr>
<td>5441</td>
<td>PIGN mutation multiple congenital anomalies-hypotonia-seizures syndrome 1: A case report</td>
<td>Hou F, Shan S, Jin H</td>
</tr>
</tbody>
</table>
Contents

Thrice Monthly Volume 10 Number 16 June 6, 2022

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5446</td>
<td>Pediatric acute myeloid leukemia patients with i(17)(q10) mimicking acute promyelocytic leukemia: Two case reports</td>
<td>Yan HX, Zhang WH, Wen JQ, Liu YH, Zhang BJ, Ji AD</td>
</tr>
<tr>
<td>5456</td>
<td>Fatal left atrial air embolism as a complication of percutaneous transthoracic lung biopsy: A case report</td>
<td>Li YW, Chen C, Xu Y, Weng QP, Qian SX</td>
</tr>
<tr>
<td>5463</td>
<td>Diagnostic value of bone marrow cell morphology in visceral leishmaniasis-associated hemophagocytic syndrome: Two case reports</td>
<td>Shi SL, Zhao H, Zhou BJ, Ma MB, Li XJ, Xu J, Jiang HC</td>
</tr>
<tr>
<td>5470</td>
<td>Rare case of hepatocellular carcinoma metastasis to urinary bladder: A case report</td>
<td>Kim Y, Kim YS, Yoo JJ, Kim SG, Chin S, Moon A</td>
</tr>
<tr>
<td>5479</td>
<td>Osteotomy combined with the trephine technique for invisible implant fracture: A case report</td>
<td>Chen LW, Wang M, Xia HB, Chen D</td>
</tr>
<tr>
<td>5487</td>
<td>Clinical diagnosis, treatment, and medical identification of specific pulmonary infection in naval pilots: Four case reports</td>
<td>Zeng J, Zhao GL, Yi JC, Liu DD, Jiang YQ, Lu X, Liu YB, Xue F, Dong J</td>
</tr>
<tr>
<td>5502</td>
<td>Mixed large and small cell neuroendocrine carcinoma of the stomach: A case report and review of literature</td>
<td>Li ZF, Lu HZ, Chen YT, Bai XF, Wang TB, Fei H, Zhao DB</td>
</tr>
</tbody>
</table>

LETTER TO THE EDITOR

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>5510</td>
<td>Pleural involvement in cryptococcal infection</td>
<td>Georgakopoulou VE, Damaskos C, Sklapani P, Trakas N, Gkoufa A</td>
</tr>
<tr>
<td>5515</td>
<td>Electroconvulsive therapy plays an irreplaceable role in treatment of major depressive disorder</td>
<td>Ma ML, He LP</td>
</tr>
</tbody>
</table>
ABOUT COVER
Editorial Board Member of World Journal of Clinical Cases, Shivanshu Misra, MBBS, MCh, MS, Assistant Professor, Surgeon, Department of Minimal Access and Bariatric Surgery, Shivani Hospital and IVF, Kanpur 208005, Uttar Pradesh, India. shivanshu_medico@rediffmail.com

AIMS AND SCOPE
The primary aim of World Journal of Clinical Cases (WJCC, World J Clin Cases) is to provide scholars and readers from various fields of clinical medicine with a platform to publish high-quality clinical research articles and communicate their research findings online.

WJCC mainly publishes articles reporting research results and findings obtained in the field of clinical medicine and covering a wide range of topics, including case control studies, retrospective cohort studies, retrospective studies, clinical trials studies, observational studies, prospective studies, randomized controlled trials, randomized clinical trials, systematic reviews, meta-analysis, and case reports.

INDEXING/ABSTRACTING
The WJCC is now indexed in Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, Scopus, PubMed, and PubMed Central. The 2021 Edition of Journal Citation Reports® cites the 2020 impact factor (IF) for WJCC as 1.337; IF without journal self cites: 1.301; 5-year IF: 1.742; Journal Citation Indicator: 0.33; Ranking: 119 among 169 journals in medicine, general and internal; and Quartile category: Q3. The WJCC’s CiteScore for 2020 is 0.8 and Scopus CiteScore rank 2020: General Medicine is 493/793.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Xu Guo; Production Department Director: Xiang La; Editorial Office Director: Jin-Lei Wang.

