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Abstract
BACKGROUND 
Acute kidney injury (AKI) is a common clinical syndrome with high morbidity 
and mortality rates. The use of pluripotent stem cells holds great promise for the 
treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell 
source in cell-based therapy and regenerative medicine that provide advantages 
of a noninvasive, simple, and low-cost approach and are induced with high 
multidifferentiation potential. Whether these cells could serve as a potential stem 
cell source for the treatment of AKI has not been determined.

AIM 
To investigate whether USCs can serve as a potential stem cell source to improve 
renal function and histological structure after experimental AKI.

METHODS 
Stem cell markers with multidifferentiation potential were isolated from human 
amniotic fluid. AKI severe combined immune deficiency (SCID) mice models 
were induced by means of an intramuscular injection with glycerol. USCs isolated 
from human-voided urine were administered via tail veins. The functional 
changes in the kidney were assessed by the levels of blood urea nitrogen and 
serum creatinine. The histologic changes were evaluated by hematoxylin and 
eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we 
compared the regenerative potential of USCs with bone marrow-derived 
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mesenchymal stem cells (MSCs).

RESULTS 
Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function 
was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI 
compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell 
varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators 
closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell prolif-
eration and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. 
We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation 
and apoptosis processes in the kidney, and promoted tubular epithelial proliferation.

CONCLUSION 
Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic 
strategy.

Key Words: Urine-derived stem cells; Regenerative medicine; Acute kidney injury; Renal function recovery; Cell therapy

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study reveals that urine-derived stem cells (USCs) significantly enhance renal function and histological 
recovery in severe combined immune deficiency mice with glycerol-induced acute kidney injury (AKI). By comparing 
USCs with bone marrow-derived mesenchymal stem cells, the research highlights USCs’ potential as a novel, non-invasive 
cell source for AKI treatment. The findings suggest that USCs, through their multidifferentiation potential and secretion of 
various cytokines and growth factors, offer a promising therapeutic strategy for AKI, potentially altering clinical approaches 
to renal repair.

Citation: Li F, Zhao B, Zhang L, Chen GQ, Zhu L, Feng XL, Gong MJ, Hu CC, Zhang YY, Li M, Liu YQ. Therapeutic potential of 
urine-derived stem cells in renal regeneration following acute kidney injury: A comparative analysis with mesenchymal stem cells. 
World J Stem Cells 2024; 16(5): 525-537
URL: https://www.wjgnet.com/1948-0210/full/v16/i5/525.htm
DOI: https://dx.doi.org/10.4252/wjsc.v16.i5.525

INTRODUCTION
Acute kidney injury (AKI) is a complex syndrome marked by the rapid decline in renal function. Despite improvements 
in intensive care and dialysis methods, the incidence of heart disease and sepsis has risen, resulting in consistently high 
levels of mortality and morbidity linked to AKI. This worrisome trend could be attributed to the aging population, which 
poses additional challenges[1]. The worldwide occurrence of AKI stands at 21 million per 100000 person-years, notably 
affecting hospitalized individuals at a higher frequency. Notably, AKI cases necessitating renal replacement therapy are 
associated with mortality rates ranging from 50% to 80%, resulting in an estimated annual global death toll of 2 million. 
Moreover, patients diagnosed with AKI face a ninefold augmented risk of developing chronic kidney disease and a 
twofold increased risk of mortality in comparison to those without AKI[2]. Even among AKI patients who receive renal 
replacement therapy, the mortality rate remains alarmingly high, ranging between 50% and 60%[3]. Consequently, the 
development of more efficacious therapeutic strategies for treating AKI is imperative.

Renal impairment tubular is commonly seen as the primary pathological change linked to AKI. The prognosis of AKI 
patients is greatly influenced by the effective regeneration of necrotic tubular epithelial cells. In recent times, novel 
methods have been explored to aid in the restoration of renal tubular epithelial cells. One potential approach involves the 
utilization of stem cells or progenitor cells, such as embryonic stem cells (ESCs), bone marrow-derived mesenchymal 
stem cells (BMSCs), stem cells sourced from human amniotic fluid (hAFSCs), and induced pluripotent stem cells (iPSCs), 
with the goal of reinstating kidney functionality[4-7]. ESCs present an unlimited reservoir for cell replacement therapy; 
however, their usage is mired in controversy due to ethical concerns surrounding embryo use. Furthermore, the retrieval 
procedure of BMSCs and hAFSCs can cause discomfort and ethical conflicts. Despite the simple production of iPSCs from 
human cells, which helps in preventing immune rejection, apprehensions persist about their safety due to the possible 
development of teratomas. Therefore, investigators continue to explore novel, less invasive cell sources for application.

