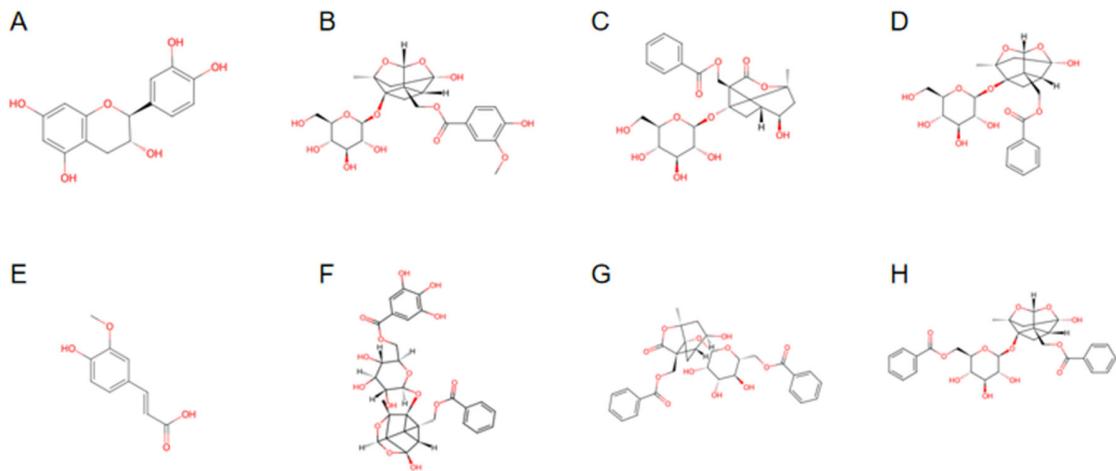


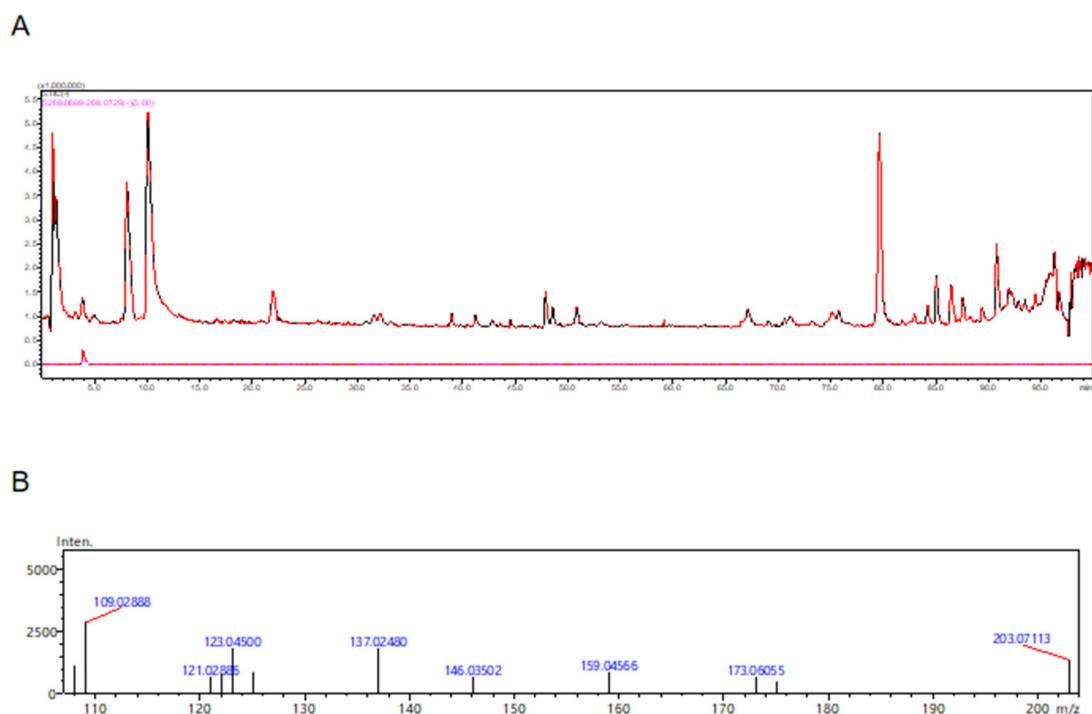
Supplementary material

Quality control of the herb pair

The main components of the compound of herb pair were identified by ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS), and 8 compounds were identified by positive and negative dual-mode scanning based on the cleavage mode combined with references[1-5] (Supplementary Table 1 and Supplementary Figures 1-6).