NAME OF JOURNAL
World Journal of Clinical Cases

ISSN
ISSN 2307-8960 (online)

LAUNCH DATE
April 16, 2013

FREQUENCY
Thrice Monthly

EDITORS-IN-CHIEF
Bao-Gan Peng, Jerzy Tadeusz Chudek, George Kontogeorgos, Maurizio Serati, Ja Hyeon Ku

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/2307-8960/editorialboard.htm

PUBLICATION DATE
June 6, 2022

COPYRIGHT
© 2022 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.ffipublishing.com
Pleural involvement in cryptococcal infection

Vasiliki E Georgakopoulou, Christos Damaskos, Pagona Sklapani, Nikolaos Trakas, Aikaterini Gkoufa

Specialty type: Infectious diseases

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
- Grade A (Excellent): 0
- Grade B (Very good): B, B
- Grade C (Good): C
- Grade D (Fair): D
- Grade E (Poor): 0

P-Reviewer: Gedik IE, Turkey; Lim SC, South Korea; Liu C, China; Wei S, China

Received: January 21, 2022
Peer-review started: January 21, 2022
First decision: March 23, 2022
Revised: March 30, 2022
Accepted: April 30, 2022
Article in press: April 30, 2022
Published online: June 6, 2022

Corresponding author: Vasiliki E Georgakopoulou, MD, MSc, Doctor, Department of Infectious Diseases, Laiko General Hospital, 17 Agiou Thoma Street, Athens 11527, Greece. vaso_georgakopoulou@hotmail.com

Abstract

Pleural involvement of cryptococcal infection is uncommon and is more commonly observed in immunocompromised hosts than in immunocompetent ones. Pleural involvement in cryptococcal infections can manifest with or without pleural effusion. The presence of *Cryptococcus* spp. in the effusion or pleura is required for the diagnosis of cryptococcal pleural infection, which is commonly determined by pleural biopsy, fluid culture, and/or detection of cryptococcal antigen in the pleura or pleural fluid.

Key Words: Cryptococcosis; Pleural effusion; Pleural diseases; Fungal lung diseases; Pleural Cavity; Cryptococcus neoformans

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The importance of pleural involvement in cryptococcal infections is often overlooked. When biopsy results are inconclusive, further testing for invasive granulomatous infections, such as pulmonary cryptococcosis, should be done. When indicated, a sensitive cryptococcal antigen assay and fungal culture should be used to evaluate pleural effusion specimens. Even if the cryptococcal antigen test is negative, clinicians should investigate pleural cryptococcosis in cases of pleural nodules without pleural effusion, especially in the context of immunosuppression.

Citation: Georgakopoulou VE, Damaskos C, Sklapani P, Trakas N, Gkoufa A. Pleural involvement in cryptococcal infection. *World J Clin Cases* 2022; 10(16): 5510-5514
URL: https://www.wjgnet.com/2307-8960/full/v10/i16/5510.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i16.5510
TO THE EDITOR

We read with interest a case report by Wu et al.[1], who described a case of a 29-year-old male, immunocompetent host with cryptococcal pneumonia accompanied by pleural effusion. In that case, chest imaging showed scattered numerous cavities in the superior segment of the left lower lobe with a rough cavity wall and a cavity and pleural effusion in the anterior segment of the left lower lobe[1].

Cryptococcus is an invasive fungus that causes cryptococcosis, a disease that is common in immunocompromised people and rare in healthy individuals. _Cryptococcus neoformans_ and _Cryptococcus gatti_ are the two _Cryptococcus_ species most frequently associated with human cryptococcal infections. The organism is found globally. The most common kind of exposure involves a history of contact with soil contaminated with bird droppings. The fungus capsule contains the polysaccharides glucuronoxylomannan and glucuronoxylomannogalactan, which are the major components that contribute to the fungus’s virulence[2]. Immune suppression is the most important underlying mechanism in the development of cryptococcal infection. Disorders like acquired immune deficiency syndrome (AIDS), diabetes mellitus, and chronic liver and renal disease, prolonged administration of steroids, use of immunosuppressive agents, such as monoclonal antibodies, and solid organ transplantation are commonly associated with the development of cryptococcal disease[3].

Cryptococcus species spread by inhalation, and despite the fact that the virus most commonly enters the body through the lungs, meningoencephalitis is the most prevalent clinical manifestation of the infection[4]. According to several studies, in pulmonary cryptococcosis, pulmonary nodules are the most prevalent computed tomography findings of pulmonary cryptococcosis in immunocompetent hosts, with multiple nodules being more common than solitary lesions. The majority of them are poorly defined and inhomogeneous, with air-bubble signs seen. Consolidation, ground glass opacities, and masses are also described. The halo, air bronchogram, and cavity signs can also be seen. In these individuals, the pulmonary lesions are mostly seen in the lower lung lobes and the lung periphery[5,6]. In immunocompromised patients, the most common imaging findings are multiple nodules, which are usually larger than those in normal hosts, pulmonary cavitations, and single or multiple consolidations. Adenopathy and pleural effusions, which are sometimes small and unilateral, are usually observed in cases of extensive lung infection[7].