Urine-derived stem cells (USCs), which are isolated from urine, have a high proliferative capacity. USCs are drawing 
much research attention due to the advantages of noninvasive harvesting and strong differentiation potential. The applic-
ability of USCs in the treatment of bladder dysfunction and in cell-based urological tissue regeneration has been 
demonstrated[8-10]. USCs have the potential to differentiate and may be a promising treatment option for kidney 
disorders[11,12]. In this work, we investigated whether USCs could serve as a potential stem cell source to improve renal 
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function and histological structure in mice with AKI induced by glycerol injection in nonimmune-competent severe 
combined immune deficiency (SCID) mice. Furthermore, our goal was to assess the regenerative capacity of USCs in 
comparison to human BMSCs.

MATERIALS AND METHODS
Isolation and culture of USCs
This protocol was approved by the Institutional Review Board of Chongqing Medical University and performed in 
accordance with the ethical standards prescribed by the Helsinki Declaration of the World Medical Association. USCs 
were isolated as reported[13]. Nonpolluted samples were collected from 30 healthy donors (male; 24-28 years old). All 
urine samples were fresh morning urine samples, and the urine was stored at 4 °C for less than half an hour. After the 
collected voided urine samples were centrifuged, the cell pellets were washed with phosphate buffered saline (PBS) and 
plated in 24-well tissue culture plates. Medium for USCs composed of keratinocyte serum-free medium and progenitor 
cell medium at a 1:1 ratio was used to culture USCs. Keratinocyte serum-free medium contained 50 ng/mL bovine 
pituitary extract (Euroclone, Wetherby, United Kingdom) + 5 ng/mL epidermal growth factor (Gibco, Carlsbad, CA) + 30 
ng/mL choleratoxin (Gibco, Grand Island, United States) + 100 U/mL penicillin (Gibco, Grand Island, United States) + 1 
mg/mL streptomycin (Gibco, Grand Island, United States). Progenitor cell medium contained 1/4 Dulbecco’s modified 
Eagle’s medium (DMEM), 1/4 Hamm’s F12 (Gibco, Grand Island, United States) + 10% fetal bovine serum (FBS) (Gibco, 
Grand Island, United States) + 0.4 μg/mL hydrocortisone (Gibco, Grand Island, United States) + 5 ng/mL insulin 
(Corning, Bedford, United States) + 1.8 × 10-4 M adenine (Corning, Bedford, United States) + 5 μg/mL transferrin 
(Corning, Bedford, United States) plus 2 × 10-9 M 3,39,5-triiodo-L-thyronine (Corning, Bedford, United States) + 10 ng/mL 
epidermal growth factor (Gibco, Carlsbad, CA) + 1% penicillin-streptomycin (Gibco, Grand Island, United States).

Isolation and culture of BMSCs
Bone marrow cells were collected from healthy donors with informed consent. This protocol was approved by the Institu-
tional Review Board of Chongqing Medical University and performed in accordance with the ethical standards 
prescribed by the Helsinki Declaration of the World Medical Association. BMSCs were isolated, cultured, and charac-
terized as described previously[14]. In our study, BMSCs were plated in 24-well tissue culture plates at approximately 500 
cells per well with advanced DMEM (Gibco, Grand Island, United States) with 10% FBS (Gibco, Grand Island, United 
States). After 5 d of culture, the medium was changed. After expansion of the BMSCs for three successive passages, cells 
were seeded at a density of 2 × 104 cells/cm. The cells were analyzed for immunophenotype by cytofluorimetric analysis 
and immunofluorescence. The osteogenic, adipogenic and chondrogenic differentiation abilities of BMSCs were 
determined.

Cell-surface marker analysis of USCs
Cytofluorimetric analysis of USCs was performed as described previously[15]. At passage 3, 20000 cells were collected 
and suspended in 500 μL of staining buffer (SB; PBS with 1% FBS) before being incubated in the dark at 4 °C for 30 min 
with 20 μg/mL. Subsequently, the cells were labeled with specific anti-human antibodies including: CD31-FITC, CD34-
FITC, CD45-FITC, CD73-PE, CD90-FITC, and CD105-FITC (BD Pharmingen). Isotype control antibodies IgG-FITC and 
IgG-PE conjugates were utilized to assess baseline fluorescence levels. Data analysis was performed using a 
FACSCalibur™ analytical fluorescence-activated cell sorter.