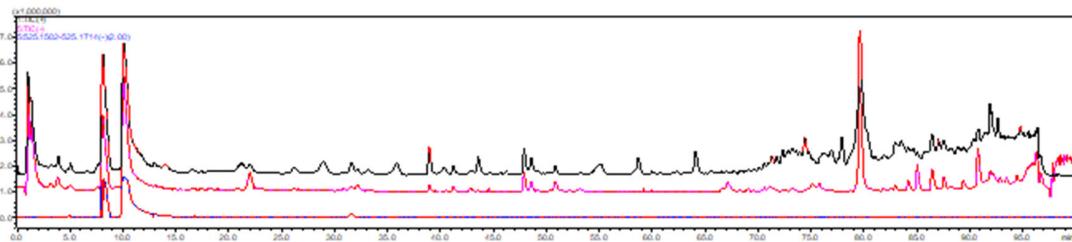

The main components identified in the herb pair were classified into three categories: Polyphenols (catechin), paeoniflorin and its derivatives, and phenolic acid (ferulic acid). Among them, compounds 3 and 4 were the main components. An ion peak of m/z 525.16 was detected in the negative ion mode, which may have been the formate ion $[M+HCOO]^-$ of albiflorin and paeoniflorin in the negative ion mode. It was simultaneously observed that m/z 479.15 was the dehydrogenation ion of albiflorin and paeoniflorin.

These two compounds are isomers, and their secondary fragment ions include m/z 449.14, 357.11, 327.10, 195.06, and 165.05. In the negative ion mode, the molecular ion at m/z 479.15 $[M-H]^-$ loses one molecule of hydroxymethyl to generate the fragment ion at m/z 449.14 $[M-H-CH_2O]^-$. This fragment further loses one molecule of benzoyl group to form the fragment ion at m/z 327.10 $[M-H-CH_2O-C_7H_6O_2]^-$. The fragment ion at m/z 357.11 was formed by the loss of one molecule of the benzoyl group from the molecular ion at m/z 479.15 $[M-H]^-$, corresponding to $[M-H-C_7H_6O_2]^-$. Subsequent reactions involving the loss of glucose and hydroxymethyl groups generate the fragment ions at m/z 195.06 $[M-H-C_7H_6O_2-C_6H_{10}O_5]^-$ and 165.05 $[M-H-C_7H_6O_2-C_6H_{10}O_5-CH_2O]^-$, respectively.

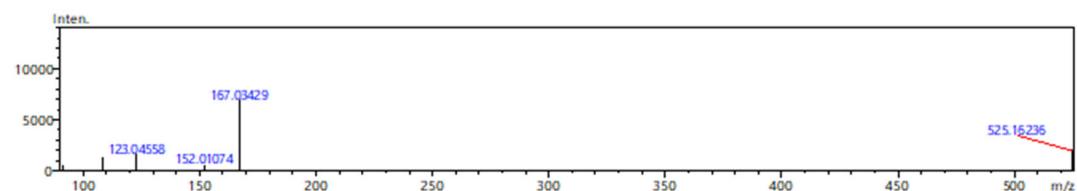

Biosafety analysis of the herb pair

We conducted a biosafety assessment of the herb pair. All mice survived the 14-day observation period without exhibiting any apparent signs of toxicity or mortality. This observation indicates that the herb pair did not manifest any evident acute toxicity

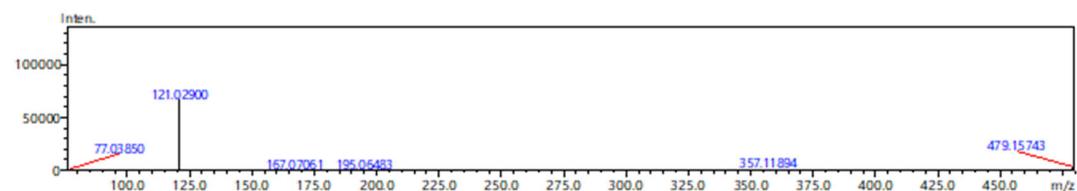
(Supplementary Figure 7).