Pleural involvement of cryptococcal infection is rarely observed and is more commonly seen in immunocompromised hosts than in immunocompetent ones[8]. Pleural effusion associated with cryptococcal infection in an immunocompetent host was described for the first time in 1941[9]. Since then, approximately 50 cases of pleural effusion related to cryptococcal infection due to _Cryptococcus neoformans_, in the context of both lung and disseminated disease, have been described[10]. A total of 32 cases out of 50 had only pulmonary cryptococcosis, and 18 out of 50 patients were related to disseminated disease. Eight patients experienced severe pulmonary cryptococcosis, requiring, in some cases, surgical management with decortication and lobectomy. The immunosuppressive risk factors identified in these 50 cases were solid organ transplantation, AIDS, hematological malignancies, administration of corticosteroids, diabetes mellitus, chronic obstructive pulmonary disease, bronchial asthma, liver cirrhosis, and end-stage renal disease. Interestingly, 14 patients were immunocompetent. The majority of pulmonary nodules were observed in the lower lobes and in a subpleural distribution. Of note, 26 patients had only pleural effusion on computed tomography imaging[11,12].

The diagnosis of cryptococccal pleural infection requires proof of the presence of _Cryptococcus spp._ in the effusion or pleura and is typically established by examination of pleural biopsy, fluid culture, and/or detection of cryptococcal antigen (CrAg) in the pleura or pleural fluid[13]. Detecting _Cryptococcus neoformans_ by histopathological examination is the gold standard for confirming the diagnosis. The detection rates of _Cryptococcus neoformans_ with Gomori-methenamine silver stain and periodic acid-Schiff stain are 100%. The morphology present in tissue with _Cryptococcus neoformans_ infection using Gomori-methenamine silver and periodic acid-Schiff (PAS) staining reveals arrow-based budding yeasts (4-10 μm) with a thick capsule, while the morphology present in tissue with histoplasmosis reveals small yeasts (2-4 μm) with narrow-based budding grouped in clusters inside macrophages[14].

The classic approach for diagnosing _Cryptococcus neoformans_ is Indian ink staining, in which the refractile mucinous capsule around the pathogen is delineated, resulting in a distinctive "starry night" appearance. The sensitivity and specificity of India ink stains, on the other hand, are very heterogeneous and usually operator-dependent[15]. Polymerase chain reaction (PCR) analysis of pleura tissue has also been used for the identification of _Cryptococcus neoformans_ in cryptococcal pleuritis[16].

Pleural fluid cultures for _Cryptococcus neoformans_ are frequently negative, most likely due to the small number of fungi present[11]. CrAg test is considered an effective non-invasive diagnostic tool, with its role in serum and cerebrospinal fluid being well accepted with high sensitivity and specificity[12]. Additionally, this test has a low incidence of false-positive reactions, making it valuable in diagnosing cryptococcosis when cultures of pleural fluid are negative[11]. Moreover, it has been reported that pleural effusion CrAg has higher sensitivity than serum CrAg test in patients with pleural effusion as the only clinical presentation of cryptococcal infection[17]. However, the diagnosis of cryptococcal pleural effusion in the case by Wu et al.[1] was made by positive serum CrAg, positive India ink staining of bronchoalveolar lavage fluid, and positive PAS staining for _Cryptococcus_ of lung tissue obtained by percutaneous lung biopsy, while neither pleural aspiration nor pleural biopsy was reported[1].
In recent years, molecular identification and strain typing methods have been used to analyze Cryptococcus. The identification methods include DNA-DNA hybridization and nested, multiplex and real-time PCR. Regarding Cryptococcus typing, the following techniques have demonstrated the best ability to differentiate between fungal serotypes and molecular types: Serotyping, random amplified polymorphic DNA, multilocus enzyme electrophoresis, restriction fragment length polymorphism, electrophoretic karyotyping, PCR-fingerprinting, amplified fragment length polymorphism, multilocus microsatellite typing, single locus and multilocus sequence typing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and whole genome sequencing. These typing methods have contributed in revealing the phylogenetic pattern, the origin of numerous lineages and their scattering patterns, the distribution of genetic variation among geographic regions and ecosystems, and precise mutations during infections[18,19]. In addition, the cloning of URA5 gene, TRP1 gene, and recombinant DNA is helpful to study the taxonomic status, phylogenetic origin, and epidemiological investigation of Cryptococcus neoformans[20-22].