Differentiation potential assay
To assess the differentiation potential, USCs were stimulated to differentiate into bone, fat, and cartilage cells using the 
differentiation induction and maintenance medium provided by OriCell®. The process of osteogenic differentiation was 
evidenced through the use of alkaline phosphatase (ALP) from Sigma Aldrich, following a 7-d incubation period in 
osteogenic differentiation media. Adipogenic differentiation was achieved by incubating the cells in OriCell® adipogenic 
induction and maintenance medium, alternating every 3 to 4 d, for a total of 21 d. Upon completion of adipogenesis, the 
cultured cells were fixed in 4% PFA and stained with Oil Red O solution from Cyagen. For chondrogenic differentiation, 
chondrogenesis was induced using the pellet culture method with differentiation medium (Invitrogen). The pelleted 
aggregates were grown as freely floating cells kept in suspension culture for 2 to 3 wk, with the medium being changed 
every three days. To prepare for microscopy, the aggregates were embedded in paraffin, and then cut into 4 μm sections 
before being stained with Alcian blue from Sigma Aldrich.

Cytokine assay
To measure the cytokines produced by USCs and BMSCs separately, we performed a multiplex cytokine array measured 
by using a Proteome Profiler™ Human XL Cytokine Array Kit (R&D Systems). Specifically, when cultured to a 
confluence of 90%, 5 × 106 cells at passage 3 were washed with PBS three times and incubated with 10 mL serum-free 
DMEM in a 10 cm dish for 24 h (n = 3). Then, the medium without cells was harvested and lyophilized for detection. 
Special reagents (Proteome Profiler™ Human XL Cytokine Array Kit) were utilized in our study, which consisted of 55 
antibodies targeting various cytokines. These antibodies were arranged in duplicate on nitrocellulose membranes, where 
they were designed to bind specifically to their corresponding cytokine proteins. Following the capture of the cytokine 
proteins, biotinylated detection antibodies were employed to identify them, and visualization was achieved through the 
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use of chemiluminescent detection reagents. Subsequently, the membranes were exposed to X-ray film for a duration of 
10 min. Quantity one software was used to record the film on the diaphragm site display and classify the cytokine. 
BMSCs served as a control.

Acute renal injury in SCID mice and treatment
Animal experiments were executed under the policies of the Laboratory Animal Ethical Commission of Chongqing 
Medical University. This protocol was approved by the Institutional Review Board of Chongqing Medical University and 
performed in accordance with the ethical standards prescribed by the Helsinki Declaration of the World Medical 
Association. The rhabdomyolysis model was induced in a total of 80 male SCID (severe combined immune deficiency) 
BALB/c mice (Charles River, China). In short, after 24 h of free access to water, the mice (body weight 22 ± 3 g) were 
anesthetized and injected with a dose of 8 μL of 50% glycerol/g body weight into the left and right hind femoral muscles. 
Three days after induction of experimental injury, the mice were injected with 5 × 105 USCs or BMSCs (Figure 1) or saline 
as a control. Mice were sacrificed as follows: Day 3 (n = 5), day 5 (CTRL n = 5, USC n = 10, and BMSC n = 10), day 9 
(CTRL n = 5, USC n = 10, and BMSC n = 10), and day 18 (CTRL n = 5, USC n = 10, and BMSC n = 10). The kidney tissue 
was fixed in 10% formaldehyde or frozen in OCT (Thermo, United States). Finally, the tissues were sectioned into 4 mm 
samples using a cryostat microtome. The sections were stained with hematoxylin-eosin (HE). To record and compare the 
renal histological structure changes, in more than 20 non-overlapping high-power fields (× 40), the quantity of luminal 
hyaline casts and necrosis was evaluated. The counting of casts and tubular profiles containing necrotic cells was 
performed in a manner where the tester was unaware of the data.

Tubular apoptosis
To quantify tubular apoptosis, the section was stained by terminal deoxynucleotidyl transferase dUTP nick-end labeling 
(TUNEL) using the TUNEL Apo-Green Detection Kit (Biotool, United States) according the manufacturer’s protocol, and 
the percentage of apoptotic cells was calculated.

Biochemical data
To assess renal function, serum from sacrificed mice in metabolic cages was collected and measured for blood nitrogen 
and creatinine. These data were determined in the clinical laboratory of Chongqing General Hospital by using an 
automatic biochemical analyzer (Olympus, Japan). Blood samples were collected at various time points (days 0, 3, 5, 9, 
and 18), and serum was isolated from the supernatant through centrifugation at 3000 rpm for 5 min.

Identification of human leucocyte antigen-labeled human USCs or BMSCs
In order to investigate the intrarenal distribution and quantify the localized human USCs or BMSCs, cells were labeled 
using a Vedeng Cell Tracer Kit (Vedeng, China) and then injected into SCID mice models (n = 3 per group). The mice 
were euthanized at 1, 3, and 5 d post transplantation, followed by kidney tissue collection and embedding in OCT 
medium. Tissue sections (5 μm) were fixed in acetone (10 min). To confirm the human origin of USCs or BMSCs, kidney 
sections of mice injected with human leucocyte antigen (HLA) class I polyclonal antibody (Becton, Dickinson) were 
analyzed. HLA-positive cell scoring involved tallying the quantity of positive cells per field across 10 randomly selected 
segments of kidney cortex from three mice in each group, utilizing 40 × magnification. The results are presented as the 
count of HLA-positive cells per high-powered field (hpf).