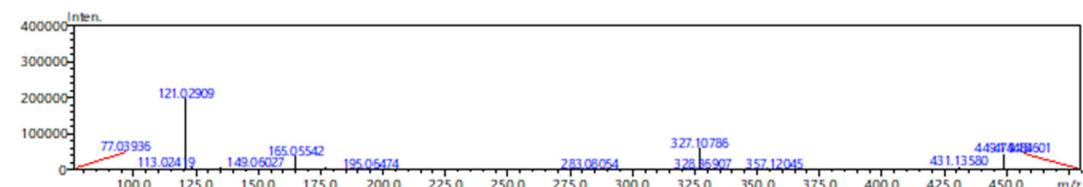


Supplementary Figure 1 The main compounds identified in the herb pair (A-H are respectively catechin, mudanpioside E, albiflorin, paeoniflorin, ferulic acid, galloylpaeoniflorin, benzoylalbiflorin, and benzoylpaeoniflorin).

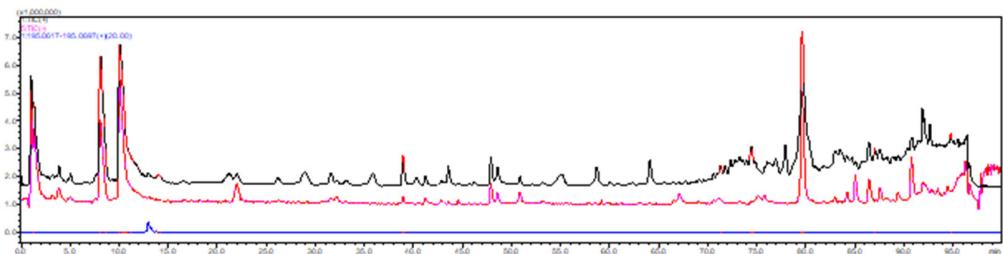


Supplementary Figure 2 The TIC and EIC (A), and MS/MS spectra (B) of catechin.

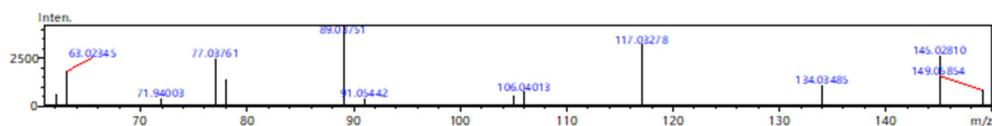

A


B

C

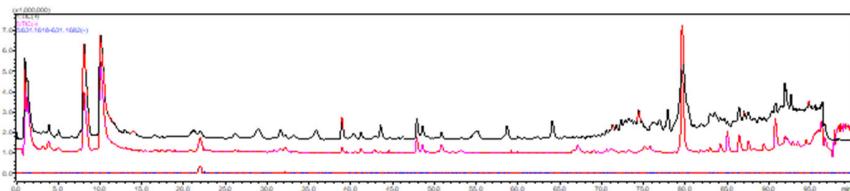


D

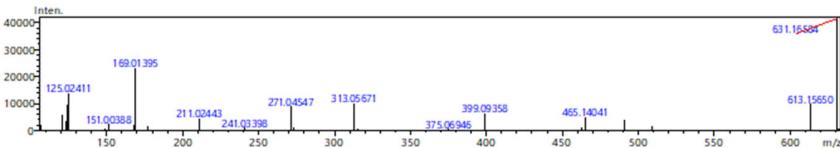


Supplementary Figure 3 The TIC and EIC (A), and MS/MS spectra (B-D) of Mudanpioside E, albiflorin, and paeoniflorin.