The patient in case by Wo et al[1] was initially treated with a daily dose of 400 mg of fluconazole, but he had not a satisfactory clinical outcome a week later and the therapy was modified to voriconazole 200 mg twice daily. Complete resolution of the lesions was observed after 8 wk of therapy. In non-immunocompromised patients with pulmonary cryptococcal infection, it is recommended the administration of fluconazole 400 mg daily and switching to itraconazole (200 mg twice per day orally), voriconazole (200 mg twice per day orally), or posaconazole (400 mg twice per day orally) in cases with no clinical improvement, no fluconazole availability, or contraindication[23]. Cryptococcal pleural effusions are usually located in the right hemithorax. They vary in size from minimal to massive and are almost always related to parenchymal lesions ranging from subpleural nodules to interstitial infiltrates or pulmonary lesions. The character of the fluid is usually bloody or serosanguineous[13]. Pleural fluid total cell counts range from 169/mm³ to 12000/mm³, with lymphocytes predominating in most cases, but neutrophils and eosinophils have also been reported[16]. The fluid is traditionally exudative; however, cases of transudative fluid have also been described, bringing awareness of this diagnosis in immunocompromised patients regardless of the transudative pleural effusion[24].

It is worth-mentioning that cryptococcal pleural effusion may have high levels of adenosine deaminase (ADA), making the discrimination between this fungal infection and tuberculosis difficult. Yoshino et al[25] described a case of cryptococcal pleuritis, diagnosed by the isolation of Cryptococcus neoformans in the culture of the pleural effusion, containing a high level of ADA in a patient with AIDS. Wee et al[10] also reported a case of a patient with acute myeloid leukemia and a cryptococcal pleural effusion with increased pleural fluid ADA level[4]. Previous research has shown that ADA levels in the pleural fluid > 40 IU/L demonstrate a high sensitivity (81%-100%) and a high specificity (83%-100%) for diagnosing tuberculosis pleuritis[26]. ADA is an enzyme present in most cells, notably lymphocytes, that catalyzes the conversion of adenosine to inosine. As a result, it is hypothesized that ADA levels would be higher in lymphocyte-rich pleural effusions, such as those seen in cryptococcal infections[25]. Some studies found that an increased level of ADA was rarely observed in nontuberculous lymphocytic pleural effusions and that a level of ADA greater than 40 IU/L ruled out tuberculosis; however, cases of cryptococcosis were not included in these studies[27]. ADA test has high negative predictive value and is an excellent test to rule out tuberculosis[28]. Some studies demonstrate that an ADA level > 45 to 60 units/L has a sensitivity of 100% and a specificity up to 97% for tuberculous pleural effusion[29,30].

In addition, pleural involvement in cryptococcal infections includes pleural infection without pleural effusion. Of interest, pleural cryptococcosis without pleural effusion has been described only in one case in the literature. The authors described this extremely uncommon entity in a patient suffering from rectal carcinoma under chemotherapy and mentioned as a possible explanation for this finding that lung cryptococcosis, developed in the peripheral lung parenchyma during chemotherapy, had a rupture into the pleural cavity space[31]. Pleural involvement in cryptococcal infections is under-appreciated. When biopsy results are inconclusive, further testing for invasive granulomatous infections, such as pulmonary cryptococcosis, should be conducted. Where needed, pleural effusion should be evaluated using a sensitive CrAg assay as well as fungal culture. Furthermore, clinicians should consider pleural cryptococcosis in cases of pleural nodules without pleural effusion, especially in the context of immunosuppression, even if the CrAg test is negative.

FOOTNOTES

Author contributions: Damaskos C and Sklapani P designed research; Trakas N performed research; Georgakopoulou VE wrote the letter; Gkoufa A revised the letter.

Conflict-of-interest statement: The authors have no conflict of interest to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
REFERENCES

17. Wang J, Hong JJ, Zhang PP, Yang MF, Yang Q, Qu TT. Cryptococcal pleuritis with pleural effusion as the only clinical presentation in a patient with hepatic cirrhosis: A case report and literature review. Medicine (Baltimore) 2019; 98: e16354 [PMID: 31054227 DOI: 10.1097/MD.0000000000016354]

20. Edman JC, Kwon-Chung KJ. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a

27 Lee YC, Rogers JT, Rodriguez RM, Miller KD, Light RW. Adenosine deaminase levels in nontuberculous lymphocytic pleural effusions. Chest 2001; 120: 356-361 [PMID: 11502629 DOI: 10.1378/chest.120.2.356]