Statistical analysis
All values are presented as the means ± SD. Statistical analyses were performed with SPSS software (version 18.0). One-
way analysis of variance was applied to the differences among different mouse groups. A P value of less than 0.05 was 
considered statistically significant.

RESULTS
Isolation and characterization of USCs
After being induced in medium for 7 d, mostly individual cells adhered to the culture plates. The cell morphologies were 
changed into rice-like cell clones (Figure 2, p0). Passaging culture can be performed for approximately 8-9 d, with 
subsequent passages conducted every 3-5 d. With an increasing passage number, the morphology of normoxic group cells 
gradually changed from the original “rice-like” shape to a “spindle-like” shape (Figure 2A), accompanied by an increase 
in cell volume. As shown in Figure 2B, the morphology of cells displayed changes that suggest a potential for diverse 
differentiation, as indicated by variations in shape resembling,but not confirmed to be, endothelial and smooth muscle 
cell morphologies. Cell populations from passages 7 through 8 maintained a fibrocyte-like morphology, exhibiting a long 
fusiform shape while proliferating uniformly (Figure 2C).

Cytofluorimetric analysis of USCs
The USCs were acquired as detailed in a previous study and assessed based on their phenotype and differentiation 
potential. Analysis via flow cytometry revealed that the cells exhibited uniform weak positivity for the surface antigens 
CD73, CD90, and CD105, commonly observed in MSCs. USCs were negative for CD31 (a marker of endothelial cells), 
CD34 (a marker of hematopoietic stem cells) and CD45 (a marker of hematopoietic lineage cells and fibroblasts). A repres-
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Figure 1 Experimental schedule. Experimental timeline illustrating the protocol for inducing acute kidney injury using glycerol, as well as the treatment regimen 
involving either urine-derived stem cells or bone marrow mesenchymal stem cells. At time 0, glycerol was administered intramuscularly. The arrow on day three 
indicates the administration of 500000 cells or vehicle alone. The following arrows indicate the designated time points for sacrificing the subjects. USCs: Urine-derived 
stem cells; BMSCs: Bone marrow mesenchymal stem cells.

Figure 2 Morphological characteristics of urine-derived stem cells. P0: Representative characteristics of the urine-derived stem cells (USCs) at primary 
passage within 48 h: The cells exhibiting individual colonies adhered to the culture plates, and nonadherent or sparsely adherent small round cells were scattered in 
the culture plates (100 ×). A: p1-p3: Representative characteristics of USCs from passage 1 to passage 3, between day 3 and day 12: The cell morphology gradually 
changed from the original “rice-like” shape to a “spindle-like” shape (100 ×); B: p4-p6: The morphology of cells displayed changes that suggest a potential for diverse 
differentiation, as indicated by variations in shape resembling, but not confirmed to be, endothelial and smooth muscle cell morphologies; C: p7-p8: The morphology 
of cells from passage 7 to 8 remained in a fibrocyte-like form with a long fusiform shape and grew in the same direction (100 ×).

entative fluorescence-activated cell sorter analysis of USCs is shown in Figure 3.

Multilineage differentiation potency of USCs
By employing specific differentiation media, successful differentiation of USCs into osteocytes, adipocytes and 
chondrocytes was achieved. The differentiated cells exhibited distinct phenotypic characteristics, as demonstrated in 
Figure 4. Osteogenic differentiation was demonstrated by ALP staining (Figure 4A), while adipogenic differentiation was 
confirmed through intracellular lipid vesicles visualized by Oil Red O staining (Figure 4B). Chondrogenic differentiation 
in the pelletized USCs was observed through Alcian blue staining, demonstrating the presence of hyaluronic acid and 
sialomucin expression (Figure 4C).

Effect of USC on the recovery of glycerol-induced AKI in SCID mice and comparison with BMSCs
The potential beneficial effect of USCs on improving renal function and histological structure following AKI was invest-
igated through the induction of experimental AKI via glycerol injection, as previously described[16]. Intramuscular 
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Figure 3 Surface marker expression of CD31, CD34, CD45 CD73, CD90 and CD105 in urine-derived stem cells after the 3rd passage 
analyzed by flow cytometry. All analyzed urine-derived stem cells (n = 9) showed similar results in passages 2 to 4. FITC: Fluorescein isothiocyanate; PE: 
Phycoerythrin.