A

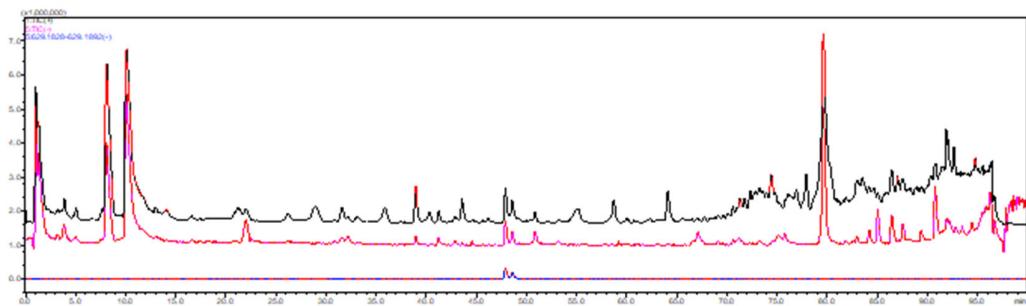


B

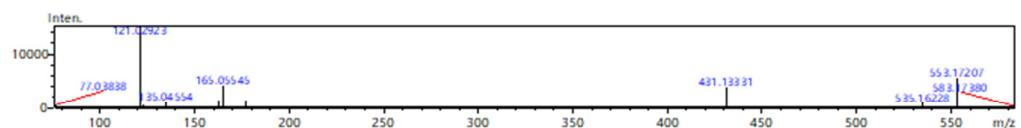


Supplementary Figure 4 The TIC and EIC (A), and MS/MS spectra (B) of ferulic acid.

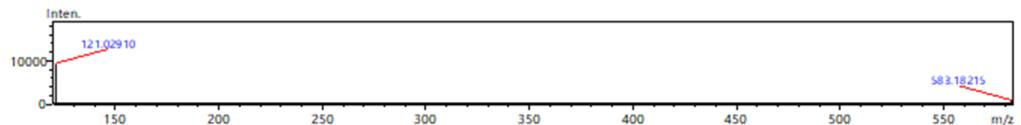
A

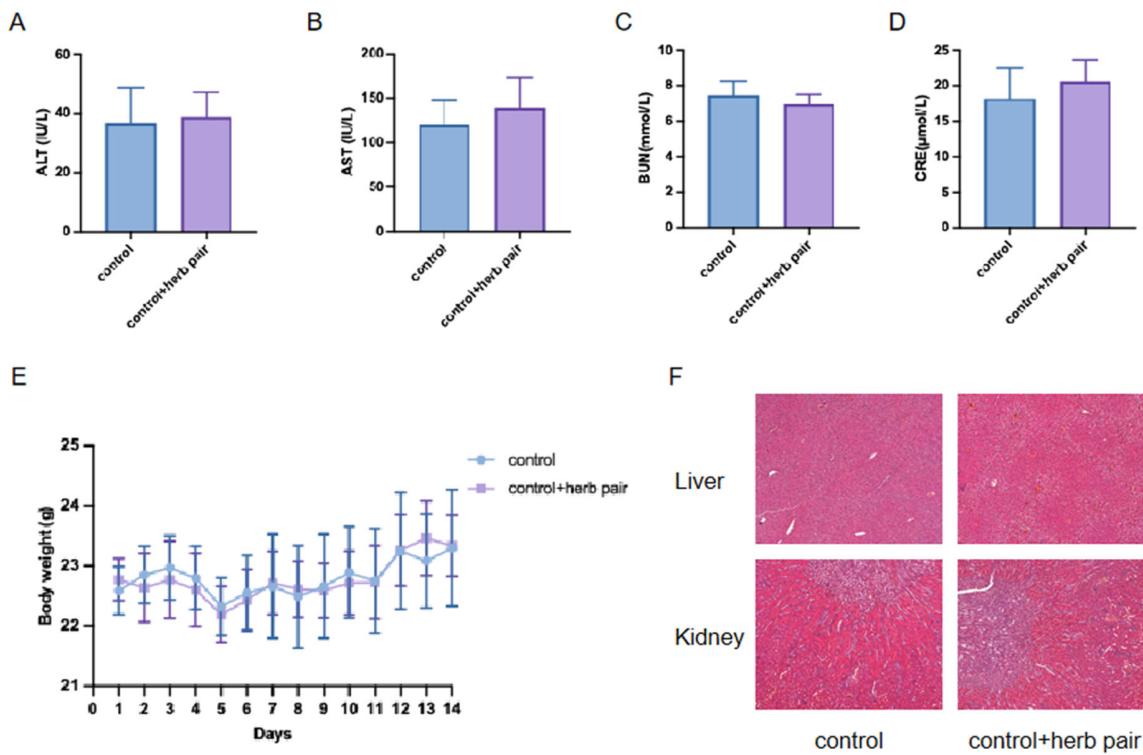


B



Supplementary Figure 5 The TIC and EIC (A), and MS/MS spectra (B) of galloylpaeoniflorin.


A


B

C

Supplementary Figure 6 The TIC and EIC (A), and MS/MS spectra (B) of benzoylalbiflorin and benzoylpaeoniflorin.