Figure 4 Differentiation characteristics of the urine-derived stem cells at passage 2. A: Representative osteogenesis was detected by alkaline 
phosphatase staining on day 7; B: Representative adipogenic differentiation visualized by Oil Red O staining of the intracellular lipid vesicles on day 21; C: 
Representative chondrogenic differentiation detected by Alcian blue staining on day 28. The micrographs are representative of 9 experiments.

injection of glycerol triggers rhabdomyolysis in muscular tissue, resulting in substantial release of enzymes, hemoglobin, 
and myoglobin to the kidney. The kidney’s exposure to myoglobin and iron subsequently leads to tubular injury. 
Following glycerol injection, there was an increase in serum creatinine (SCr) and blood urea nitrogen (BUN) levels, 
reaching a peak at 72 h and maintaining an elevated state for 10 d before normalizing on day 18. Three days post-AKI 
induction, mice were intravenously administered 5 × 105 USCs or BMSCs in 200 μL of PBS through the tail vein, while 
control animals received only PBS. The experimental timeline is depicted in Figure 1. Animals were euthanized on days 3, 
5, 9, and 18 post-AKI induction.
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Following the AKI procedure, within a 72-h period, the serum concentrations of creatinine and BUN (both indicative of 
renal dysfunction) progressively increased in the three groups. Mice that received USC injections demonstrated a 
significant reduction in creatinine starting from day 5 (48 h post-treatment) and continuing throughout the duration of 
the experiment (Figure 5A) compared to the animals in the control group. Moreover, USC treatment led to the normal-
ization of BUN levels as early as day 5 (Figure 5B). The functional recovery observed with USCs was comparable to that 
achieved through the infusion of BMSCs. The results of this study suggest that USCs provide an additional benefit of 
protecting the kidneys from the deleterious effects of AKI.

On day 3 post-injury, histological examination of the kidneys from glycerol-injected SCID mice revealed epithelial 
damage characterized by tubular necrosis and tubular epithelial cell vacuolization. Additionally, proximal tubular cells 
exhibited a loss of brush border and intratubular protein casts (Figure 6A). Mice administered USCs or BMSCs displayed 
a significant reduction in tissue damage compared to untreated controls. On day 5 post-glycerol injection (48 h following 
stem cell injection), mice treated with either USCs (Figure 6B) or BMSCs (Figure 6C) demonstrated diminished tissue 
damage compared to untreated control mice (Figure 6D). By the 9th d, mice that received USCs or BMSCs showed nearly 
normal renal structure (Figure 6E and F) in contrast to untreated animals (Figure 6G). By the 18th d, normal histology was 
reinstated in all the experimental groups (Figure 6H-J).

To assess the regenerative response of kidney tissue in USC-injected animals, we quantified the findings above by 
kidney injury score. This score indicated a significant reduction in damage and recovery of the renal structure in USC- 
and BMSC-injected mice compared with untreated control mice (Figure 6K). However, there was no significant difference 
between the USC and BMSC groups.

Table 1 presents a morphometric evaluation on day 5 after AKI induction comparing injury in AKI mice injected with 
or without USCs or BMSCs. Mice injected with stem cells had a significantly lower count of cast-containing tubules and 
fewer necrotic tubules than untreated AKI mice. There was no significant difference between mice administered USCs 
and those treated with BMSCs.

USC and BMSC renal localization in mice with AKI
To assess the engraftment of USCs and BMSCs in the kidneys of AKI mice, the stem cells were prelabeled with the HLA 
Cell Tracer Kit prior to in vivo infusion. HLA-positive cells, 8 ± 0.82 USCs/hpf and 5.67 ± 0.47 BMSCs/hpf, were detected 
in the renal tissues of glycerol-treated mice on day 5 (2 d after cell injection) (Figure 7A and D). These cells were predom-
inantly located in peritubular capillaries (Figure 7B and E). On AKI day 9 (6 d after cell injection), HLA-positive USCs and 
HLA-positive BMSCs were found at 3.14 ± 0.47 hpf and 1.33 ± 0.47 hpf, respectively. As HLA-positive USCs continued to 
remain significantly reduced, few USCs could also be detected on day 18, whereas BMSCs were entirely absent (Figure 7C 
and F). No signals were detected in HLA-positive cells within the kidneys of control mice. Quantification of HLA-positive 
cells is depicted in Figure 7G.

Angiogenesis-related proteins secreted from USCs and BMSCs in vitro
More than 20 types of angiogenesis-related proteins, such as amphiregulin, hepatocyte growth factor, insulin-like growth 
factor binding protein-1, transforming growth factor-β and others, were detected in the supernatant of the culture 
medium of USCs and BMSCs (Figure 8A and B). The results showed that the expression of certain angiogenesis-related 
proteins, including angiopoietin, collagen XVIII, EG-VEGF, thrombospondin-1 and uPA, in USCs was significantly higher 
than that in BMSCs (Figure 8C, Student’s t test: aP < 0. 05, n = 3).

DISCUSSION
Extensive studies have been conducted to explore the role and potential of stem cells in AKI. Most of the research has 
concentrated on BMSCs and BMSCs expanded in vitro. These cells have been utilized in different AKI mouse models[17,
18]. In clinical practice, ischemia/reperfusion (I/R) injury is a major contributor to AKI, leading to acute tubular necrosis, 
apoptosis, and inflammation as the main pathological changes. At present, renal replacement therapy is the established 
method for treating renal I/R injury[19,20]. The successful healing of renal I/R injury greatly depends on replacing 
necrotic tubular epithelial cells with operational alternatives. However, the regenerative capacity of the kidney itself to 
increase the number of tubular cells after AKI is limited[21,22]. Although there have been many drugs and biological 
factors identified as effective in treating AKI in animal models, there is still a lack of a significantly successful new 
treatment that has been implemented in clinical settings[23].

MSCs were first discovered in the bone marrow and subsequently found in various tissues of the body, such as bone 
marrow, fat, and muscle, during development[24]. However, MSCs have some disadvantages, including ethical issues, 
invasive harvesting and limited donors[25]. In recent years, Zhang et al[26], the consultant of our study, first isolated a 
type of adult stem cell with good self-proliferation and multidirectional differentiation capabilities from voided urine; the 
cells were called USCs[26]. USCs express a diverse array of surface markers characteristic of MSCs and renal system 
markers, and they exhibit the capacity to differentiate into various cell types under specific conditions. Recognized as 
stem cells of immense potential, USCs have been utilized in numerous disease models[27]. For example, studies on repair 
of the neurogenic bladder rat model revealed that in the USC transplantation group, the bladder function is better 
recovered and that the repaired neurogenic bladder has the ability to spontaneously urinate, as detected through 
urodynamic experiments and isolated bladder detrusor muscle strip experiments[28]. Additionally, in a rabbit model 
with urethral defects, USCs were transplanted onto a three-dimensional tissue scaffold (SIS), and subsequent surgical 
evaluations conducted at the 2nd, 3rd, 4th, and 12th wk revealed significant enhancements in the urethral caliber length, 
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Table 1 Effects of urine-derived stem cells and bone marrow mesenchymal stem cells on renal morphology and tubular apoptosis

AKI AKI + USCs AKI + BMSCs Control

Cast (n/hpf) 6.12 ± 3.12 1.24 ± 1.12a 1.53 ± 0.32b 0

Necrosis (n/hpf) 4.35 ± 3.19 1.65 ± 1.17a 0.85 ± 0.27b 0

TUNEL-positive cells (n/hpf) 19.8 ± 13.2 4.02 ± 1.21a 8.14 ± 3.5b 0

aP < 0.05 for urine-derived stem cell injection versus untreated acute kidney injury.
bP < 0.05 for bone marrow mesenchymal stem cell injection versus untreated acute kidney injury.
Comparison of urine-derived stem cell or bone marrow mesenchymal stem cell injection on tubular morphology and apoptosis on day 5 after acute kidney 
injury induction. Numbers in the table represent the mean ± SD of tubular casts and necrotic tubules and of apoptotic cells detected by terminal 
deoxynucleotidyl transferase dUTP nick-end labeling, observed under high power (magnification, 400 ×). AKI: Acute kidney injury; USC: Urine-derived 
stem cell; BMSC: Bone marrow mesenchymal stem cell; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick-end labeling; hpf: High-powered field.

Figure 5 Assessment of renal function. A and B: The changes in renal function were assessed by measuring creatinine levels (A) and blood urea nitrogen 
(BUN) levels (B). After glycerol injection, the creatinine levels increased starting on day three. However, in mice administered urine-derived stem cells or bone marrow 
mesenchymal stem cells, the creatinine levels decreased to near baseline levels within 48 h post-injection and remained stable for the duration of the experiment (A). 
A similar trend was observed when measuring BUN levels (B). To determine the statistical significance of these results, an analysis of variance was performed. aP < 
0.05, the comparison between stem cell-treated and untreated groups showed statistical significance. BUN: Blood urea nitrogen; USC: Urine-derived stem cell; 
BMSC: Bone marrow mesenchymal stem cell.

urothelial regeneration rate, smooth muscle mass, and vascular density among the rats in the USC group[29]. In a rat 
model of diabetic nephropathy, USCs exhibited short-term survival in the kidneys, resulting in decreased levels of SCr 
and BUN, as well as reduced collagen deposition and inflammatory cell infiltration. Consequently, USC transplantation 
successfully improved renal function[30]. However, the therapeutic effect of USCs on AKI has rarely been reported thus 
far. In this study, we found that injection of USCs can improve renal function and histological structure in SCID mouse 
models of AKI. In addition, we compared this effect with that of BMSCs. Compared with BMSCs, USCs have different 
levels of promotion effect on histological and functional improvement of kidney injury. In addition, USCs exert an 
obvious antifibrotic effect on kidney cells, whereas BMSCs were more effective.