Supplementary Figure 7 Herb pair had no toxicity or side-effects on viscera. A: Serum ALT level, B: Serum AST level, C: Serum BUN level, D: Serum CRE level, E: Body weight, F: HE staining results of liver and kidney. For all the experiments: $n = 10$. ALT: Alanine Aminotransferase, AST: Aspartate aminotransferase, BUN: Blood urea nitrogen, CRE: Serum creatinine.

Supplementary Table 1 Primer sequences used for RT-quantitative polymerase chain reaction analysis

Primer	Forward primer 5'-3'	Reverse primer 5'-3'
Tumor necrosis factor	GGAACCTGGCAGAAGAGAGGCACTC	AATGAGAAGAGGCTGAGACATAGGC
<i>Il-6</i>	GAGAGGAGACTTCACAGAGGATACC	TCATTTCCACGATTCCCAGAGAAC
<i>Il-1b</i>	CTCGCAGCAGCACATCAACAAG	CCACGGAAAGACACAGGTAGC
<i>Il-18</i>	GAGACCTGGAATCAGACAACTTGG	CTGGGGTTCACTGGCACITTG
Interferon-gamma	CTGGAGGAACTGGCAAAAGGATG	CAGGTGTGATTCAATGACGCTTATG
<i>Il-13</i>	CTTGCTTGCCTGGTGGTCTC	GGAGTCTGGTCTTGTGATGTTG
<i>Il-10</i>	GGACAAACATACTGCTAACCGACTC	TGGATCATTCCGATAAGGCTTGG
Toll-like receptor 4	CGCTCTGGCATCATCTTCATTGTC	CCTCCCATTCCAGGTAGGTGTTTC
V-rel reticuloendotheliosis viral oncogene homolog A	ATGGGAAACCGTATGAGCCTGTG	AGTTGTAGCCTCGTGTCTCTGTC
Porcupine	CTGGCTGCTGTGCTGCTGTC	AAGCGATGCCGATGTGAACAGTC
<i>Wnt 5b</i>	GTCCTGACTACTGCCTGCGTAATG	AGCCGTCATGCCCTCTGAG
<i>Wnt6</i>	GCAGCCGATTACCCGACTTC	GCGACCGCAGCACACAGG
<i>Wnt 9a</i>	GACTGCTTCCTCTACGCCATCTC	TTCCAGGTGGTGCCTCATC
<i>Wnt 10a</i>	GAGTGCTTCGCCTACGCCATAG	TCGCAACCGCAAGCCTTCAG
<i>Wnt 4</i>	GCGTAGCCTCTCACAGTCCTTG	CTTCCTGCCAGCCTCGTTGTTG
Leucine-rich repeat-containing G-protein coupled receptor 5	ACGATGTTGAGAAACGGCCTGTG	CGGAAGTGGAAGGCAAGTCATAGG
SRY-box transcription factor 9	ATGACCGACGAGCAGGAGAAGG	CCGAGGGACAGGGCGAAC
Homeodomain-only protein homeobox	CACCACGCTGTGCCCTCATCG	TCTGACCGCCGCCACTCTG
Achaete scute-like 2	GCCGCACCAGAACTCGTAGC	AGGCTCCAGCGACTCCAGAC
Telomerase reverse transcriptase	AAGACGAGCCTCACCTCCAGAG	CTTCAACCGCAAGACCGACAGG
Mucin 2	CTGACGAGTGGTGGTGAATGAC	ATGATGAGGTGGCAGACAGGAG
Lysozyme 1	ACTCCTCCTGCTTCTGTCACTG	CACGGTAGCCATCCATTCCATT
Chromogranin A	CCACCAATACCCAATACCAACC	AGCCTCCTCTCCTCCTCCTC
<i>Occludin</i>	GGCGGCTATGGAGGCTATGG	CTAAGGAAGCGATGAAGCAGAAGG
Nuclear receptor subfamily 1 group H member 4	ACAGCGAAGGGCGTGACTTG	GGTCTGTTGGTCTGCCGTGAG
Fibroblast growth factor 15	CTCTGTGGCTGGCTGTGCTG	ATTGGAGGAAGCAGTTGGAGAC
Nuclear receptor subfamily 0 group B member 2	GCCAAGACAGTAGCCTCCTCAG	GTACCGCTGCTGGCTTCCTC