This study demonstrated that the administration of USCs was able to improve renal function and histological structure 
in AKI recovery in an SCID mouse model. In comparison to the control group, the group treated with USC showed 
notable reductions in levels of SCr and BUN, a lower Paller’s tubular injury score, a higher count of actively dividing 
cells, and a decreased count of cells undergoing apoptosis. In our further research, the expression levels of some anti-
inflammatory factors were significantly upregulated, and the expression levels of the fibration factors were significantly 
reduced compared with those in the control group.

Many researchers have attempted to discover the mechanism of using MSC transplantation to treat AKI, and the 
prospective mechanisms primarily focus on two aspects. First, exogenous MSCs home to the site of kidney injury and 
proliferate and transdifferentiate into renal tubules and other cells. In some studies, researchers noticed that many 
transplanted cells were implanted into damaged tissues. In animal experiments, Ezquer et al[31] found that after renal I/R 
injury, bone marrow MSCs move to the area of damaged tubules and differentiate into tubular epithelial cells. In a rat 
model using cisplatin to induce acute renal failure in mice, Morigi et al[32] found that treatment by injection of MSCs can 
improve renal function and that MSCs can directly participate in renal reconstruction by transdifferentiating into tubular 
cells. Duffield et al[33] observed that injected exogenous BMSCs existed only in the middle area of endothelial cells near 
the capillaries of renal tubules and expressed the endothelial cell surface markers CD31 and VWf. Second, the cytokines 
secreted by exogenous BMSCs play a crucial role in reducing inflammation and promoting the repair of kidney injury. 
Among the diverse cytokines, the production of inflammatory cytokines is considered a critical factor in the occurrence 
and development of AKI. The effect of MSCs is mainly mediated by complex paracrine effects, including the secretion of 
beneficial factors and the activation of signaling proteins[34]. The paracrine/endocrine effects of stem cells are supported 
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Figure 6 Histological findings of acute kidney injury by hematoxylin and eosin staining (200 ×) in urine-derived stem cell-treated, bone 
marrow mesenchymal stem cell-treated and control untreated mice. A-D: Representative micrographs of renal tissue from mice on day 3 (A) and day 5 
(D) after the glycerol injection procedure, demonstrating tubular dilatation (red asterisk), tubular necrosis (green arrows), tubular protein cast formation (black 
asterisk), dilatation of Bowman’s capsule (blue arrows) and loss of the brush border in renal tubules (yellow arrows). Representative micrographs of renal tissue from 
mice on day 5 post-glycerol injection treated with urine-derived stem cells (USCs) (B) and bone marrow mesenchymal stem cells (BMSCs) (C), showing signs of 
tissue injury recovery; E-G: Representative micrographs of renal tissue from mice on day 9 post-glycerol injection, exhibiting the persistence of renal injury in 
untreated mice (G) and signs of recovery in USC-treated (E) or BMSC-treated (F) mice; H-J: Representative micrographs of renal tissue from mice on day 18 showing 
the normal morphology of tissue in mice untreated (H) or treated with USCs (I) and BMSCs (J). Scale bars in the lower right corner represent 50 μm; K: Graphs 
illustrating the quantification of kidney injury scores at days 3, 5, 9, and 18 in acute kidney injury mice treated with USCs or BMSCs or injected with saline as a 
control. Statistical significance was calculated using analysis of variance with the Newman-Keuls multiple comparison test: aP < 0.05, stem cells in acute kidney 
injury-treated versus untreated mice. USC: Urine-derived stem cell; BMSC: Bone marrow mesenchymal stem cell.

by the following evidence: A previous study elucidated the potential of adipose-derived stem cell therapy in improving 
functional parameters and attenuating the advancement of renal fibrosis in both the initial and later stages following 
injury. In addition, the therapy was found to reduce the levels of interleukin (IL)-6 and tumor necrosis factor (TNF), while 
simultaneously boosting the levels of IL-4, IL-10, and heme oxygenase-1[35]. Kim et al[36] reported that culture medium 
from MSCs alone has a beneficial effect on the regeneration of kidney injury; Bruno et al[14] showed that the release of 
microvesicles may account for the positive effect of MSCs in the recovery of AKI.
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Figure 7 Detection of urine-derived stem cells or bone marrow mesenchymal stem cells within the kidneys of acute kidney injury mice by 
human leucocyte antigen immunostaining. A-C: Representative micrographs showing human leucocyte antigen (HLA)-positive cells in kidney tissue from 
acute kidney injury (AKI) mice injected with urine-derived stem cells at days 5, 9 and 18; D-F: Representative micrographs showing HLA-positive cells in kidney tissue 
from AKI mice injected with bone marrow mesenchymal stem cells on days 5, 9 and 18; G: Graphs illustrating the quantification of HLA-positive cells. Student’s t test 
was performed between urine-derived stem cell-treated and bone marrow mesenchymal stem cell-treated AKI mice at each time point. aP < 0.01. USC: Urine-derived 
stem cell; BMSC: Bone marrow mesenchymal stem cell; HLA: Human leucocyte antigen.

BMSCs also affect T-cell-mediated inflammation. Research shows that cocultivation of BMSCs with Th1, Th2 or natural 
killer cells can reduce the secretion of inflammatory factors such as TNF-α and interferon-γ and increase the secretion of 
tolerogenic and inhibitory factors such as IL-10[37]. These effects are mediated by BMSC production of prostaglandin E2.

Therefore, the therapeutic effect of BMSCs on AKI is related to their role in regulating T-cell function. During the 
treatment of animal kidney I/R injury with BMSCs, Semedo et al[38] found that the concentration of anti-inflammatory 
cytokines in kidney extracts increased, which supports the previous view. Furthermore, by analyzing the cytokines and 
human angiogenesis-related factors released by USCs and BMSCs in conditioned medium, it was shown that they had 
differences in the series of factors secreted. Specifically, USCs produce lower angiogenesis-related growth factors and 
cytokines than BMSCs but more matrix metalloproteinases. Matrix metalloproteinases have been proven to be a crucial 
factor for the repair of kidney tissue after AKI. Different growth factor combinations may be responsible for the difference 
in tubular epithelial cell proliferation and apoptosis after stem cell therapy.

In the present study, we tried to explain the difference in the protective mechanism of USCs and BMSCs by observing 
the dynamics of kidney localization in vivo and the production of different soluble factors in vitro. We found that neither 
USCs nor BMSCs were integrated into the kidney tissue but remained in the renal interstitium for a short time. Previous 
studies have also presented similar findings regarding MSCs[39,40]. Essentially, the positioning of transplanted stem cells 
near the tubules indicates that repair mechanisms for different cell types largely depend on the localized discharge of 
soluble factors, rather than exclusively depending on tissue integration.

To summarize, this study successfully demonstrated the ability of USCs to differentiate into renal cells and alleviate 
renal I/R injury in rats. The therapeutic effects of USCs were primarily attributed to their antiapoptotic and mitogenic 
properties, as well as their influence on cytokine production. The positive outcomes achieved in treating I/R injury with 
USCs strongly suggest their potential as a highly suitable stem cell option for the treatment of kidney ailments.
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Figure 8 Angiogenesis-related protein growth factor secretion by urine-derived stem cells and bone marrow mesenchymal stem cells. A: 
Results of angiogenesis growth factor secretion by urine-derived stem cells (USCs); B: Results of angiogenesis growth factor secretion by bone marrow 
mesenchymal stem cells (BMSCs); C: Statistical analysis of the levels of secretion by USCs and BMSCs by using Student’s t test: aP < 0. 05, urine-derived stem cell 
vs bone marrow mesenchymal stem cell. USC: Urine-derived stem cell; BMSC: Bone marrow mesenchymal stem cell; EG-VEGF: Endocrine gland-derived vascular 
endothelial growth factor; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; HGF: Hepatocyte growth factor; IGFBP: Insulin-like growth factor binding 
protein; MCP: Monocyte chemoattractant protein; MMP: Matrix metalloproteinase; PD-ECGF: Platelet-derived endothelial cell growth factor; PIGF: Placental growth 
factor; TIMP: Tissue inhibitor of metalloproteinases; TGF: Transforming growth factor; uPA: Urokinase plasminogen activator.

CONCLUSION
In conclusion, this investigation revealed that USCs improved the renal function and histological structure in AKI 
recovery. The anti-apoptotic and mitogenic actions of USCs mediated their effects, along with their impact on cytokine 
production. The successful treatment of AKI with USCs strongly indicates that USCs may be a well-suited type of stem 
cell for the treatment of kidney disease. Further studies are needed to investigate the mechanism and clinical applications.
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