β -actin

GTCACGCACGATTCCCTCTCAG

TATGCTCTCCCTCACGCCATCC

Supplementary Table 2 The identification of main compounds of herb pair by ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry/MS

No.	Compound	t _R (min)	Formula	Ion mode	Calculated (m/z)	Determined (m/z)	Error (ppm)	MS/MS fragments ions (m/z)
1	Catechin	3.838	C ₁₅ H ₁₄ O ₆	Negative	289.07121 [M-H] ⁻	289.07164	1.4875	203.07113, 151.04047, 137.02438, 123.04357, 109.02923
2	Mudanpioside E	5.002	C ₂₄ H ₃₀ O ₁₃	Negative	525.16082 [M-H] ⁻	525.16236	2.9324	167.03429, 152.01074, 123.04558, 108.02197, 91.01872
3	Albiflorin	8.258	C ₂₃ H ₂₈ O ₁₁	Negative	525.16082 [M+HCOO] ⁻	525.16132	0.9521	479.15743, 357.11894, 195.06483, 121.02900, 77.03850
4	Paeoniflorin	10.072	C ₂₃ H ₂₈ O ₁₁	Negative	525.16082 [M+HCOO] ⁻	525.16038	-0.8378	479.15601, 449.14484, 327.10786, 165.05542, 121.02909
5	Ferulic acid	13.000	C ₁₀ H ₁₀ O ₄	Positive	195.06573 [M+H] ⁺	195.06567	-0.3076	145.02810, 134.03485, 117.03278, 89.03751, 77.03761
6	Galloylpaeoniflorin	22.007	C ₃₀ H ₃₂ O ₁₅	Negative	631.16630 [M-H] ⁻	631.16584	-0.7288	613.15650, 313.05671, 271.04547, 169.01395, 125.02411
7	Benzoylalbiflorin	47.907	C ₃₀ H ₃₂ O ₁₂	Negative	629.18703 [M+HCOO] ⁻	629.18760	0.9059	583.17380, 553.17207, 165.05545, 121.02923, 77.03838
8	Benzoylpaeoniflorin	48.631	C ₃₀ H ₃₂ O ₁₂	Negative	629.18703 [M+HCOO] ⁻	629.18696	-0.1113	583.18215, 121.02910

References

- 1 **Zhang Z**, Ren A, Liu Y, Yin M, Feng Y, Liu Y, Peng H, Chu S. Comprehensive chemical profiling and comparison of different medicinal cultivars of *Paeonia lactiflora* Pall. *Microchemical Journal* 2025; **213**: 113674 [DOI: 10.1016/j.microc.2025.113674]
- 2 **Xue Y**, Hu Z, Jiang Y, Li M, Liu Y, Duan Y, Zhou W, Sun J, Li G. Ultrasound-assisted deep eutectic solvent of neuroprotective extracts from *Paeonia lactiflora* Pall. root: Process optimization, compositions characterization, and neuroprotective activity validation. *Ultrason Sonochem* 2025; **120**: 107449 [PMID: 40609236 DOI: 10.1016/j.ultsonch.2025.107449]
- 3 **Wang Y**, Wang Z, Chen S, Zhang Q, Zhu Y, Shi B, Peng K, Pan Q, Lu B. Anti-melanogenesis activity and chemical profiling of herbaceous peony (*Paeonia lactiflora* Pall.) flowers: A natural skin whitening agents containing *Paeonia* monoterpenes glycosides. *Industrial Crops and Products* 2025; **225**: 120363 [DOI: 10.1016/j.indcrop.2024.120363]
- 4 **Qin W**, Tang H, Tao X, Geng Y, Tang M, Wang K, Cai G, Gong J, Guo Y, Yan X, Gao W. Study on the differences of active ingredients among different medicinal parts of *Angelica sinensis* (Oliv.) based on LC-MS combined with multivariate statistical analysis. *Chinese Journal of Analytical Chemistry* 2025; **53**: 100486 [DOI: 10.1016/j.cjac.2024.100486]
- 5 **Wang S**, Ma HQ, Sun YJ, Qiao CD, Shao SJ, Jiang SX. Fingerprint quality control of *Angelica sinensis* (Oliv.) Diels by high-performance liquid chromatography coupled with discriminant analysis. *Talanta* 2007; **72**: 434-436 [PMID: 19071636 DOI: 10.1016/j.talanta.2006.11.006]